TEORES DE FIBRA EM DETERGENTE NEUTRO, FIBRA EM DETERGENTE ÁCIDO, LIGNINA E DIGESTIBILIDADE IN VITRO DA MATÉRIA SECA DAS SILAGENS DE TRÊS GENÓTIPOS DE GIRASSOL (Helianthus annuus L.) COM ADITIVOS EM SETE DIFERENTES ÉPOCAS DE ABERTURA¹

PETRÔNIO P. PORTO², ELOÍSA DE OLIVEIRA SIMÕES SALIBA³, LÚCIO CARLOS GONÇALVES³, NORBERTO MARIO RODRIGUEZ³, IRAN BORGES³, ANA LUÍSA C.C BORGES³, JOSÉ AVELINO SANTOS RODRIGUES⁴, CLÁUDIA ALVES DO VALLE STEHLING⁵, GUILHERME AUGUSTO R. FREITAS⁶

RESUMO: Foram ensilados três genótipos de girassol (M 734, Rumbosol 91 e a variedade V2000), sendo a forragem fresca enriquecida com: 0,5% de uréia (U); 0,5% de carbonato de cálcio (CC); 0,5% de uréia mais 0,5% de carbonato de cálcio (U+CC); inoculante bacteriano (IB) comercial. Também foi ensilado material original sem aditivo que serviu como silagem testemunha (T). Foram utilizados silos de laboratório de PVC, abertos com um, três, cinco, sete, 14, 28 e 56 dias de ensilados, sendo determinados fibra em detergente neutro (FDN), fibra em detergente ácido (FDA), lignina e a digestibilidade *in vitro* da matéria seca (DIVMS). As silagens do Rumbosol 91 apresentaram valores estatisticamente superiores ao genótipo V2000 e M734 na maioria dos dias de abertura para o FDN, FDA e lignina, sendo que os aditivos não promoveram alterações nos constituintes da parede celular. As silagens T apresentaram no dia de abertura 56 valores de 51,0%, 49,1% e 48,9% de DIVMS para o genótipo M734, V2000 e Rumbosol 91, respectivamente, não havendo diferença entre eles, o mesmo observado para os aditivos utilizados no decorrer do processo fermentativo. Pode-se concluir, que os aditivos utilizados neste experimento não proporcionaram melhoras nas silagens de girassol quanto aos parâmetros avaliados.

PALAVRAS-CHAVE carbonato de cálcio, inoculante bacteriano, uréia.

THE FIBER IN NEUTRAL DETERGENT, FIBER IN ACID DETERGENT, LIGNIN AND DRY MATTER IN VITRO DIGESTIBILITY CONTENTS OF SILAGE FROM THREE SUNFLOWER GENOTYPES (Helianthus annuus L.) WITH ADDITIVES IN SEVEN DIFERENTS OPENING TIMES1

ABSTRACT: They're ensiled three sunflower genotypes (M 734, Rumbosol 91 and the variety V2000), being the fresh forage enriched with: urea (U); limestone (CC); more urea plus limestone (U+CC); bacterial inoculant (IB) commercial. It was also original material ensiled without additive that served as silage testifies (T). Silos of laboratory of PVC were used, open with a, three, five, seven, 14, 28 and 56 days of ensiled, being certain fiber in neutral detergent (FDN), fiber in acid detergent (FDA), lignin and the digestibilidade in vitro of the dry matter (DIVMS). The silages of Rumbosol 91 presented values superior statistic to the genotype V2000 and M734 in most of the days of opening for FDN, FDA and lignin, and the addictive ones didn't promote alterations in the representatives of the cellular wall. The silages T presented in the day of opening 56 values of 51,0%, 49,1% and 48,9% of DIVMS for the genotype M734, V2000 and Rumbosol 91, respectively, not having difference among them, the same observed for the addictive ones used in elapsing of the process fermentative. It can be concluded, that the addictive ones used in this experiment didn't provide improvements in the sunflower silages with relationship to the appraised parameters.

KEYWORDS: limestone, bacterium inoculant, urea.

¹ Trabalho Financiado pelo CAPES

² Mestrando em Zootecnia, EV/UFMG, Avenida presidentes Antônio Carlos, 6627, 30.161-970 - Escola de Veterinária, Departamento de Zootecnia. Caixa PostaL 567

³ Professores da EV-UFMG, Avenida presidentes Antônio Carlos, 6627, 30.161-970 - Escola de Veterinária, Departamento de Zootecnia. Caixa PostaL 567

⁴ Pesquisador da EMBRAPA MIlho e Sorgo/Sete Lagoas

INTRODUÇÃO

O girassol é uma oleaginosa que apresenta uma maior resistência à seca, ao frio e ao calor do que as culturas do milho e sorgo, as quais são normalmente plantadas no Brasil com o intuito de produzir silagem. Dentro deste contexto, o girassol nos últimos anos têm sido amplamente utilizado como opção após a cultura do verão nas regiões Sudeste e Centro Oeste para a confecção de silagem.

A silagem de girassol apresenta como vantagens o alto valor energético e o teor de proteína, que pode ser de 35% superior ao do milho, viabilizando o balanceamento de rações a custos mais baixos devido a economia com a suplementação protéica (SOUZA, 1998).

Na tentativa de melhorar a qualidade e a conservação das silagens modulando sua fermentação ou agregando maior valor nutritivo da mesma, alguns produtos conhecidos como aditivos tem sido utilizados. A uréia promove o incremento das frações nitrogenadas, deficientes em algumas culturas usadas na alimentação animal, enquanto que o carbonato de cálcio é utilizado como fonte de cálcio (McDONALD et al., 1991). O uso de inoculantes bacterianos visa a maior produção de ácido láctico a partir dos carboidratos solúveis, promovendo assim uma boa fermentação do material ensilado.

O objetivo deste experimento foi avaliar os teores de fibra em detergente neutro, fibra em detergente ácido, lignia e digestibilidade "ïn vitro" da matéria seca das silagens de três genótipos de girassol (M734, Rumbosol91 e variedade V2000) tratadas com uréia, carbonato de cálcio, uréia associada a carbonato de cálcio e um inoculante bacteriano comercial, em sete diferentes épocas de abertura em condições laboratoriais.

MATERIAL E MÉTODOS

Foram ensilados três genótipos de girassol (M 734, Rumbosol 91 e a variedade V2000) nas dependências da EMBRAPA Milho e Sorgo no município de Sete Lagoas.

Imediatamente após o corte, a forragem fresca foi enriquecida com os seguintes aditivos: 0,5% de uréia (U); 0,5% de carbonato de cálcio (CC); 0,5% de uréia mais 0,5% de carbonato de cálcio (U+CC); inoculante bacteriano (IB) (Silobac- solução: 20g em 20L de água. 2L solução/t forragem). Também foi ensilado material original sem aditivo que serviu como silagem testemunha (T).

Foram utilizados 210 silos de laboratório de PVC com 40 cm de comprimento e 10 cm de diâmetro. As silagens foram compactadas com pêndulo de madeira nos silos com peso vazio pré determinado. Após a compactação os silos foram fechados com tampas de PVC dotadas de válvula tipo *Bunsen*, lacrados com fita adesiva para assegurar o meio totalmente anaeróbico, e posteriormente pesados

Os silos foram abertos com um, três, cinco, sete, 14, 28 e 56 dias de ensilados no Laboratório de Nutrição Animal da Escola de Veterinária da UFMG em Belo Horizonte, MG. Os materiais retirados dos silos foram submetidos a pré-secagem em estufa ventilada a 65°C por 72 horas e posteriores moagem em partículas de 1 mm e armazenagem em frascos plásticos. Foram determinados os componentes da parede celular pelo método sequencial utilizando 25ml de amilase termoestável adicionada ao início da fervura (termamyl 120 l a 1% do Laboratório Novo Nordisk Bioindustrial do Brasil) – fibra em detergente neutro (FDN), fibra em detergente ácido (FDA), hemiceluloses, celulose e lignina - (VAN SOEST, 1991) e a digestibilidade "in vitro" da matéria seca (DIVMS) pela técnica descrita por TILLEY & TERRY, (1963). Para a análise estatística utilizou-se o pacote SAEG, versão 7.0, sendo que para comparação de médias entre os genótipos dentro de cada aditivo e entre os mesmos para cada genótipo e dia de abertura, foi utilizado o teste SNK (Student Newman Keuls) com 5 % de probabilidade. Empregou-se um delineamento inteiramente casualizado com duas repetições por tratamento, utilizando o esquema fatorial 3 x 5 x 7 (3 genótipos; 5 tratamentos; 7 dias de abertura).

RESULTADOS E DISCUSSÃO

Não houve interação entre os fatores estudados e as silagens do Rumbosol 91 apresentaram valores estatisticamente superiores ao genótipo V2000 e M734 na maioria dos dias de abertura para os três componentes da parede celular avaliados. NOGUERA (2000) encontrou valores de 49,5% para o Rumbosol 91, 44,6% para o M734 e 39,7% para as silagens de V2000, respectivamente, sendo que as variações observadas para os teores de FDN no mesmo genótipo nos diferentes trabalhos

provavelmente estejam relacionadas a diferentes épocas de corte do material a ser ensilado, uma vez que o corte mais tardio das plantas acarreta num aumento da fração fibrosa das mesmas (VAN SOEST, 1994). A utilização de IB como aditivo não apresentou mudanças nos teores de FDN das silagens, o mesmo sendo observado para as silagens tratadas com U, CC e U+CC, as quais foram semelhantes a silagem T quanto aos teores de FDN e FDA na maioria dos resultados encontrados. PIRES et al. (1998) trabalharam com 7,5% de uréia em silagem de sorgo e observaram uma queda no teor de FDN, atribuída a provável ação da amônia liberada pela hidrólise da uréia sobre os constituintes da parede celular.

As silagens com IB não apresentaram alterações em relação aos teores de FDA quando comparadas com a silagem T em praticamente todos os genótipos e no decorrer do processo fermentativo. De uma maneira geral, os resultados demonstram que apenas o efeito do genótipo influenciou na concentração de FDA, enquanto que os aditivos não tiveram efeito algum durante o processo fermentativo dos materiais.

Os teores de lignina apresentados na Tabela 2 permaneceram praticamente intactos nas silagens mesmo com a presença dos aditivos, estando de acordo com VAN SOEST (1994), o qual afirma que os teores de lignina permanecem estáveis com o avanço do processo fermentativo.

As silagens T apresentaram no dia de abertura 56 valores de 51,0%, 49,1% e 48,9% de DIVMS para o genótipo M734, V2000 e Rumbosol 91, respectivamente, não havendo diferença entre eles, o mesmo observado no decorrer do processo fermentativo. TOMICH (1999) obteve resultados semelhantes de DIVMS em silagens dos mesmos genótipos para o dia 56.

A DIVMS das silagens tratadas com IB foram semelhantes quando comparadas as silagens T em todos os dias de abertura. Resultado semelhante foi observado por MEESKE et al. (1993) trabalhando com silagens de sorgo encontraram 64,7% e 60,7% de DIVMS nas silagens controle e com inoculante, respectivamente.

O tratamento com U não proporcionou alteração na DIVMS no decorrer do processo fermentativo observado na Tabela 2 para as silagens de girassol. Quanto ao V2000, houve um aumento significativo para silagem no dia 56, onde foi alcançado o maior valor de DIVMS com 55,9%. A falta de resposta quanto a utilização da U nas silagens dos genótipos em relação as silagens T, pode estar relacionada com a elevada concentração de proteína já presente nas plantas no momento da ensilagem. O uso do CC e U+CC praticamente não acarretou em mudanças nos teores da DIVMS quando comparado a silagem controle em praticamente todos os dias de abertura.

CONCLUSÕES

Os aditivos utilizados neste experimento não promovem alterações nos parâmetros avaliados, indicando que a recomendação destes produtos para silagens de girassol provavelmente não proporcionam melhoras na produtividade dos animais alimentados com este volumoso, baseado principalmente nos resultados da digestibilidade "in vitro" da matéria seca.

REFERÊNCIAS BIBLIOGRÁFICAS

McDONALD, P., HENDERSON, A.R., HERON, S.. The biochemistry of silage. 2ed. Marlow: *Chalcombe Publications*, 1991. 340p.

MEESKE, R., ASHBELL, G., WEINBERG, Z.G., KIPNIS, T.. Ensiling forage sorghum at two stages of maturity with the addition of lactic acid bacterial inoculants. *Animal Feed Science and Technology*. v.43, n.3, p.165-175, 1993.

NOGUERA, J.R.R.. Qualidade das silagens de quatro cultivares de girassol (Helianthus annuus L.) ensilados com diferentes proporções da planta. Belo Horizonte: Escola de Veterinária da UFMG, 2000. 63p. *Dissertação* (Mestrado em Zootecnia).

PIRES, A.J.V., GARCIA, R., SILVA, F.F. et al.. Qualidade de silagens de sorgo (Sorghum bicolor L. Moench) tratadas com uréia e/ou sulfeto de sódio. In: REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA, 35, 1998, Botucatu. *Anais...* Botucatu: SBZ, 1998.

SOUZA, D.B.. Girassol - Uma nova opção para silagem. Gado Holandês. n.472, p.6-10, abr. 1998.

TILLEY, J.M.A., TERRY, R.A.. A two-stage technique for the "in vitro" digestion of forage crops. *Journal of British Grassland Society.* v.18, n.2, p.104-111, 1963.

TOMICH, T.R.. Avaliação do potencial forrageiro e das silagens de treze cultivares de girassol (Helianthus annuus L.). Belo Horizonte: Escola de Veterinária da UFMG, 1999. 131p. *Dissertação* (Mestrado em Zootecnia).

VAN SOEST, P.J.. Nutritional ecology of the ruminant. 2ed. Ithaca, *New York: Cornell University Press*, 1994. 476p.

Tabela 1 - Concentrações de fibra em detergente neutro (%MS) e fibra em detergente ácido das silagens de girassol testemunha (T), tratadas com 0,5% de uréia (U), 0,5% de carbonato de cálcio (CC), 0,5% de uréia associada a 0,5% de carbonato de cálcio (U+CC) e inoculante bacteriano (IB) nos diferentes dias de abertura.

Parâmetro		Fibra em Detergente Neutro (% MS)							
			Dias de Abertura dos Silos						
Gen.	Trat.	1	3	5	7	14	28	56	
	Т	49,2 ^{Aabβ}	47,5 ^{Aabβ}	45,2 ^{Abβ}	51,2 ^{Ααα}	47,4 ^{Aabβ}	46,0 ^{Αabβ}	44,8 ^{Abβ}	
V2 ¹	U	45 5 ^{ABaβ}	43 2 ^{ABaß}	$46.2^{Aa\alpha}$	⊿⊿ ⊿ ^{BCaβ}	$47.2^{Aa\alpha}$	43.2 ^{Aaβ}	44.3 ^{Aaβ}	
	CC	47 2 ^{ABap}	45 1 ^{ABAP}	46.4 ^{Ααβ}	45 8 ^{60ap}	45,2 ^{Aap}	45,0 ^{Ααβ}	43.9 ^{Aap}	
	U+CC	42,9 ^{ABap}	41 6 ^{bap}	44,6 ^{Aaβ}	42 9 ^{ca}	45.4 ^{Ααβ}	43,5 ^{Ααβ}	44.8 ^{Aap}	
	IB	46,2 ^{Aap}	44,8 ^{ABap}	45,7 ^{Aap}	48,2 ^{ABa}	14 28 47,4 ^{Aabβ} 46,0 ^{Aabβ} 47,2 ^{Aaα} 43,2 ^{Aaβ} 45,2 ^{Aaβ} 45,0 ^{Aaβ} 45,6 ^{Aaβ} 45,6 ^{Aaβ} 45,6 ^{Aaβ} 45,0 ^{Aaβ} 49,0 ^{Aaα} 52,6 ^{Aaα} 53,1 ^{Aaα} 54,4 ^{Aaα} 53,1 ^{Aaα} 54,4 ^{Aaα} 54,4 ^{Aaα} 52,5 ^{Aaα} 55,1 ^{Aaα} 54,4 ^{Aaα} 56,3 ^{Aaα} 56,3 ^{Aaα} 57,1 ^{Aaα} 52,5 ^{Aaα} 58,1 ^{Aaα} 56,3 ^{Aaα} 59,1 ^{Aaα} 47,0 ^{Abβ} 69,1 ^{Aaα} 47,0 ^{Abβ} 60,1 ^{Aaβ} 47,0 ^{Aaβ} 60,1 ^{Aaβ} 43,0 ^{Aaβ} 60,1 ^{Aaβ} 43,0 ^{Aaβ} 60,1 ^{Aaβ} 35,2 ^{Aaβ} 60,1 ^{Aaβ} 41,0 ^{Aaα} 61,1 ^{Aaβ} 41,0 ^{Aaα} 61,1 ^{Aaβ} 41,0 ^{Aaα} 61,1 ^{Aaβ} 41,0 ^{Aaα} 61,1 ^{Aaβ} 35,2 ^{Abβ} 35,2 ^{Abβ} 35,2 ^{Abβ} 35,3 ^{Aaα} 34,0 ^{Aaβ} 61,1 ^{Aaβ} 35,2 ^{Abβ} 35,2 ^{Abβ} 35,2 ^{Abβ} 35,3 ^{Aaα} 34,0 ^{Aaβ}	45,0 ^{Ααβ}	43,9 ^{Aap}	
	T	$55.5^{Aa\alpha}$	$56.0^{Aa\alpha}$	$52.7^{Aa\alpha}$	$53.5^{Aa\alpha}$	51.4 ^{Aaα}	54.3^{Aalpha}	52.4 ^{Aao}	
	U	$52.0^{Aa\alpha}$	$51.3^{Aa\alpha}$	50.5^{Aalpha}	$50.5^{Aa\alpha}$	$49.0^{Aa\alpha}$	$52.6^{Aa\alpha}$	54.2 ^{Aao}	
R9 ¹	CC	$54.2^{Aa\alpha}$	$54.3^{Aa\alpha}$	$53.8^{Aa\alpha}$	52.6^{Aax}	53.1 ^{Aax}	$54.4^{Aa\alpha}$	53.9 ^{Aao}	
	U+CC	$54.4^{Aa\alpha}$	$54.7^{Aa\alpha}$	54.1 $^{Aa\alpha}$	$54.8^{Aa\alpha}$	$53.4^{\text{Aa}\alpha}$	$56,3^{Aa\alpha}$	56.3 ^{Aao}	
	IB	53,1 $^{Aa\alpha}$	$53.3^{Aa\alpha}$	51.6 ^{Aaα}	$52.8^{Aa\alpha}$	14 28 47,4 47,4 47,2 45,2 45,4 45,6 45,6 46,0 45,4 45,6 51,4 49,0 53,4 43,5 44,8 43,6 44,8 45,0 46,0 46,0 46,0 45,6 45,6 47,7 46,0 46,0 45,0 46,6 45,5 47,7 47,8 53,4 6,0 6,0 7,0 46,6 45,5 45,8 47,7 47,8 53,2 53,2 53,2 53,2 33,3 34,0 33,5 33,4 33,6 33,4 33,6 33,4 33,6 33,4 33,6 33,4 33,6 34,0 34,2 35,2 35,3 34,0 35,5 34,2 35,5 34,9 34,1 33,5 34,9 34,1 33,5 34,9 34,1 33,5 34,9 34,1 33,5 34,9 34,1 33,5 34,9 34,1 33,5 34,9 34,1 33,5 34,9 34,1 33,5 34,9 34,1 33,5 34,9 34,1 33,5 34,9 34,1 33,5 34,9 34,1 33,5 34,9 34,1 34,2 34,9 34,1 34,2 34,9 34,1 34,2 34,9 34,1 34,2 35,2 34,9 34,1 34,2 34,9 34,1 34,2 34,9 34,1 34,2 34,9 34,1 34,2 34,9 34,1 34,2 34,9 34,9 34,1 34,2 34,9 34,2 34,9 34,9 34,8 34,8 34,9 34,8	$52.5^{Aa\alpha}$	51.9 ^{Aac}	
	Т	$57.6^{Aa\alpha}$	$46.4^{\mathrm{Bb}\beta}$	$49.2^{Ab\alpha}$	46 8 ^{Αδβ}	44.8^{Abeta}	$47.0^{Ab\beta}$	46.4 ^{Abβ}	
	U	47.5 ^{Βαβ}	44.3 ^{Baβ}	$47.0^{Aa\alpha}$	$47.3^{\text{Aa}\alpha\beta}$	$46.0^{Aa\alpha}$	45,0 ^{Ααβ}	46.4 ^{Aap}	
$M7^1$	CC	48 7 ^{bap}	47.0 ^{bap}	46.9 ^{Aap}	46.4 ^{Aap}	46.6 ^{Aap}	45.5 ^{Ααβ}	45.2 ^{Aap}	
	U+CC	44.0 ^{Bap}	44,6 ^{Baβ}	46,3 ^{Aap}	46 7 ^{Aap}	45,8 ^{Ααβ}	43,6 ^{Ααβ}	44,6 ^{Aaβ}	
	IB	48,1 ^{Βαβ}	50,9 ^{Aaα}	47,8 ^{Aaβ}	50,4 ^{Αααβ}	47,7 ^{Aaβ}	47,8 ^{Aaβ}	46,4 ^{Aaβ}	
Parâ	metro	Fibra em Detergente Ácido (% MS)							
		Dias de Abertura dos Silos				s Silos			
Gen	Trat	1	3	5	7	14	28	56	
	Т	37,6 ^{Aabβ}	34,9 ^{Abβ}	34,2 ^{Abβ}	39,8 ^{Aaα}	35,2 ^{Abβ}	35,2 ^{Abβ}	35,5 ^{Abβ}	
	U	34 7 ^{ABAB}	32 0 ^{ABaβ}	34.5 ^{Aap}	33 4 ^{Bap}	$35.7^{Aa\alpha}$	33,2 ^{Aaβ}	35.3 ^{Aaβ}	
$V2^1$	CC	34.8 ^{ABap}	33 3 ^{ABaβ}	34,4 ^{Aaβ}	34 1 ^{□ap}	33,3 ^{Ααβ}	34.0 ^{Ααβ}	35.0 ^{Aaβ}	
	U+CC	32.3 ^{Bap}	30 6 ^{Ba}	32.8 ^{Aap}	31.8 ^{pap}	33,5 ^{Ααβ}	32,6 ^{Aaβ}	33,6 ^{Aap}	
	IB	33.8 ^{ABap}	33,6 ^{ABap}	33.1 ^{Ααλ}	33.8 ^{ba}	ura dos Silos 14 2 ^{Aaαα} 47,4 ^{Aabβ} 40 β ^{Caβ} 47,2 ^{Aaα} 44 β ^{Caβ} 45,2 ^{Aaβ} 42 g ^{Caλ} 45,4 ^{Aaβ} 44 g ^{Caλ} 45,6 ^{Aaβ} 44 g ^{Caλ} 45,6 ^{Aaβ} 44 g ^{Caλ} 45,6 ^{Aaβ} 44 g ^{Caλ} 49,0 ^{Aaα} 5 g ^{Caλ} 53,1 ^{Aaα} 5 g ^{Caλ} 53,4 ^{Aaα} 5 g ^{Caλ} 44,8 ^{Abβ} 44 g ^{Caλ} 44,8 ^{Abβ} 44 g ^{Caλ} 45,8 ^{Aaα} 4 g ^{Caλ} 45,8 ^{Aaβ} 4 g ^{Caλ} 47,7 ^{Aaβ} 3 g ^{Caλ} 35,2 ^{Abβ} 3 g ^{Caλ} 35,2 ^{Abβ} 3 g ^{Caλ} 35,2 ^{Abβ} 3 g ^{Caλ} 33,3 ^{Aaβ} 3	33,6 ^{Ααβ}	33,5 ^{Aap}	
	Т	42.3^{Aalpha}	$42.8^{Aa\alpha}$	$41.2^{Aa\alpha}$	$42.1^{Aa\alpha}$	39 3 ^{ABaα}	$42.2^{Aa\alpha}$	41.3 ^{Aac}	
	U	$39.5^{Aa\alpha}$	$40.1^{Aa\alpha}$	$38.4^{Aa\alpha}$	$39.3^{Aa\alpha}$	$37.4^{\text{Ba}\alpha}$	$40.4^{Aa\alpha}$	41.8 ^{Aac}	
R9 ¹	CC	$41.4^{Aa\alpha}$	$42.2^{Aa\alpha}$	$41.5^{Aa\alpha}$	$40.8^{Aa\alpha}$	41.5 ^{ABaα}	$41.4^{Aa\alpha}$	42,0 ^{Aao}	
	U+CC	41.7 $^{Aa\alpha}$	$42.8^{Aa\alpha}$	$41.9^{Aa\alpha}$	$42.1^{Aa\alpha}$	41 Q ^{Aax}	$43.8^{Aa\alpha}$	43,6 ^{Aac}	
	IB	$41.1^{Aa\alpha}$	$41.1^{Aa\alpha}$	$40.3^{\text{Aa}\alpha}$	$40.6^{\text{Aa}\alpha}$	$40.3^{ABa\alpha}$	$40.4^{Aa\alpha}$	40.8 ^{Aac}	
	Т	$42.9^{Aa\alpha}$	35.1 ^{ABbβ}	35.6 ^{Abβ}	34.1 ^{АЬВ}	34.2 ^{Abβ}	35.2 ^{Abβ}	34,2 ^{Abβ}	
	U	34,9 ^{Bap}	33 1 ^{Bap}	35.3 ^{Aaβ}	35.4 ^{Aap}	$35.3^{Aa\alpha}$	34,0 ^{Ααβ}	36.9 ^{Aap}	
M7 ¹	CC	35.7 ^{Bap}	35.7 ^{ABap}	35.0 ^{Aaβ}	34,6 ^{Aap}	35.5 ^{Aaβ}	34,9 ^{Aap}	35,3 ^{Aal}	
	U+CC	33.2 ^{Baβ}	33.7 ^{Bap}	34,4 ^{Aaβ}	33,6 ^{Aaβ}	34,1 ^{Aaβ}	33,5 ^{Aaβ}	34,5 ^{Aa}	
	IB	36,8 ^{Βaβ}	38,3 ^{Aaα}	36,2 ^{Aaβ}	37,1 ^{Aaβ}	36.5 ^{Aaβ}	36,3 ^{Aaβ}	36,0 ^{Aaβ}	

Letras Maiúsculas iguais na mesma coluna dentro de um genótipo não diferem estatisticamente (P>0,05, efeito dos aditivos);

Letras minúsculas iguais na mesma linha não diferem estatisticamente (P>0,05, efeito abertura);

Letras α , β , λ ($\alpha > \beta > \lambda$) iguais na mesma coluna não diferem estatisticamente comparando entre genótipos e respectivos aditivos utilizados (P>0,05, efeitos de genótipos e aditivos).

 1 V2 = V2000; R9 = Rumbosol 91; M7 = M734. CV (FDN) = 3,898, CV (FDA) = 4,233 Teste SNK p<0,05.

Tabela 2 - Concentrações de lignina (% MS) e valores da digestibilidade "in vitro" da matéria seca (% MS) das silagens de girassol testemunha (T), tratadas com 0,5% de uréia (U), 0,5% de carbonato de cálcio (CC), 0,5% de uréia associada a 0,5% de carbonato de cálcio (U+CC) e inoculante bacteriano (IB) nos diferentes dias de abertura.

Parâmetro		Lignina (% MS)									
			Dias de Abertura dos Silos								
Gen.	Trat	1	3	5	7	14	28	56			
	Т	7,6 ^{Abβ}	7,1 ^{Abβ}	6,3 ^{Abβ}	9,2 ^{Aaα}	$7,5^{Ab\alpha}$	7,6 ^{Abβ}	$7,7^{Ab\alpha}$			
V2 ¹	U	6.1 ^{Abβ}	6.1 ^{Abβ}	7.7 ^{Aaβ}	$7,6^{Balphaeta}$	7.8^{Aalpha}	$7.0^{Aab\beta}$	$8.2^{Aa\alpha}$			
	CC	$7.6^{Aa\alpha}$	6.5 ^{Ααβ}	7.1 ^{Ααβ}	7.6 ^{Baβ}	7.1 ^{Aaβ}	7.4 ^{Aaβ}	7.3 ^{Aaβ}			
	U+CC	7,3 ^{Ααβ}	6,2 ^{Ααβ}	6.9 ^{Ααβ}	7.2 ^{Baß}	7,1 ^{Ααβ}	7.1 ^{Ααβ}	$7,5^{Aalpha}$			
	IB	$7,2^{Aa\alpha}$	$6.5^{Aa\beta}$	7,3 ^{Aaβ}	7,6 ^{6accβ} 7,6 ^{6accβ} 7,6 ^{6accβ} 7,1 ⁶ 7,6 ^{8aβ} 7,1 ⁶ 7,2 ^{8aβ} 7,1 ⁶ 7,5 ^{8aβ} 7,4 ⁶ 8,9 ^{Aacc} 8,3 ⁶ 8,5 ^{Aacc} 7,9 ⁶ 8,9 ^{Aacc} 9,1 ⁶ 9,5 ^{Aacc} 9,0 ⁶ 9,5 ^{Aabcc} 9,4 ^A 9,5 ^{Aabcc} 9,4 ^A 6,6 ^{Aaβ} 6,6 ^{Aaβ} 6,6 ^{Aaβ} 6,6 ^{Aaβ} 6,6 ^{Aaβ} 6,6 ^{Aaβ} 7,0 ^{Aabβ} 8,5 ^{Aacc} 9,0 ^{Aacc}	7,4 ^{Ααβ}	$7.7^{Aa\alpha\beta}$	$7.0^{Aa\beta}$			
	Т	9,1 ^{Aaα}	$9.1^{Aa\alpha}$	$9.4^{Aa\alpha}$	$8.9^{Aa\alpha}$	$8,3^{Aalpha}$	$8.9^{Aa\alpha}$	7,9 ^{Aaα}			
	U	$8.7^{Aa\alpha}$	9.1^{Aalpha}	8.9^{Aalpha}	$8.5^{Aa\alpha}$	$7.9^{Aa\alpha}$	$8.5^{Aa\alpha}$	$8.4^{Aa\alpha}$			
R9 ¹	CC	8.7^{Aalpha}	8.9^{Aalpha}	$9.5^{Aa\alpha}$	$8.9^{Aa\alpha}$	$9.1^{Aa\alpha}$	$8.9^{Aa\alpha}$	$8.3^{Aa\alpha}$			
	U+CC	8.6^{Aalpha}	9.3^{Aalpha}	$9.2^{Aa\alpha}$	$9.5^{Aa\alpha}$	$9,0^{Aalpha}$	$9.6^{Aa\alpha}$	8 4 ^{Aaα}			
	IB	$7,9^{Ab\alpha}$	$9.2^{Aablpha}$	9.7^{Aalpha}	$9.5^{Aablpha}$	9 4 ^{Aabα}	$8.7^{Aablpha}$	$8.4^{Aab\alpha}$			
	Т	$9.6^{Aa\alpha}$	6.9^{Abeta}	6.6^{Abeta}	$6,5^{Abeta}$	$6,3^{Bb\beta}$	$6.6^{Ab\beta}$	6,3 ^{Abβ}			
M7 ¹	U	7.1 ^{Βαβ}	6.3 ^{Aaβ}	6.7 ^{Aaβ}	6.8 ^{Ααβ}	6.6 ^{Baβ}	6.2 ^{Aaβ}	6.6 ^{Ααβ}			
	CC	$8.2^{\text{Ba}\alpha}$	$7.3^{Aab\beta}$	$7.5^{Aab\beta}$	$7.3^{Aab\beta}$	6 6 ^{Babβ}	6 7 ^{Aabβ}	6,3 ^{Abβ}			
	U+CC	7.1 ^{Βaβ}	6.8 ^{Ααβ}	6.6 ^{Ααβ}	6.5 ^{Ααβ}	6.3 ^{Baβ}	$6.2^{Aa\beta}$	6.3 ^{Ααβ}			
	IB	$7,7^{Bab\alpha}$	$7,3^{Aab\beta}$	6,7 ^{Abβ}	$7,0^{Ab\beta}$	8,5 ^{Αααβ}	6,8 ^{Abβ}	6,4 ^{Abβ}			
Parâmetro		Digestibilidade "In Vitro" da Matéria Seca (% MS)									
			Dias de Abertura dos Silos								
Gen.	Trat.	1	3	5		14	28	56			
	Т	45,7 ^{Aabα}	47,1 ^{Aabα}	47,7 ^{Aabα}	$41,4^{Bbeta}$	$45,8^{Aab\alpha}$	47,3 ^{Aabα}	49,1 ^{Βαα}			
	U	$48.2^{AD\alpha}$	$51,0^{Ab\alpha}$	$47.5^{Ab\alpha}$	$45.7^{ABb\alpha}$	$47,2^{Ab\alpha}$	$49.0^{AD\alpha}$	55 9 ^{Aaα}			
$V2^1$	CC	$49.1^{Aa\alpha}$	$52,5^{Aa\alpha}$	$47,9^{Aa\alpha}$	45.2 ^{ABaβ}	49,3 $^{Aa\alpha}$	$48.8^{Aa\alpha}$	$52.5^{ABa\alpha}$			
	U+CC	$51,7^{Aa\alpha}$	$52.3^{Aa\alpha}$	$48,2^{Aa\alpha}$	$47.7^{ABa\alpha}$	51,5 ^{Ααα}	$49,0^{Aax}$	49 2 ^{baα}			
	IB	$50,4^{Aa\alpha}$	$50,1^{Aa\alpha}$	$48,4^{Aalpha}$	$50,5^{Aa\alpha}$	Poetrura dos Silos 7 14 9,2 ^{Aaα} 7,5 ^{Abα} 7,6 ^{Baαβ} 7,8 ^{Aaα} 7,6 ^{Baβ} 7,1 ^{Aaβ} 7,2 ^{Baβ} 7,1 ^{Aaβ} 7,5 ^{Baβ} 7,4 ^{Aaβ} 8,9 ^{Aaα} 8,3 ^{Aaα} 8,9 ^{Aaα} 9,1 ^{Aaα} 9,5 ^{Aaβα} 9,0 ^{Aaα} 9,5 ^{Aaβα} 9,4 ^{Aaββ} 6,5 ^{Abβ} 6,3 ^{Bββ} 6,8 ^{Aaβ} 6,6 ^{Baββ} 7,3 ^{Aaββ} 6,6 ^{Baββ} 7,0 ^{Abβ} 8,5 ^{Aaαβ} 4,7 ^{ABβα} 47,2 ^{Abα} 4,2 ^{ABββ} 49,3 ^{Aaα} 4,5 ^{Aaαβ} 47,4 ^{Aaα} 4,5 ^{Aaαβ} 47,4 ^{Aaα} 4,6 ^{Aaαβ} 46,4 ^{Aaα} 4,6 ^{Aaαβ} 45,2 ^{Aaβ} 4,4 ^{Aaαβ} 46,2 ^{Aaαβ} 4,4 ^{Aaαβ} 46,2 ^{Aaαβ} 4,4 ^{Aaαβ} 46,2 ^{Aaαβ} 4,4 ^{Aaαβ} 46,3 ^{Aaαβ} </td <td>$48,4^{Aa\alpha}$</td> <td>$50,0^{\text{ba}\alpha}$</td>	$48,4^{Aa\alpha}$	$50,0^{\text{ba}\alpha}$			
	Т	45,8 ^{Aaα}	48,2 ^{Aaα}	48,3 ^{Aaα}	45,3 ^{Aaαβ}	$47,4^{Aalpha}$	46,3 ^{Aaα}	$48.9^{Aa\alpha}$			
	U	49.9^{Aalpha}	$51.0^{Aa\alpha}$	$47,6^{Aalpha}$	$47,6^{\text{Aa}\alpha}$	$46,4^{Aalpha}$	$46.1^{Aa\alpha\alpha}$	47,4 ^{Aap}			
R9 ¹	CC	$47.9^{Aa\alpha}$	46,3 ^{Ααβ}	$46.8^{Aa\alpha}$	45,8 ^{Ααβ}	$45,3^{Aa\alpha}$	$45.8^{Aa\alpha}$	45,6 ^{Aap}			
	U+CC	36,5 ^{Bbβ}	$47.0^{Aa\alpha}$	$44,3^{Aalpha}$	$45,4^{Aalpha}$	45,2 ^{Ααβ}	$45.8^{Aa\alpha}$	$48.5^{Aa\alpha}$			
	IB	$49.1^{Aa\alpha}$	49,1 $^{Aa\alpha}$	$45.7^{\text{Aa}\alpha}$	$46,3^{Aa\alpha}$	$49,1^{Aa\alpha}$	$46.6^{Aa\alpha}$	51,8 ^{Ααα}			
	Т	42,5 ^{Βbα}	$49.9^{Aa\alpha}$	48,1 ^{Aabα}	50,0 ^{Aaα}	51,2 ^{Aaα}	$48.3^{Aab\alpha}$	$51.0^{Aa\alpha}$			
	U	$51.0^{Aa\alpha}$	$51.2^{Aa\alpha}$	$50,0^{Aa\alpha}$	$50.4^{Aa\alpha}$	$46.2^{Aa\alpha}$	48,1 $^{Aa\alpha}$	50 1 ^{Aaβ}			
M7 ¹	CC	$50.7^{Aa\alpha}$	49.5 ^{Αααβ}	50.7^{Aalpha}	$51.4^{Aa\alpha}$	$46.3^{Aa\alpha}$	$48.8^{Aa\alpha}$	49 2 ^{ΑΒααβ}			
	U+CC	$52,0^{Aa\alpha}$	$50.0^{Aab\alpha}$	$50,0^{Aab\alpha}$	51,1 ^{Ααα}	48,8 ^{Ααδαβ}	$50.1^{Aab\alpha}$	43 7 ^{Β0α}			
	IB	$49,2^{Aalpha}$	$47,5^{Aa\alpha}$	49,5 ^{Aaα}	48,9 ^{Aaα}	$47.9^{Aa\alpha}$	49,3 ^{Aaα}	47,1 ^{ABaα}			

Letras Maiúsculas iguais na mesma coluna dentro de um genótipo não diferem estatisticamente (P>0,05, efeito dos aditivos);

Letras minúsculas iguais na mesma linha não diferem estatisticamente (P>0,05, efeito abertura); Letras α , β , λ (α > β > λ) iguais na mesma coluna não diferem estatisticamente comparando entre genótipos e respectivos aditivos utilizados (P>0,05, efeitos de genótipos e aditivos).

 1 V2 = V2000; R9 = Rumbosol 91; M7 = M734. CV (Lig) = 7,236, CV (DIVMS) = 5,167 Teste SNK p<0,05.