Aspectos Nutricionais e Fisiológicos em Genótipos de Soja com Diferentes Níveis de Tolerância à Restrição Hídrica

<u>Paula Cerezini</u> ⁽¹⁾, Dáfila dos Santos Lima Fagotti ⁽²⁾, Biana Harumi Kuwano ⁽²⁾, Deborah Ingrid Souza ⁽²⁾, Valéria Carpentieri Pípolo ⁽²⁾, Antonio Eduardo Pípolo ⁽³⁾, Mariangela Hungria ⁽³⁾, Marco Antonio Nogueira ⁽³⁾.

⁽¹⁾ Departamento de Microbiologia/CCB, Universidade Estadual de Londrina CEP 86051-990, Londrina, PR; <u>paulacerezini@yahoo.com.br</u>; ⁽²⁾ Departamento de Agronomia/CCA, Universidade Estadual de Londrina; ⁽³⁾ Pesquisador(a); Embrapa Soja, Rodovia Carlos João Strass, CEP 86001-970, Londrina, PR; <u>nogueira@cnpso.embrapa.br</u>

RESUMO - A fixação biológica de nitrogênio (FBN) é indispensável para a viabilidade da cultura da soja em termos econômicos e ambientais. Entretanto, a ocorrência de veranicos prejudica a cultura e a FBN. O objetivo desse trabalho foi avaliar aspectos nutricionais e fisiológicos em genótipos de soja com capacidade de manter a FBN em condições de restrição hídrica (30% CC), em comparação com a condição normal (70% CC). O experimento foi conduzido em delineamento inteiramente casualizado em esquema fatorial 5×2 , com sete repetições, com as linhagens R01-581F, R01-416F, R02-1325, com capacidade de manter a FBN em condições de seca, e os padrões CD 215 e BRS 317, sob suprimento adequado de água (70% CC), ou sob restrição hídrica (30% CC) entre 45 e 55 dias. Avaliaram-se os teores de N e K na parte aérea, a taxa fotossintética e transpiratória das plantas, e a concentração de N-ureídos (alantoína + ácido alantóico) nos pecíolos e nódulos. Os genótipos R01-581F, R01-416F e R02-1325 apresentaram os maiores teores de N e K, independente da condição hídrica. A condição de 30% CC não influenciou no teor de K para os genótipos R01-518F, R01-416F e R02-1325. Apenas o genótipo R01-581F não apresentou diminuição da fotossíntese em condição de 30% CC, e teve a maior taxa transpiratória quando submetido à restrição hídrica. A 30% CC os genótipos R02-1325, CD 215 e BRS 317 tiveram aumento da concentração de N-ureídos em pecíolos, e para os nódulos, todos os genótipos aumentaram a concentração de N-ureídos nessa condição.

Palavras-chave: N-ureídos, taxa fotossintética, FBN.

INTRODUÇÃO - A cultura da soja tem elevada demanda de nitrogênio (N) para seu desenvolvimento, que pode ser fornecido pela fixação biológica de nitrogênio (FBN). Já se observou que em cultivares altamente produtivas, a FBN fornece até 94% do N requerido pela cultura (Hungria et al., 2006). Assim, a FBN tem se mostrado indispensável para a sustentabilidade da agricultura brasileira, pois fornece N com baixo custo econômico e sem impacto ambiental.

No entanto, como todas as atividades agrícolas, o cultivo da soja sofre influência de diversos fatores, bióticos ou abióticos, entre eles, a ocorrência de veranicos, que em fases críticas do desenvolvimento dessa cultura, é responsável por grandes prejuízos de produção (IPCC, 2007). Além de comprometer a fisiologia da planta, a restrição hídrica também é um fator limitante para a eficiência da FBN.

As causas envolvidas na diminuição da FBN em condições de seca ainda não estão bem compreendidas. Foi sugerido que o metabolismo do nitrogênio possa influenciar na regulação da FBN (Ladrera et al., 2007), pela limitação na translocação e assimilação de N-ureídos (alantoína e ácido alantóico). Entretanto, estudos indicam que há variações genotípicas entre cultivares de soja quanto à sensibilidade da FBN sob restrição hídrica, como as linhagens R01-581F, R01-416F, R02-1325, que mantêm a FBN mesmo em condições de seca (Chen et al., 2007).

O objetivo deste trabalho foi avaliar aspectos nutricionais e fisiológicos em genótipos de soja sob restrição hídrica (30% CC) ou sob condição normal de suprimento de água (70% CC).

MATERIAL E MÉTODOS — O experimento foi conduzido em casa de vegetação, na Embrapa Soja, com delineamento inteiramente casualizado em arranjo fatorial 5 × 2, sendo cinco genótipos de soja: R01-581F, R01-416F, R02-1325, que apresentam maior capacidade de manter a FBN em condições de seca, e os padrões CD 215 e BRS 317, com e sem indução de restrição hídrica, em vasos com 8 kg de solo, em sete repetições.

A inoculação com Bradyrhizobium foi realizada imediatamente antes da semeadura com inoculante comercial líquido contendo 1×10^9 células viáveis/g. Em cada vaso foram mantidas três plantas. A umidade do solo foi controlada a 70% da CC por 45 dias, quando metade dos vasos passou a receber água para manutenção de 30% da CC por 10 dias e a outra metade continuou a receber água para 70% da CC.

As taxas fotossintética e transpiratória das plantas foram medidas com um analisador de trocas gasosas com sistema aberto de fluxo de ar (Li-Cor), um dia antes da coleta. Aos 55 dias, as plantas foram coletadas e foram avaliados os teores de N e K da parte aérea (PA), e a concentração de N-ureídos (alantoína e ácido alantóico) nos pecíolos e nódulos secos (Vogels & van der Drift, 1970).

Os dados foram submetidos à análise de variância com teste F (p<0,05). Constatado efeito isolado dos fatores ou da interação significativa, aplicou-se o teste de Tukey (p<0,05).

RESULTADOS E DISCUSSÃO – O teor de N da PA não apresentou interação entre os genótipos e a condição hídrica do solo (Tabela 1). Os genótipos R01-581F, R01-416F e R02-1325 apresentaram os maiores teores de N independente da condição, com destaque para o primeiro. A restrição hídrica diminuiu o teor de N na média dos genótipos. Os genótipos que possuem característica de manter a FBN em condições de seca foram os que apresentaram maiores teores de N, o que confirma sua superioridade quanto à eficiência na FBN (Chen et al., 2007).

O teor de K da parte aérea apresentou interação entre os genótipos e a condição hídrica do solo (Tabela 1). Na condição de restrição hídrica os genótipos R01-518F, R01-416F e R02-1325 apresentaram maiores teores de K com relação aos genótipos CD 215 e BRS 317. Já nos tratamentos com suprimento normal de água os genótipos R01-581F e R01-416F apresentaram os maiores teores de K. A condição de restrição hídrica não influenciou no acúmulo de K para os genótipos R01-518F, R01-416F e R02-1325, enquanto que para os genótipos CD 215 e BRS 317, a restrição hídrica diminuiu os teores de K. Os íons K⁺ desempenham importante papel na regulação do potencial osmótico das células vegetais, agindo na manutenção da turgidez celular, além de ativar enzimas envolvidas na respiração e na fotossíntese (Taiz & Zeiger, 2004). Assim, o maior teor de K encontrado nos genótipos com características de FBN tolerante à seca mostra que os mesmos têm um melhor ajuste osmótico, permitindo que a fotossíntese e outras importantes atividades fisiológicas sejam mantidas, dentro de certos limites de restrição hídrica.

As taxas fotossintéticas e transpiratórias sofreram interação entre os fatores genótipo e condição hídrica (Tabela 2). Em condição de restrição hídrica, o genótipo R01-581F apresentou maior taxa fotossintética em relação ao genótipo R01-416F, mas não diferiu dos demais genótipos. Em suprimento normal de água, os genótipos não diferiram quanto à taxa fotossintética. Apenas o genótipo R01-581F não apresentou diminuição da fotossíntese em condição de restrição hídrica, mostrando sua eficiência em manter o processo fotossintético mesmo em condição de déficit hídrico.

As taxas transpiratórias do genótipo R01-581F foram superiores às dos genótipos R01-416F, CD 215 e BRS 317, sob restrição hídrica. Em condição normal de suprimento de água, os genótipos CD 215 e BRS 317 apresentaram a maior e a menor média, respectivamente. Para todos os genótipos, a restrição hídrica diminuiu as

taxas transpiratórias.

As concentrações de N-ureídos em pecíolos e nódulos apresentaram interação entre genótipo e condição hídrica (Tabela 3). Entre os tratamentos que sofreram restrição hídrica, os genótipos R01-581F e BRS 317 apresentaram o maior e o menor teor de N-ureídos nos pecíolos, respectivamente. Nos tratamentos que receberam suprimento normal de água, os genótipos R01-581F e R01-416F apresentaram os maiores teores de N-ureídos nos pecíolos, enquanto os genótipos CD 215 e BRS 317 apresentaram as menores concentrações. A restrição hídrica aumentou a concentração de N-ureídos nos pecíolos nos genótipos R02-1325, CD 215 e BRS 317. Os genótipos R01-581F e R01-416F não diferiram nas concentrações de N-ureídos independente da condição hídrica, o que indica que esses dois genótipos mantiveram seu metabolismo de transporte e assimilação de compostos nitrogenados, em concordância com os maiores teores de N na PA.

As concentrações de N-ureídos em nódulos nos tratamentos que sofreram restrição hídrica foram maiores no genótipo R01-416F com relação aos genótipos CD 215 e BRS 317. Em condições normais de suprimento de água, o genótipo R02-1325 apresentou maior teor de Nureídos nos nódulos com relação aos genótipos CD 215 e BRS 317. A restrição hídrica aumentou a concentração de N-ureídos nos nódulos em todos os genótipos, corroborando Ladrera (2007), que estudou os genótipos 'Biloxi' (sensível à restrição hídrica) e 'Jackson' (tolerante à restrição hídrica), e observou aumento da concentração de N-ureídos nos nódulos de ambos os genótipos. Entretanto, não foi encontrada relação entre acúmulo de N-ureídos nos nódulos e inibição da FBN, pois os genótipos com característica de manter FBN em condições de restrição hídrica, embora apresentassem aumento no teor de N-ureídos nos nódulos, apresentaram maiores teores de N na PA, indicando comprometimento da FBN.

CONCLUSÕES – Os genótipos R01-581F, R01-416F e R02-1325 apresentaram maiores teores de N e K independente da condição hídrica.

O genótipo R01-581F não apresentou diminuição da fotossíntese na condição de 30% CC.

Independente da condição hídrica, os genótipos R01-581F e R01-416F apresentaram as maiores concentrações de N-ureídos em pecíolos, coincidindo com maiores teores de N da parte aérea.

AGRADECIMENTOS – Dra Larissa Moraes (Embrapa Soja) pelo auxílio nas medições com o equipamento Li-Cor. Ao Laboratório de Ecofisiologia Vegetal da Embrapa-Soja por ceder equipamentos utilizados nas avaliações. À CAPES pela concessão de bolsa de estudos. Trabalho realizado com recursos do projeto Embrapa 02.09.01.023.00.00.

REFERÊNCIAS

CHEN, P.; SNELLER, C.H.; PURCELL, L.C.; SINCLAIR, T.R.; KING, C.A.; ISHIBASHI, T. Registration of soybean germplasm lines R01-416F and R01-581F for improved yield and nitrogen fixation under

drought stress. **Journal of Plant Registration,** v.1, n.2, September, 2007.

HUNGRIA, M.; CAMPO, R.J.; MENDES, I.C.; GRAHAM, P.H. Contribution of biological nitrogen fixation to the N nutrition of grain crops in the tropics: the success of soybean (*Glycine max* (L.) Merr.) in SouthAmerica. In: SINGH, R.P.; SHANKAR, N.; JAIWAL, P.K. (Ed.). **Nitrogen nutrition and sustainable plant productivity**. Houston: Studium, p.43-93, 2006.

IPCC: INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE. Climate change: the physical science basis, contribution of working group to the fourth assessment report of the intergovernmental panel on climate change). Cambridge University Press, 2007.

LADRERA, R.; MARINO, D.; LARRAINZAR, E.; GONZÁLEZ, E.M.; ARRESE-IGOR, C. Reduced carbon availability to bacteroids and elevated ureides in nodules,

but not in shoots, are involved in the nitrogen fixation response to early drought in soybean. **Plant Physiology**, v.145, p.539-546, 2007.

TAIZ, L., ZEIGER, E. **Fisiologia Vegetal**. 3^a ed., Artmed, Porto Alegre, 2004, 719 p.

VOGELS, G.D.; van der DRIFT, C. Differential analysis of glyoxylate derivatives. **Analytical Biochemistry**, v.33, p.143-157, 1970.

TABELA 1. Teores de nitrogênio (N) e potássio (K) na parte aérea de genótipos de soja com diferentes capacidades de manter a fixação biológica de N sob restrição hídrica, submetidas a 30 ou 70% da capacidade de campo (CC) entre 45 e 55 dias.

CONDIÇÃO	GENÓTIPOS						
HÍDRICA	R01-581F	R01-416F	R02-1325	CD 215	BRS 317	média	
			- NITROGÊNIC) g kg ⁻¹			
30% CC	31,40	27,05	25,67	21,10	19,46	24,94 B	
70 % CC	33,53	31,30	28,37	22,34	19,92	27,09 A	
média	32,47 a	29,18 b	27,02 b	20,90 с	20,51 c		
ANAVA: genótip	o(G) < 0.01; co	ondição hídrica (H) < 0,01; GxH =	= 0.16; CV $= 11.2$	21%		
			POTÁSSI	O g kg ⁻¹			
30% CC	18,17 Aa	18,41 Aa	17,21 Aa	15,18 Bb	15,01 Bb	16,80	
70 % CC	18,57 Aa	18,34 Aa	16,94 Ab	16,48 Ab	16,12 Ab	17,30	
média	18,37	18,38	17,08	15,66	15,75		

ANAVA: genótipo (G) < 0,01; condição hídrica (H) < 0,05; GxH < 0,05; CV = 4,94%

Letras maiúsculas comparam na coluna, letras minúsculas comparam na linha. Médias seguidas por letras iguais não diferem pelo teste de Tukey (p<0,05).

TABELA 2. Taxas fotossintéticas e transpiratórias de genótipos de soja com diferentes capacidades de manter a fixação biológica de N sob restrição hídrica, submetidas a 30 ou 70% da capacidade de campo (CC) entre 45 e 55 dias.

CONDIÇÃO	GENÓTIPOS						
HÍDRICA	R01-581F	R01-416F	R02-1325	CD 215	BRS 317	média	
		TAXA	FOTOSSINTÉ	ΓICA (μmol CO ₂	m ⁻² s ⁻¹)		
30% CC	15,07 Aa	8,17 Bb	11,05 Bab	11,37 Bab	11,84 Bab	11,50	
70 % CC	17,31 Aa	17,11 Aa	17,96 Aa	18,95 Aa	15,79 Aa	17,40	
média	16,19	12,64	14,50	15,16	13,78		
ANAVA: genótip	oo(G) > 0.05; co	ondição hídrica (H) < 0,01; GxH <	< 0.05; CV = 22.2	8%		
		TAXA T	RANSPIRATÓ	RIA (mmol H ₂ O	m ⁻² s ⁻¹)		
30% CC	3,67 Ba	1,78 Bb	2,34 Bab	2,12 Bb	2,16 Bb	2,42	
70 % CC	5,00 Aab	5,15 Aab	4,57 Aab	5,65 Aa	4,12 Ab	4,90	
média	4,34	3,47	3,45	3,88	3,14		
ANAVA: genótip	oo(G) < 0.05; co	ondição hídrica (H) < 0,01; GxH <	< 0.05; CV = 27.6	%		

Letras maiúsculas comparam na coluna, letras minúsculas comparam na linha. Médias seguidas por letras iguais não diferem pelo teste de Tukey (p<0.05).

TABELA 3. Concentração de N-ureídos em pecíolos e nódulos de genótipos de soja com diferentes capacidades de manter a fixação biológica de N sob restrição hídrica, submetidas a 30 ou 70% da capacidade de campo (CC) entre 45 e 55 dias.

CONDIÇÃO	GENÓTIPOS								
HÍDRICA	R01-581F	R01-416F	R02-1325	CD 215	BRS 317	média			
	N-UREÍDOS EM PECÍOLOS mMol g ⁻¹								
30% CC	10,39 Aa	9,67 Aab	8,20 Aab	7,86 Aab	7,11 Ab	8,65			
70 % CC	8,52 Aab	10,07 Aa	5,82 Bbc	3,14 Bcd	2,66 Bd	6,04			
média	9,45	9,87	7,01	5,26	5,13				
ANAVA: genótip	oo(G) < 0.01; co	ondição hídrica (H) < 0,01; GxH <	< 0.01; CV = 25.3	3%				
		N-U	JREÍDOS EM N	ÓDULOS mMo	l g ⁻¹				
30% CC	24,80 Aab	26,60 Aa	25,10 Aab	20,57 Ab	13,21 Ac	22,05			
70 % CC	9,62 Bab	8,73 Bab	12,89 Ba	7,59 Bb	5,18 Bb	8,80			
média	17,21	17,66	18,99	14,08	9,19				
ANAVA: genótip	oo(G) < 0.01; co	ondição hídrica (H) < 0,01; GxH <	< 0.01; CV = 20.0	14%				

Letras maiúsculas comparam na coluna, letras minúsculas comparam na linha. Médias seguidas por letras iguais não diferem pelo teste de Tukey (p<0,05).