Características morfofisiológicas de culivares de capim-bufel submetidas a diferentes temperaturas do ar e concentrações de CO₂1

Roberta Machado Santos², Tadeu Vinhas Voltolini³, Francislene Angelotti³, Giselle Souza Pinheiro⁴, Laise Guerra Barbosa⁵, Saulo de Tarso Aidar³

Resumo: O presente trabalho foi realizado com a finalidade de avaliar as características morfofisiológicas do capim-bufel (*Cenchrus ciliaris* L.) submetido a aumentos da temperatura do ar e concentrações de CO₂. As cultivares avaliadas foram Biloela, Aridus e West Australian, mantidas em câmara de crescimento em três combinações de temperaturas (diurna/noturna): 26°C/20°C; 29°C/23°C e 32°C/26°C associadas a duas concentrações de CO₂; 370 ppm e 550 ppm. O delineamento experimental foi o inteiramente casualizado em arranjo fatorial 3 x 3 x 2 com três repetições por tratamento. Dentre as cultivares, a Aridus apresentou maior número de folhas vivas (NFV/perfilho), enquanto a West Australian teve menor comprimento de lâminas expandidas (CLEx). O aumento da temperatura diminuiu o NFV/perfilho e a duração de vida das folhas, mas aumentou o CLEx. As três cultivares responderam de maneira diferenciada ao aumento da concentração de CO₂ e da temperatura, indicando que cenário climático futuro com aumento da temperatura e concentração de CO₂ poderá afetar o crescimento da planta e a duração do seu ciclo de cultivo.

Palavras-chave: ecofisiologia, Cenchrus ciliaris, cenários climáticos futuros

Morphophysiological characteristics of buffel grass cultivars submitted to different air temperatures and CO₂ concentrations

Abstract: The objective of present trial was to evaluate the morphophysiological characteristics of buffel grass (*Cenchrus ciliaris* L.) submitted to elevated air temperatures and carbon dioxide concentrations. Cultivars evaluated were Biloela, Aridus and West Australian kept in growth chambers with three combinations of temperatures (day/night): 26°C/20°C; 29°C/23°C and 32°C/26°C associated to two concentrations of carbon dioxide; 370 ppm and 550 ppm. The experimental design was a completely randomized in a factorial arrangement 3 x 3 x 2 with three replicates per treatment. Among cultivars, Aridus showed greater number of green leaves (NGL / tiller), while West Australian had shorter length of expanded leaves (LEL). The increasing of temperature decreased the NFV / tiller and leaf duration and increased LEL. The three cultivars responded differently to elevated CO₂ concentration and air temperature, indicating that future climate scenario with increased temperature and CO₂ concentration can affect plant growth and the duration of the crop cycle.

Keywords: ecophysiology, *Cenchrus ciliaris*, future climate scenario.

Introdução

¹Pesquisa financiada pela Embrapa – Macroprograma 1

²Doutoranda do Programa de Pós-Graduação em Recurso Genéticos Vegetais – UFES. Bolsista CAPES. E-mail: betamsantos@yahoo.com.br

³Pesquisador (a) da Embrapa Semiárido.

⁴Discente do curso de Biologia – UPE. Bolsista pela Embrapa Semiárido.

⁵Mestranda do Programa de Pós-graduação em Horticultura – UNEB. Bolsista CAPES

Nos últimos 250 anos, a concentração de dióxido de carbono na atmosfera terrestre aumentou de 290 para 379 ppm. Aliado a isso, há previsão de que a concentração de CO₂ alcance 580 ppm até 2100. As emissões de dióxido de carbono têm recebido grande atenção em razão do seu volume representar 60% do total das emissões de gases de efeito estufa (IPCC, 2007). Segundo o IPCC (2007), o aumento da concentração dos gases do efeito estufa na atmosfera poderá elevar a temperatura média do ar no planeta entre 1,8 °C a 6,4 °C nos próximos 100 anos.

O CO₂, além de atuar como gás de efeito estufa aumentando a temperatura terrestre, pode causar impactos diretos e indiretos na agricultura. A elevação da concentração de CO₂ pode potencializar a produção das plantas em função da maior atividade fotossintética. No entanto, com o aumento da temperatura as plantas podem reduzir a atividade metabólica e aumentar a respiração influenciando diretamente no seu crescimento e desenvolvimento. Como consequência do aumento da temperatura em até 6,4 °C poderá ocorrer alteração na duração do ciclo de cultivo. Assim, compreender o resultado desses efeitos sobre a resposta da planta é de grande importância, já que elucidar como os ecossistemas respondem ao incremento do CO₂ atmosférico é chave para prever o seu funcionamento no futuro e os impactos em um planeta enriquecido com dióxido de carbono (Morgan et al., 2004).

O capim-bufel (*Cenchrus ciliaris* L.) é uma espécie forrageira de grande importância para as regiões áridas e semiáridas. Assim, os impactos sobre essa planta poderão representar consideráveis alterações sociais e econômicas nas regiões que o tem como base alimentar para os rebanhos. Desta forma, objetivou-se avaliar as características morfofisiológicas do capim-bufel perante aumentos de temperatura do ar e concentração de CO₂.

Material e Métodos

O experimento foi conduzido em duas câmaras de crescimento na Embrapa Semiárido, em Petrolina/PE. Foram avaliadas as cultivares de capim-bufel (Biloela, Aridus e West Australian), as quais foram semeadas em baldes plásticos contendo substrato (solo + adubo orgânico), na proporção de 2:1. Após 10 dias da semeadura realizou-se o desbaste, deixando cinco plantas por balde.

O delineamento experimental foi o inteiramente casualizado com três repetições em arranjo fatorial 3 x 3 x 2 (cultivar x temperatura do ar x concentração de CO₂). As análises estatísticas foram realizadas por meio do *software* Assistat, aplicando-se a análise de variância e o teste de Tukey. Foram considerados como significativos valores de probabilidade inferiores a 5% (P<0,05).

Nas câmaras de crescimento foram aplicadas três combinações de temperaturas (diurna/noturna): 26°C/20°C; 29°C/23°C e 32°C/26°C, aliadas a duas concentrações de CO₂ (550 ppm – concentração futura e 370 ppm – concentração atual), em fotoperíodo de 13h/11h. Utilizou a temperatura média da região, 26°C como testemunha, aplicando-se aumentos de 3°C e 6°C (29°C e 32°C).

As avaliações foram iniciadas a partir dos 15 dias pós-semeadura. Foram medidas as seguintes variáveis: número de lâminas foliares expandidas e em expansão, comprimento da lâmina foliar e número de lâminas foliares mortas. A partir destas medições foram estimados os valores de duração de vida das folhas (DVF), número total de folhas vivas por perfilho (NFV/perfilho) e comprimento da lâmina expandida (CLEx, cm). A duração do experimento foi de 50 dias.

Resultados e Discussão

As três cultivares responderam de maneira diferenciada ao aumento da concentração de CO₂ e da temperatura (Tabela 1). Para as cultivares Aridus e West Australian, o maior NFV/perfilho foi a 29°C/550ppm. A cultivar Biloela foi afetada pela interação temperatura x CO₂ no NFV/perfilho. O CLEx foi maior para as cultivares Aridus e Biloela na temperatura de 32°C. Já para a cv. West Australian o

CLEx foi maior a 29°C. Em ambas as temperaturas não houve efeito do ambiente enriquecido com CO₂. A DVF foi menor para todas as cultivares a 32°C/550ppm, sendo que para a Biloela não houve efeito do aumento da concentração de CO₂ (Tabela 1).

Estes resultados, de maneira geral, indicam aceleração do desenvolvimento vegetativo nas plantas, em função do aumento da temperatura, principalmente, devido à diminuição na duração de vida das folhas e NFV/perfîlho.

Tabela 1 - Efeito de interação entre cultivar x temperatura do ar x concentração de CO₂ sob número total de folhas vivas/perfilho (NFV/perfilho), comprimento final da lâmina expandida (CLEx - cm), duração de vida das folhas (DVF – dia)

	Temperatura do ar (°C) x Concentração de CO ₂ (ppm)					
Cultivar	Número total de folhas vivas/perfilho (NFV/perfilho)					
	26/370	26/550	29/370	29/550	32/370	32/550
Aridus	8,88 aAB*	9,16 aAB	8,66 aAB	10,22 aA	6,88 aB	7,66 aAB
Biloela	5,22 bA	6,33 bA	4,55 bA	5,83 bA	6,40 aA	6,11abA
W. Australian	6,8 abAB	5,88 bABC	5,88 bABC	8,66 aA	3,44 bC	3,88 bBC
	Comprimento final da lâmina expandida (CLEx - cm)					
Aridus	27,08 aBC	25,49 aC	37,57 aABC	38,08 aAB	41,36 aA	44,35 aA
Biloela	22,55 aB	27,11 aB	27,75 aB	34,27 aAB	41,82 aA	44,55 aA
W. Australian	22,08 aB	24,5 aAB	35,47 aA	34,41 aA	28,4 bAB	24 bAB
	Duração de vida das folhas (DVF - dias)					
Aridus	15,23 aAB	15,95 aA	13,8 bBCD	14,4 bABC	13,4 aCD	12,46aD
Biloela	13,51 bBC	14,95 aB	13,28 bBC	17,48 aA	13,02aC	12,72 aC
W. Australian	16,49 aA	14,78 aAB	15,81 aA	14,93 bAB	13,5 aBC	12,75 aC

^{*}Letras minúsculas para colunas e maiúsculas para linhas. Médias seguidas de mesma letra não diferem estatisticamente pelo Teste de Tukey, 5% de probabilidade.

Segundo Taiz & Zeiger (2009), o aumento da concentração de CO₂ pode estimular a taxa fotossintética de plantas com ciclo fotossintético do tipo C3 podendo ser benéfico na produção de biomassa. No entanto, o aumento da temperatura também tende a aumentar a fotorrespiração em plantas C3, além de estimular a taxa metabólica de tecidos vegetativos.

Em consequência, pode haver aumento equilibrado entre produção e consumo de fotoassimilados, explicando assim a tendência de diminuição da fase vegetativa ao longo do ciclo de vida das espécies vegetais. Em plantas com ciclo fotossintético do tipo C4, no entanto, espera-se que o aumento da concentração de CO2 não cause, por si só, aumento da eficiência fotossintética, uma vez que já apresentam mecanismo de concentração de CO2 nas células da bainha do feixe vascular (Taiz & Zeiger, 2009), mas o aumento da temperatura pode sim estimular o metabolismo nestas plantas, confirmando os resultados obtidos.

Conclusões

O aumento da temperatura e da concentração de CO₂ afeta as características morfofisiológicas, tendendo a acelerar o desenvolvimento vegetativo do capim-bufel.

Literatura citada

TAIZ, L.; ZEIGER, E. Fisiologia vegetal. Artmed, Porto Alegre, ed. 4, 2009.

IPCC (Intergovernmental Panel on Climate Change). Climate Change 2007: **The Physical Science Basis.** Summary for Policymakers. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Genebra, Suiça. 2007. 18 p.

MORGAN, J. A.; PATAKI, D.E; KÖRNER, C.; CLARK, H.; DEL GROSSO, S.J.; GRÜNZWEING, J.M.; KNAPP, A.K.; MOSIER, A.R.; MEWTON, P.C.D.; NIKLAUS, P.A.; NIPPERT, J.B.; NOWAK, R.S.; PARTON, W.J.; POLLEY, H.W.; SHAW, M.R. Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO₂. **Oecologia**. v.140, p.11–25, 2004.