

Minimização da toxidez do resíduo gerado na determinação de nitrogênio total (método Kjeldahl) pela eliminação do selênio.

Robson Dantas Viana (PG)^{1, 2}, Daniel de Oliveira Santos (PG)^{1, 2}, Eunides Domingos Araújo dos Santos (IC)¹ Carlos Alexandre Borges Garcia (PQ)³. *robson@cpatc.embrapa.br¹

Introdução

O descarte de forma inadequada dos rejeitos químicos provenientes dos laboratórios de instituições de pesquisa e ensino oferece riscos ao meio ambiente e à saúde humana. Conscientes de sua responsabilidade inúmeras instituições brasileiras executando, desde a década de 90, programas de gerenciamento de resíduos¹. Neste contexto, o laboratório de gerenciamento de resíduo de laboratório (GERELAB) da Embrapa Tabuleiros Costeiros tem estudado modificações em métodos padrão, visando reduzir, substituir ou eliminar reagentes tóxicos ou perigosos. O objetivo deste trabalho foi otimizar, utilizando o planejamento Doehlert, as quantidades de H₂SO₄ e da mistura catalisadora (Se, CuSO₄ e Na₂SO₄) na etapa decomposição de amostras biológicas para a quantificação de N (método Micro Kjeldahl).

Resultados e Discussão

Atualmente, na Embrapa Tabuleiros Costeiros, a decomposição de 200 mg de amostra utiliza 5 mL de H_2SO_4 , 15 mg de Se, 20 mg de $CuSO_4$ e 1.965 mg de Na_2SO_4 . Na realização dos 22 experimentos (tabela 1), empregou-se 200 mg da amostra de referência AR-5.

Tabela 1. Planejamento Doehlert para as quatro variáveis.

Tabela 1. Flanejamento Doenlert para as quatro variaveis.					
Evn	H ₂ SO ₄	Se	CuSO ₄	Na ₂ SO ₄	Rec. do N
Exp.	(mL)	(mg)	(mg)	(g)	total (%)
1	4	10,5	63	1,5	96
2	4	10,5	63	2	100
2 4 5 6 7	4	10,5	105	1,75	101
4	4	21	77	1,75	103
5	5	13,12	77	1,75	102
6	4	10,5	63	1	101
7	4	10,5	21	1,25	98
8 9	4	0	49	1,25	98
9	3	7,88	49	1,25	98
10	4	10,5	21	1,75	99
11	4	0	49	1,75	98
12	3	7,88	49	1,75	98
13	4	10,5	105	1,25	99
14	4	0	91	1,5	96
15	3	7,88	91	1,5	103
16	4	21	77	1,25	102
17	4	21	35	1,5	99
18	3 5 5 5	18,38	63	1,5	93
19	5	13,12	77	1,25	103
20	5	13,12	35	1,5	102
21	5	2,62	63	1,5	98
22	4	10,5	63	1,5	100

A aplicação do programa Statistica 6.0 ao planejamento Doehlert indicou como valores ótimos, em uma região de ponto de sela, 3,89 mL de H₂SO₄, 6,57 mg de Se, 54,67 mg de CuSO₄ e 1.497,78 mg de Na₂SO₄. No entanto, todos os experimentos revelaram resultados excelentes de recuperação, permitindo que optássemos pelo método do experimento 8, pois elimina o Se e reduz as quantidades de H₂SO₄ e Na₂SO₄. Este método teria somente a inconveniência de aumentar o teor de CuSO₄, porém é menos tóxico do que o Se e de fácil tratamento. A exatidão do método proposto (tabela 2) foi então avaliada pela análise de amostras de referências de tecido vegetal (1, 5, 6, 8, 9, 12 e 13 do controle interlaboratorial de 2007 da ESALQ - USP), de alimento animal (AR-4, ARV-6 e ARC-1 do ensaio de proficiência da Embrapa Sudeste) e de materiais de referência certificados (folha de pêssego - SRM-1547; tecido de ostra - SRM-1566b e fígado bovino - SRM-1577). O teste-t não mostrou nenhuma diferença significativa, a um nível de confiança de 95 %, entre os valores obtidos pelo método proposto e os valores de referência.

Tabela 2. Resultados de recuperação do método proposto.

	N total (g kg ⁻¹)						
Amostra	Método	Valor	Rec.(%) ²				
	proposto ¹ (n=3)	referência	, ,				
1	62,67±2,33	59,45±3,65	105				
5	19,99±0,03	19,41±1,14	103				
6	18,26±0,16	17,53±0,77	104				
8	20,92±0,05	20,33±1,36	103				
9	5,76±0,11	6,03±0,95	95				
12	$8,95\pm0,32$	8,93±0,98	100				
13	16,60±0,14	16,33±1,14	102				
AR-4	16,16±0,21	15,26±0,65	106				
ARV-6	29,17±0,69	29,90±1,19	98				
ARC-1	82,47±1,71	82,32±2,80	100				
SRM - 1547	28,66±0,20	29,4±1,2	97				
SRM - 1566b	71,88±0,55	76±4	95				
SRM - 1577	102,49±0,15	106±6	97				

¹ média±desvio padrão; ² Recuperação

Conclusões

O método proposto revelou-se eficiente na determinação de N total, além de reduzir a toxidez do resíduo gerado e diminuir custos com reagentes.

Agradecimentos

À FAPITEC - SE

¹ Embrapa Tabuleiros Costeiros, Av. Beira Mar, 3250, Praia 13 de Julho, Aracaju-SE

² Pós-graduação em gestão ambiental pela Faculdade de Administração e Negócios Sergipe – FANESE, Av. Delmiro Gouveia, 3701 - Shopping Riomar - 2º Piso

³ Departamento de Química da Universidade Federal de Sergipe, Rua Marechal Rondon s/n, São Cristóvão-SE. Palavras Chave: Resíduo, Kjeldahl, Selênio.

¹ Imbrosi, D. et al.; *Quim. Nova.* **2006**, 29, 404.