Hélio W. L. de Carvalho¹, Milton J. Cardoso², Marcelo A. Lira³, Ana R. de M. B. Brito⁴, Manoel H.. B. Cavalcante ⁵, Elto E. G. e Gama⁶ e Sandra S. Ribeiro¹

¹Embrapa Tabuleiros Costeiros, C. P. 44, Aracaju, SE, 49001-970, helio@cpatc.embrapa.br. ²Embrapa Meio Norte, milton@cpamn.embrapa.br. ³EMPARN, marcelo-emparn@rn.gov.br. ⁴IPA, C.P. 1022, Recife, PE.

Palavras-chave: Zea mays L., previsibilidade e semi-árido.

A utilização de híbridos de milho no agreste nordestino vem aumentando gradativamente, nos últimos anos, como consequência de informações geradas, anualmente, pela rede de ensaios de avaliações de híbridos em realização em diversos pontos dessa região. Sabe-se, no entanto, que quando os genótipos são postos a competir em vários ambientes, à classificação relativa entre eles pode não ser coincidente, o que dificulta de forma substancial a identificação daqueles efetivamente superiores. A presença da interação genótipos x ambientes exerce, portanto, uma importância expressiva no processo de recomendação de cultivares, sendo necessário minimizar o seu efeito, o que é possível através de seleção de genótipos de melhor estabilidade fenotípica (Ramalho et al. 1993). O presente trabalho objetivou conhecer a adaptabilidade e a estabilidade de diversos híbridos quando avaliados em diferentes pontos da zona agreste do Nordeste brasileiro, para fins de exploração comercial. Foram avaliados trinta híbridos de milho, em blocos ao acaso, com três repetições em sete ambientes do agreste nordestino, distribuídos nos Estados do Piauí, Rio Grande do Norte, Alagoas, Sergipe e Bahia. As parcelas constaram de quatro fileiras de 5,0 m de comprimento, espaçadas de 0,80 m e com 0,40 m, dentro de fileiras. Foram mantidas duas plantas/cova, após o desbaste. Os pesos de grãos de cada tratamento, foram submetidos a analise de variância por local. Realizou-se, a seguir, a análise de variância conjunta, considerando-se aleatórios os efeitos de blocos e ambientes e, fixo, o efeito de híbridos (Vencovsky & Barriga, 1992). A partir dos dados médios das análises de variância, foram estimados os parâmetros que avaliam a adaptabilidade e a estabilidade (Cruz et al 1989). Constataram-se diferenças significativas (p<0,01) quanto aos efeitos de ambientes e híbridos e inconsistência no desempenho dos híbridos nos diferentes ambientes. As estimativas dos parâmetros de adaptabilidade e estabilidade estão na Tabela 1, verificando-se que as produtividades médias de grãos (b₀) dos híbridos variaram de 5.867 kg/ha a 8.149 kg/ha, com média geral de 6.710 kg/ha, evidenciando o alto potencial para a produtividade desses materiais e a excelente condição edofoclimatica da zona agreste para o desenvolvimento da cultura do milho. Os híbridos com rendimentos médios de grãos acima da média geral expressaram melhor adaptação (Vencovsky & Barriga, 1992), sobressaindo, entre eles, os 2 B 710 e 2 B 619. Os valores de b₁, que avalia o comportamento dos materiais nas condições desfavoráveis, oscilaram de 0.31, no híbrido 2 B 710 a no híbrido Pioneer 30 F 70, sendo ambos estatisticamente diferentes da unidade, evidenciando diferenças no comportamento dos híbridos nas condições desfavoráveis, No tocante às condições favoráveis, apenas os híbridos Tork, Pioneer 3041, Pioneer 30 F 70 e SHS 4070 responderam à melhoria ambiental (b₁+b₂>1). Ouanto à estabilidade, quatorze dos trinta híbridos avaliados mostraram baixa estabilidade nos ambientes considerados ($s^2 \neq 1$). Mesmo assim, aqueles materiais que apresentaram valores de $R^2>80\%$ não devem ter comprometido seu grau de previsibilidade (Cruz et al. 1989). Analisando-se o comportamento dos híbridos que mostraram melhor adaptação ($b_0>$ média geral), infere-se que os híbridos 2 B 710 e Fort preencheram um maior número de requisitos para recomendação nas condições desfavoráveis (b_1 e $b_1+b_2<1$). Verificou-se que nesse grupo de híbridos de melhor adaptação não foi encontrado qualquer material que atendesse a todos os requisitos para adaptação nas condições favoráveis (b_1 e $b_1+b_2>1$ e $s_d^2=0$). Mesmo assim, o híbrido Pioneer 30 F 70 apresentou um maior número de requisitos para adaptação nessa classe de ambiente (b_1 e $b_1+b_2>1$); também, os híbridos Pioneer 3041 e Tork, por responderem à melhoria ambiental ($b_1+b_2>1$), devem ser sugeridos para essa condição de ambiente. Os híbridos que associaram boa adaptação ($b_0>$ média geral) a estimativas de b_1 semelhantes á unidade ($b_1=1$) evidenciaram adaptabilidade ampla, consolidando-se em alternativas importantes para a agricultura regional.

Referências

CRUZ, C. D.; TORRES, R. A. de; VENCOVSKY,R. An alternative approach to the stability analisis by Silva and Barreto. **Revista Brasileira de Genética**, v. 12, p.567 a 580, 1989.

RAMALHO, M A. P.; SANTOS, J. B. dos; ZIMMERMANN, M. J de O. **Genética quantitativa em plantas autógamas**: aplicação no melhoramento do feijoeiro. Goiânia: UFG, 1993. Cap. 6. P. 131-169. (Publicação, 120).

VENCOVSKY. R.; BARRIGA, P. **Genética biométrica no fitomelhoramento.** Ribeirão Preto: Sociedade Brasileira de Genética, 1992. 496 p.

Tabela 1. Estimativas dos parâmetros de adaptabilidade e estabilidade de cultivares de milho

em 7 ambientes do Agreste no ano agrícola de 2005.

Tíbridos	Médias de grãos (kg/ha)					1 .1	2	\mathbb{R}^2
	Geral	Desfavorável	Favorável	- b ₁	b_2	$b_1 + b_2$	s^2_d	(%)
2 B 710	8149 a	7840	8380	0,31 **	-2,95 **	-2,64 **	2560280 **	37
2 B 619	7874 a	7378	8247	0,57 ns	-0,25 ns	0,32 ns	1855884 **	27
DAS 9560	7563 b	6660	8241	1,27 ns	0,18 ns	1,46 ns	1502266 *	72
P 30 F 44	7446 c	6635	8054	1,10 ns	-0,90 ns	0,20 ns	1225003 *	67
P 30 F 98	7284 c	6418	7933	1,15 ns	-0,92 ns	0,23 ns	1221178 *	69
2 C599	7120 c	6187	7819	1,29 ns	-0,65 ns	0,63 ns	24971 ns	99
Tork	7028 c	6139	7695	1,33 ns	1,52 ns	2,85 *	689728 ns	88
DAS 8480	7039 c	6308	7587	1,11 ns	0,74 ns	1,86 ns	1228547 *	72
Fort	7035 c	6750	7248	0,40 *	-1,30 ns	-,90 *	1036214 ns	32
DAS 8420	7039 c	6435	7491	0,82 ns	1,16 ns	1,99 ns	476342 ns	82
P3041	6976 c	6335	7457	0,91 ns	1,80 *	2,72 *	154190 ns	95
P 30 F 90	6935 c	6393	7341	0,78 ns	1,16 ns	1,95 ns	909977 ns	69
A 010	6909 c	6189	7450	1,01 ns	-0,22 ns	0,78 ns	693970 ns	76
P 30F 70	6902 c	5766	7754	1,75 **	1,18 ns	2,94 *	2767859 **	74
P 30 K 75	6831 c	6032	7431	1,06 ns	-0,95 ns	0,11 ns	652078 ns	78
AS 32	6751 d	6110	7231	1,04 ns	0,56 ns	1,61 ns	1641636**	63
Taurus	6689 d	6018	7192	0,94 ns	1,08 ns	2,03 ns	253507 ns	91
DAS 657	6646 d	5977	7149	1,08 ns	0,79 ns	1,87 ns	1168297 *	72
SHS 5050	6666 d	5783	7329	1,12 ns	-1,06 ns	0,06 ns	726632 ns	78
SHS 4080	6596 d	5608	7338	1,42 ns	-1,45 ns	-0,03 ns	1646718 **	72
Orion	6548 d	5709	7178	1,21 ns	-0,34 ns	0,86 ns	286165 ns	91
SHS 5080	6544 d	5982	6965	0,73 ns	-1,67 *	-0,94 *	1014860 ns	56
P30 F 80	6529 d	5454	7335	1,58 *	-0,82 ns	0,75 ns	965048 ns	84
P 30 F 87	6452 d	6017	6778	0,56 ns	-1,54 ns	-0,98 *	186258 ns	82
SHS 5070	6420 d	5646	7000	1,01 ns	0,44 ns	1,45 ns	588707 ns	81
Strike	6311 e	6046	6509	0,38	2,03	2,41	1943603 **	42
Tractor	6265 e	5190	7072	1,63	0,43	2,07	1487130 *	81
Master	6250 e	5607	6732	0,86	1,19	2,06	1337765 *	64
A4454	6242 e	5634	6699	0,85	-0,56	0,28	189855 ns	89
A 015	6127 e	5491	6605	0,72	0,38	1,11	2770750 **	32
A 4450	6038 e	5347	6556	0,93	-0,57	0,36	171515 ns	91
A 2555	5961 e	5222	6516	1,05	-1,26	-0,21	277616 ns	89
AS 1548	6065 e	5065	6816	1,47	-0,59	0,88	472299 ns	90
Exceler	5960 e	5496	6308	0,64	1,53	2,18	928198 ns	65
SHS 4070	5896 e	5351	6304	0,75	1,81	2,56	828472 ns	74

SHS 4070 5896 e 5351 6304 0,75 1,81 2,56 828472 ns 74

* e ** significativamente diferente da unidade, para b1 e b1+b2, e de zero, para b2 a 5% e a 1% de probabilidade pelo teste t de Student, respectivamente. ** significativamente diferente de zero, pelo teste F, Q.M. do desvio. As médias seguidas pelas mesmas letras não diferem entre si pelo teste Scott-Knott.