Aumento de CO₂, Emergência e Desenvolvimento Inicial de Plântulas de Diferentes Variedades de Abóbora

Armando Pereira Lopes¹; Rita de Cássia Barbosa da Silva¹; Élica Santos Rios¹; Marcelo do Nascimento Araújo¹; Renata Conduru Ribeiro Reis²; Frasncislene Angelotti³; Bárbara França Dantas³

Resumo

Com o aumento dos níveis de CO₂ na atmosfera, torna-se cada vez mais importante a compreensão dos possíveis impactos sobre o desenvolvimento e crescimento das plantas. O objetivo do presente trabalho foi avaliar a interação entre variedade de abóbora e diferentes níveis de CO₂ na germinação e desenvolvimento inicial de plântulas de diferentes cultivares de abóbora. Foram utilizadas duas câmaras com diferentes níveis de CO₂ (360 ppm e 550 ppm) e sementes das variedades: Caserta, Redonda, Coroa e Mesa. As sementes foram alocadas em bandejas de 36 células, tendo duas repetições de 18 sementes em cada bandeja. Para cada tratamento foram utilizadas quatro repetições. O período de duração do experimento foi de 15 dias. O delineamento experimental utilizado foi fatorial 4 X 2 sendo quatro variedades (Caserta, Redonda, Coroa e Mesa) e dois níveis de concentração de CO₂ (360 ppm e 550ppm). Os níveis de CO₂ utilizados provocaram efeitos diferentes entre as variedades para a maioria das variáveis analisadas, porém, não foi observada uma mudança significativa no comportamento fisiológico das plântulas com o aumento da concentração do CO₂.

Palavras-chave: dióxido de carbono, ambiente enriquecido, comportamento fisiológico.

Introdução

A Região Nordeste possui maior variabilidade de cultivares de abóboras comercializadas e o consumo dessas hortaliças é mais tradicional (ROCHA; TOMAZINI NETO, 2006).

A concentração do dióxido de carbono na atmosfera tem sofrido um aumento significativo nos últimos anos. O aumento na concentração dos gases de efeito estufa tem sido correlacionado ao aquecimento global. O efeito estufa é essencial para a manutenção da vida na terra, contudo, ações antropogênicas têm provocado um aumento de determinados desses gases na atmosfera. Hoje, existe cerca de 35% mais CO₂ que há 150 anos (COLLINS et al., 2007). Os aumentos globais da concentração de dióxido de carbono se devem, principalmente, ao uso de combustíveis fósseis e à mudança no uso da terra. Já os aumentos da concentração de metano e óxido nitroso são devidos principalmente da agricultura

¹ Estudante, Universidade do Estado da Bahia - UNEB. Av. Edgard Chastinet, s/n; São Geraldo. CEP 48900-000 Juazeiro, BA, cassinhauneb@yahoo.com.br.

² Estudante, Universidade Estadual de Feira de Santana - UEFS. Av. Transnordestina, s/n; Novo Horizonte. CEP 44.036-900 Feira de Santana, BA.

³ Pesquisadora da Embrapa Semiárido, Caixa Postal 23, CEP 56.302.970, Petrolina, PE.

(INTERGOVERNMENTAL GROUP ON CLIMATE CHANGE, 2007). De acordo com o *Inventário brasileiro* sobre os gases do feito estufa, as queimadas e desmatamentos no Brasil respondem por 75% das emissões de CO₂, enquanto a utilização de combustíveis pela indústria e transporte responde por 25% (BRASIL, 2008).

Os prováveis efeitos desse aumento de CO₂ têm sido intensamente estudados pelos especialistas em fisiologia vegetal. Segundo Assad et al. (2009), a concentração de CO₂, sendo próxima de 300 ppm, está bem abaixo da saturação para a maioria das plantas, no entanto, níveis excessivos, próximos de 1.000 ppm, passam a ter ação fitotóxica. A germinação das sementes é influenciada por fatores ambientais, como temperatura e substrato, os quais podem ser manipulados, a fim de otimizar a porcentagem, velocidade e uniformidade de germinação, resultando na obtenção de plântulas mais vigorosas e na redução de gastos de produção (NASSIF et al., 2004). Com o aumento dos níveis de CO₂ na atmosfera, torna-se cada vez mais importante a compreensão dos processos envolvidos na ciclagem do CO₂. Diante deste contexto, o objetivo do presente trabalho foi avaliar a interação entre variedades de abóbora e diferentes níveis de CO₂ na germinação e desenvolvimento inicial de plântulas, bem como sua influência na produção de mudas dessa espécie.

Material e Métodos

O trabalho foi desenvolvido no Laboratório de Mudanças Climáticas, da Embrapa Semiárido, em Petrolina, PE, entre os meses de janeiro e fevereiro de 2011. Foram utilizadas sementes de abóbora das variedades: Caserta, Redonda, Coroa e Mesa. Os cenários de mudanças climáticas utilizados foram duas câmaras de crescimento, cada uma contendo cilindros injetores de CO₂, ambas com temperatura de 26 °C. Na primeira câmara foi injetado 360 ppm e na segunda 550 ppm de CO₂. As quatro variedades de abóboras foram semeadas em bandejas de polietileno, com 36 células, contendo substrato comercial. As bandejas foram alocadas em recipientes plásticos contendo água para que a mesma ascendesse por capilaridade como complemento borrifou-se água no substrato quando este se apresentava abaixo da capacidade de campo. Durante 15 dias foram realizadas avaliações diárias de germinação para posterior cálculo de porcentagem de emergência (E%), velocidade de emergência (VE), índice de velocidade de emergência (IVE) e tempo médio de emergência (TME). Ao final do experimento foram avaliados o peso de matéria fresca e seca da parte aérea e raiz, comprimento da parte aérea e raiz.

O delineamento experimental utilizado foi fatorial 4 X 2 sendo quatro variedades (Caserta, Redonda, Coroa e Mesa) e dois níveis de concentração de CO₂ (360 ppm e 550ppm). Os dados foram submetidos à análise de variância e as médias comparadas pelo teste de Tukey a 5% de probabilidade.

Resultados e Discussão

De acordo com a Tabela 1, não houve interação entre os fatores para a maioria das variáveis de germinação, exceto para TME. Dentre as cultivares, a Coroa apresentou os maiores valores para E%, VE e IVE. As sementes submetidas à concentração de 550 ppm de CO₂ obtiveram uma E% significativamente superior. No entanto, o mesmo não aconteceu para VE e IVE onde os dois níveis de CO₂ não apresentaram

diferenças significativas. A variedade Redonda apresentou um maior valor para TME quando submetida a 550 ppm de CO₂.

As avaliações apresentadas, relativas ao crescimento inicial de plântulas, não apresentaram interação entre os fatores (Tabela 2). Fernandez Bayon et al. (1993) observaram maior crescimento de raízes com aplicação de CO₂ via água de irrigação na cultura de melão. No presente trabalho, concentrações de 360 ppm e 550 ppm não apresentaram diferença significativa entre si tanto para crescimento da parte aérea quanto da raiz.

Para o comprimento da parte aérea (CPA) as plântulas das variedades Caserta e Redonda apresentaram um comprimento significativamente maior que as demais. Quanto ao comprimento da raiz (CR), as plântulas das variedades Coroa e Mesa obtiveram resultados significativamente superiores (Tabela 2).

Tabela 1. Dados médios de porcentagem de emergência (E%), tempo médio de emergência (TME), velocidade média de emergência (VME), índice de velocidade de emergência (IVE) e tempo médio de emergência de sementes de quatro variedades de abóbora submetidas a diferentes concentrações de CO₂. Petrolina/PE, 2011.

	Е%	VE	IVE	TME CO ₂ (ppm)	
Variedades					
				360	550
Caserta	93.055a	0.264a	4.637a	3.728bA	3.845bcA
Redonda	86.111ab	0.219b	3.618b	4.116abB	5.129aA
Coroa	92.361a	0.221b	3.881b	4.609aA	4.523abA
Mesa	82.638b	0.255a	4.059ab	4.067abA	3.807cA
CO ₂ (ppm)					
360	86.111b	0.244a	4.025a	-	-
550	90.972a	0.236a	4.073a	-	-
MÉDIA GERAL	88.541	0.240	4.049	4.228	
CV%	6.530	8.656	10.578	8.566	

Médias seguidas pelas mesmas letras minúsculas nas colunas e maiúscula nas linhas não diferem significativamente entre si pelo teste de Tukey a 5% de probabilidade.

A interação entre a variedade Redonda e 360 ppm de CO₂ resultou em plântulas com maior peso quando avaliado o peso da matéria fresca da parte aérea (PMFPA) (Tabela 3). Para Kimball et al. (1994), a aplicação do CO₂ melhora o metabolismo e o equilíbrio hormonal das plantas, aumenta a fotossíntese e absorção de nutrientes. Quando avaliado o peso da matéria fresca da raiz (PMFR), as plântulas da variedade Coroa submetidas a 550 ppm de CO₂ obtiveram um peso superior às demais (Tabela 3).

Tabela 2. Dados médios de comprimento da parte aérea (CPA) e comprimento da raiz (CR) de plântulas de quatro variedades de abóbora submetidas a diferentes concentrações de CO₂. Petrolina, PE, 2011. Médias

	СРА	CR
Variedades		
Caserta	8.415a	15.170b
Redonda	8.157a	14.538b
Coroa	5.935b	19.035a
Mesa	6.237b	19.750a
CO ₂ (ppm)		
360	7.072a	17.279a
550	7.300a	16.967a
MÉDIA GERAL	7.186	17.123
CV%	9.972	9.801

seguidas pelas mesmas letras nas colunas não diferem significativamente entre si pelo teste de Tukey, p>0,05; **

Segundo Durão e Galvão (1995), a fertilização carbônica incrementa a atividade metabólica da planta, aumentando a absorção total do CO₂ e seu vigor, tornando, assim, a planta mais eficiente na utilização da água, reduzindo o processo de transpiração sem prejudicar outros processos metabólicos. Além disso, torna a planta mais eficiente na captação dos nutrientes do solo. Plantas sob fertilização carbônica possuem sistema radicular melhor desenvolvido. Para o peso de matéria seca da parte aérea (PMSPA) não houve diferença significativa entre os tratamentos apresentados (Tabela 3).

Tabela 3. Dados médios do peso de matéria fresca da parte aérea (PMFPA), peso de matéria fresca da raiz (PMFR), peso de matéria seca da parte aérea (PMSPA) e peso de matéria seca da raiz (PMSR) de plântulas de quatro variedades de abóbora submetidas a diferentes concentrações de CO₂. Petrolina/PE, 2011.

	PMFPA CO ₂ (ppm)		PMFR CO ₂ (ppm)		PMSPA	PMSR
	360	550	360	550	•	
Variedades						
Caserta	28.979bA	29.384abA	12.621aA	11.252cA	1.755a	0.425c
Redonda	36.129aA	28.949bB	11.327aA	12.925bcA	2.157a	0.651b
Coroa	26.331bA	28.320bA	9.713aB	15.116bA	2.081a	0.622b
Mesa	31.172abA	34.070aA	12.407aB	18.413aA	2.292a	0.790a
CO ₂ (ppm)						
Sem CO ₂	-	-	-	-	2.021a	0.608a
Com CO ₂	-	-	-	-	2.122a	0.636a
Média Geral	30.417		12.972		2.071	0.622
CV%	9.441		11.721		20.698	14.410

Médias seguidas pelas mesmas letras minúsculas nas colunas e maiúscula nas linhas não diferem significativamente entre si pelo teste de Tukey a 5% de probabilidade.

As plântulas da variedade Mesa apresentaram o maior PMSR. Para essa mesma variável não houve diferença entre as concentrações de CO₂ (Tabela 3).

Conclusões

As variações de CO₂ estudadas provocaram comportamentos diferentes para cada cultivar, porém, o aumento da concentração de CO₂ não afetou significativamente o desenvolvimento inicial das plântulas de abóbora para as variedades analisadas.

O aumento da concentração de CO₂ provocou alterações no aspecto germinativo.

A qualidade final das mudas não foi comprometida com as variações de CO₂ analisadas.

Referências

ASSAD, E. D.; PINTO, H. S.; ZULLO JÚNIOR, J.; MARIN, F. R. **Mudanças climáticas e agricultura: uma abordagem agroclimatológica.** In: GUEDES, I. M. R. (Ed.). Mudanças climáticas globais e a produção de hortaliças. Brasília, DF: Embrapa Hortaliças, 2009. p. 13-28.

BRASIL. Plano Nacional de Mudanças do Clima. 2008. Disponível em: http://www.mma.gov.br/index.php?ido=conteudo.monta&idEstrutura=169. Acesso em: 20 jun. 2010.

COLLINS, W.; COLMAN, R.; HAYWOOD, J.; MANNING, M.R.; MOTE, P. The physical science behind climate change. **Scientific American**, [Washington, D.C.], v. 297, p. 48-57, 2007.

DURÃO, P. L.; GALVÃO, A. C. Gás Carbônico em irrigação: tecnologia de ponta para aumentar a produtividade e qualidade dos produtos agrícolas. **Ciência Hoje**, Rio de Janeiro, v.19, n.110, p. 12-15, 1995.

FERNANDEZ BAYON, J. M.; BARNES, J. D.; OLLERENSHAW, J. H.; DAVISON, A. W. Physiological effects of ozone on cultivars of watermelon (*Citrullus lannatus*) and muskmelon (*Cucumis melo*) widely grown in Spain. **Enviromental Pollution**, [New York], v. 81, n. 3, p. 199-206, 1993.

INTERGOVERNMENTAL GROUP ON CLIMATE CHANGE. Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007. 996 p.

KIMBALL, B. A.; MITCHELL, S. T. Tomato yields from CO₂ enrichment in unventilated and conventionally ventilated greenhouses. **Journal of the American Society for Horticultural Science**, Alexandria, v. 104, n. 4, p. 515-520, 1979.

NASSIF, S. M. L.; VIEIRA, I. G.; FERNANDES, G. D. Fatores externos (ambientais) que influenciam na germinação de sementes. Disponível em: http://www.ipef.br/ tecsementes/germinacao.html>. Acesso em: 3 ago. 2004.

ROCHA, D. V.; TOMAZINI NETO, R. Implantação de uma lavoura de abóbora com rotação de cultura, sob pivô central, no noroeste mineiro. Brasília, DF: UPIS Faculdades Integradas, 2006. Disponível em: <hr/>
<h