EFEITO "IN VITRO" DE POLUENTES DE ORIGEM AGRÍCOLA SOBRE A FOSFATASE ÁCIDA DE MICROCRUSTÁCEOS E PEIXES

Miriam Dantzger¹, Darlene D. Dantzger¹, Hiroshi Aoyama¹, Claudio M. Jonsson²

¹ IB/Unicamp - Instituto de Biologia - Universidade Estadual de Campinas. ² Embrapa Meio Ambiente

e-mail: jonsson@cnpma.embrapa.br

INTRODUÇÃO

O ingresso de agentes químicos em compartimentos ambientais a partir de atividades agrícolas representam uma ameaça para a biota aquática e seus sistemas bioquímicos. Entre estes últimos, as fosfatases ácidas fazem parte em processos autofágicos digestivos, na decomposição de fosfatos orgánicos, na sinalização celular e em outras rotas metabólicas. Os testes in vitro são úteis para gerar hipóteses sobre o mecanismo de ação de agentes tóxicos, para comparar a magnitude do efeito entre estes, e servem como uma ferramenta promissória para fins de analise semiquantitativa.

OBJETIVO: Estudar o efeito inibitório de quatro agroquímicos (acefato, dimetoato, endosulfan e metamidofós) e de três metais sobre a fosfatase ácida extraída do microcrustáceo Daphnia similis e do figado do peixe Metynnis argentus (pacú-prata).

Fig. 2. Metynnis argenteus

RESULTADOS

Tabela 1. Efeito de poluentes agrícolas sobre a fosfatase ácida de algas, microcrustáceos e peixes.

Poluente	Concentração (mM)	M. argenteus °	D. similis °	P. subcapitata ^b
Acefato	2,0	99,9 (2.7)	94,2 (6.2)	92,7 (3.7)
Dimetoato	2,0	97,5 (2.8)	86,3 (9.3)	103,3 (3.5)
Endosulfan	0,1	97,4 (1.5)	90,9 (2.6)	79,3 (4.4)
Metamidofós	2,0	97,8 (1.9)	89,8 (4.9)	102,3 (5.6)
Al ³⁺	2,0	n.d. °	55,1 (10.8)	45,4 (5.0)
Cu ²⁺	2,0	44,3 (4.7)	63,6 (7.4)	153,8 (37.0)
Hg ²⁺	2,0	12,9 (5.7)	102,8 (4.5)	50,7 (1.7)

A atividade na ausência do poluente foi considerada como controle (100%)

c n.d. = não determinado

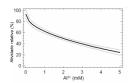
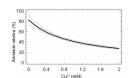



Fig. 3. Curva dose-resposta para a fosfatase ácida de D. similis na presença de Al.

Tabela 2. Parâmetros de inibição por metais da atividade da fosfatase ácida de microcrustáceos e peixes.

Fig. 4. Curva dose-resposta para a fosfatase ácida de

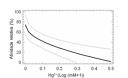


Fig. 5. Curva dose-resposta para a fosfatase ácida de M. argenteus na presença de Hg.

MATERIAIS E MÉTODOS

Organismos e condições de criação:

D. simillis: Foi cultivada em água reconstituída (Hosokawa et al. 1991) adicionada de micronutrientes (Elendt e Bias 1990) e mantida a 20 ± 2°C. Foram alimentadas com suspensão de algas cloroficeas Pseudokirchneriella subcapitata e Chlorella pyrenoidosa.

M. argenteus: Animais pesando em media 5 g foram adquiridos de um fornecedor local e mantidos na temperatura de 26 - 29°C . As características físico-químicas da água foram: temperatura 26 - 29°C; pH 7.8; dureza total 36 mg L^3 CaCO $_3$ e condutividade 190 µS cm $^{-3}$

Extração e preparação dos extratos:

D. similis: "75 adultos ("100 mg peso úmido) foram homogeneizados em tampão acetato de sodio 1 M, pH 5,0, na proporção 1:4 (peso/volume). O extrato (sobrenadante) foi obtido após centrifugação a 10.000 rpm por 10 min a

M. argenteus: o fígado foi homogeneizado em solução de sacarose 0,25M na proporção 1:20 (peso/volume). O extrato (sobrenadante) foi obtido após centrifugação a 11.000 rpm por 20 min a 4°C

Análise da atividade da fosfatase ácida:

Foi determinada usando p-nitrofenilíosfato (p-NPP) como substrato, e medindo a formação de paranitrofenol a 405 nm em meio alcalino (coeficiente de extinsão molar 18.300 M-¹cm-²) após incubação a 37ºC (Prazeres et al. 2004).

Análisa dos dados

A concentração que promoveu 50% de alteração na atividade (CI50) e seu intervalo de confiança 95% foi calculada pelo módulo "Simple Regression" contido no programa Statgraphics" Plus Version 2 (1995).

Os valores de CI50 foram considerados significativamente diferentes um do outro quando seus intervalos de confiança não apresentaram sobreposição (Czuczwar et al., 2001).

CONCLUSÕES

- 1) Os metais foram os que promoveram maior efeito na modulação da atividade enzimática, sendo que este efeito variou muito conforme a espécie.
- 2) Devido ao relativamente baixo valor do parâmetro de inibição para Hg, tal propriedade inibitória poderia ser usada como uma ferramenta na indicação da presença de metais em amostras ambientais.
- 3) A medida da atividade da fosfatase ácida tem potencial de uso como biomarcador do efeito de metais em ambas as espécies estudadas.
- 4) A atividade da enzima foi leve ou praticamente não afetada por poluentes orgânicos. Entretanto a modulação da mesma em estudos "in vivo" merece atenção.
- 5) Considerando que alterações "in vitro" também tendem a ocorrer nos organismos expostos, D. similis e M. argenteus seriam espécies apropriadas para avaliar os efeitos da presença de metais "in vivo".
- 6) Os dados contribuem para a elucidação do mecanismo de ação tóxica dos poluentes em dois niveis tróficos da cadeia alimentar e para expandir a base de dados de toxicidade de poluentes em organismos aquáticos.

REFERÊNCIAS

Elendt BP, Bias WR (1990) Trace nutrient deficiency in *Dophnia magna* cultured in standard medium for toxicity testing. Effects of the optimization of culture conditions on life history parameters of *D. Magna*. Water Res 24(9):1152-1167.

Hosokawa M, Endo G, Kuroda K, Horiguchi S (1991) Influence of sulfate, Ca, and Mg on the acute toxicity of potassium dichromate to Daphnia similis. Bull Environ Contam Toxicol 46(3): 461-465.

Prazeres JN et al (2004) Acid phosphatase activities during the germination of Glycine max seeds. Plant Physiol Biochem 42:15-20.

Czuczwar M, Kis J, Potasinski A, Turski WA, Przesmycki K (2001) Isobolographic analysis of interaction between vigabatrin and banclofen in the formalin test in mice. Pol J Pharmacol 53:527-530.

Jonsson CM, Aoyama H (2007) In vitro effect of agriculture pollutants and their joint action on Pseudokirchneriella subcapitata acid phosphatase. Chemosphere 69: 845 855.

Ministério da Agricultura, Pecuária e Abastecimento

