

ongresso Brasileiro de Reprodução Animal, 19, 2011, Recife, PE, Anais... Belo Horizonte: CBRA, 2011. (CD-ROM). ISSN: 1984-8471.

# Mudanças na biota vaginal de cabras submetidas a protocolo de indução de estro sincronizado

Changes on the vaginal biota of goats following protocol of estrus induction and synchronization

# J.S.K. Oliveira<sup>1,3</sup>, J.F. Fonseca<sup>2</sup>, L.V. Esteves<sup>1</sup>, G. Martins<sup>1</sup>, B. Penna<sup>1</sup>, W. Lilenbaum<sup>1</sup>, L.M. Figueira<sup>1</sup>, F.Z. Brandão<sup>1</sup>

<sup>1</sup>Universidade Federal Fluminense, Niterói, RJ; <sup>2</sup>Embrapa, Núcleo Caprinos e Ovinos, Coronel Pacheco, MG. <sup>3</sup>E-mail: jskuhner@yahoo.com

## Introdução

Esponjas intravaginais vêm sendo o tratamento de escolha para sincronização de estro em pequenos ruminantes (Wildeus, 2000). Entretanto, estes dispositivos são um fator predisponente para infecções vaginais, levando os animais a um quadro de vaginite (Padula e Macmillan, 2006). O objetivo deste estudo foi avaliar as mudanças na biota vaginal de cabras submetidas a protocolo curto de indução de estro sincronizado.

#### Material e Métodos

Trinta e duas cabras tiveram estro induzido com uso de esponjas intravaginais impregnadas com 40mg de medroxiprogesterona, que permaneceram por um período de seis dias. No dia que antecedeu a retirada da esponja, foram aplicados por via intramuscular 200 UI de eCG e 0,4mg de d-Cloprostenol. O muco vaginal foi coletado da vagina do animal com o uso de swabs estéreis e as amostras destinadas à cultura. As amostras foram coletadas antes da inserção do implante (T1), na retirada do implante (T2) e 24h (T3), 48h (T4) e uma semana após a retirada (T5).

### Resultados e Discussão

Os resultados encontram-se apresentados nas tabelas abaixo.

cabras submetidas a protocolo curto de indução hormonal

|           | UFC                | UFC                      | UFC ≥10 <sup>5</sup> |  |
|-----------|--------------------|--------------------------|----------------------|--|
|           | $>2.0 \times 10^4$ | $\leq 2.0 \text{x} 10^4$ |                      |  |
| T1        | 39,39%             | 54,54%                   | 6,06%                |  |
|           | (13/33)            | (18/33)                  | (2/33)               |  |
| <b>T2</b> | 27,58%             | 10,34%                   | 62,06%               |  |
|           | (8/29)             | (3/29)                   | (18/29)              |  |
| T3        | 50,00%             | 9,37%                    | 40,62%               |  |
|           | (16/32)            | (3/32)                   | (13/32)              |  |
| T4        | 40,00%             | 24,00%                   | 36,00%               |  |
|           | (10/25)            | (6/25)                   | (9/25)               |  |
| T5        | 29,16%             | 37,50%                   | 33,33%               |  |
|           | (7/24)             | (9/24)                   | (8/24)               |  |
|           | ( , , = , )        | ( > / = . / )            | (*, = .)             |  |

Tabela 1 Contagem de UFC ao longo dos períodos avaliados de Tabela 2 Principais bactérias isoladas ao longo dos períodos avaliados

| de cabras submetidas a protocolo curto de indução normonar |         |         |         |         |         |  |
|------------------------------------------------------------|---------|---------|---------|---------|---------|--|
|                                                            | T1      | T2      | T3      | T4      | T5      |  |
|                                                            |         |         |         |         |         |  |
| Staphylococcu                                              | 63,63%  | 17,24%  | 53,12%  | 56,00%  | 76,00%  |  |
| s sp.                                                      | (21/33) | (5/29)  | (17/32) | (14/25) | (19/24) |  |
| Klebsiella                                                 | 12,12%  | 27,58%  | 12,50%  | 24,00%  | 12,50%  |  |
| pneumoniae                                                 | (4/33)  | (8/29)  | (4/32)  | (6/25)  | (3/24)  |  |
| Echerichia                                                 | 12,12%  | 44,82%  | 34,37%  | 16,00%  | 8,3%    |  |
| coli                                                       | (4/33)  | (13/29) | (11/32) | (4/25)  | (2/24)  |  |
| Proteus                                                    | 12,12%  | 3,44%   | 0,00%   | 0,00%   | 0,00%   |  |
| vulgaris                                                   | (4/33)  | (1/29)  | (0/32)  | (0/25)  | (0/24)  |  |
| Pseudomonas                                                | 0,00%   | 6,89%   | 0,00%   | 0,00%   | 0,00%   |  |
| aeruginosa                                                 | (0/33)  | (2/29)  | (0/32)  | (0/25)  | (0/24)  |  |

No T1 a contagem de UFC foi a mais baixa, com predomínio do gênero Staphylococcus. Isso ocorre possivelmente em razão desse gênero fazer parte da microbiota normal. A partir de T2, a contagem de UFC aumentou exponencialmente. Esse achado claramente indica que a presença do implante favorece o aparecimento de vaginites bacterianas. A partir de T4 pode-se observar o restabelecimento da microbiota normal, novamente com predomínio do gênero Staphylococcus.

### Referências bibliográficas

Wildeus, S. Current concepts in synchronization of estrus: sheep and goats. J Anim Sci, v.77, p.1-14, 2000.

Padula AM, Macmillan KL. Effect of treatment with two intravaginal inserts on the uterine and vaginal microflora of early postpartum beef cows. Aust Vet J, v.84, p.204-208, 2006.

Palavra-chave: biota, estro, sincronização, vaginite. Keywords: biota, estrus, synchronization, vaginits.

Financiamento: FAPERJ.