MELHORAMENTO DE PUPUNHA PARA PALMITO NO PARANÁ

Antonio Nascim Kalil Filho¹ e Marcos Deon Vilela de Resende¹

¹Embrapa Florestas, Estrada da Ribeira km 111 CP 319, 83411-000 Colombo, PR kalil@cnpf.embrapa.br; deon@cnpf.embrapa.br

INTRODUÇÃO

A pupunha é uma espécie produtora de palmito oriunda da Amazônia com sustentabilidade econômica, social e ambiental. Economicamente é precoce, produtiva e cujo palmito é o único que pode ser comercializado *in natura*, por apresentar baixa atividade de enzimas ligadas ao processo de oxidação, dispensando, assim, a proximidade de fábricas de envasado, como ocorre na Amazônia Ocidental. Socialmente, envolve, na maioria das propriedades, a agricultura familiar, exigindo tratos culturais durante todo o ano, inclusive na colheita do palmito. Ambientalmente, controla a erosão. Atualmente, a grande maioria das sementes de pupunha utilizadas em plantios comerciais no Brasil é proveniente de Yurimáguas, Peru, uma população domesticada para baixa quantidade de espinhos no estipe. Porém, a qualidade das sementes é baixa e o preço das mudas, em torno de R\$ 2,00, consome 57,7% dos custos de produção, evidenciando a necessidade de estruturação da produção de sementes de boa qualidade e com alto potencial produtivo. O objetivo geral deste trabalho é o de apresentar resultados de um processo de seleção de pupunheiras em teste de progênies instalados pela Embrapa Florestas em diversas regiões do Paraná.

MATERIAL E MÉTODOS

O germoplasma-semente introduzido, na forma de progênies de meios irmãos, é oriundo de Benjamin Constant, AM. Estas foram usadas para instalar três testes de progênies em Londrina (Nordeste), Cidade Gaúcha (Noroeste) e Morrestes (????), seguindo um delineamento experimental de blocos ao acaso com seis plantas por parcela linear em até dez repetições. Foi utilizado o espaçamento convencional de 2 m entre linhas x 1 m entre plantas. Em Londrina (Nordeste) e Cidade Gaúcha (Noroeste), os experimentos estão sendo irrigados (RESENDE et al., 2006), devido à ocorrência de déficit hídrico naqueles locais.

Na avaliação de vigor foram consideradas as características de altura na intersecção entre a folha-flecha e a primeira folha expandida, diâmetro a 50 cm do solo e número de perfilhos. Na avaliação da produção foi considerado o peso do palmito basal, palmito tolete e palmito picado (CLEMENT & BOVI, 2000).

Em 2003 e 2004, foram feitas avaliações de diâmetro, altura e número de perfilhos em Londrina e Morretes. Em 2005, foram feitas avaliações de diâmetro, altura e número de perfilhos em Tagaçaba e Cidade Gaúcha. Em 2005, foram feitas avaliações de produção de palmito em peso (rodela, toletes e picado) em Morretes e Londrina.

As estimativas de parâmetros genéticos e a seleção genética foram realizadas pela metodologia de modelos lineares mistos (procedimento REML/BLUP), conforme descrito por RESENDE (2002a):

Todas as análises foram realizadas por meio do software Selegen-REML/BLUP desenvolvido para análise de experimentos não balanceados (RESENDE, 2002a; RESENDE, 2002b). Os testes de progênies foram transformados em Pomares de Sementes por Mudas (PSMs).

RESULTADOS E DISCUSSÃO

Tabela 1 – Médias e estimativas de parâmetros genéticos para as características de crescimento e sobrevivência de pupunheiras em Morretes nos anos de 2003 e 2004.

	Morretes – 2003				Morretes - 2004			
Parâmetro	Altura	Diâmetro	Perfilho	Sobrev	Altura	Diâmetro	Perfilho	Sobrev
	(m)	(cm)			(m)	(cm)		
Herdabilidade	0.2188	0.2729	0.3214	0.3407	0.3641	0.2913	0.3155	0.4028
Individual								
Herdabilidade	0.5806	0.6687	0.8134	0.8154	0.7063	0.7655	0.8233	0.8436
De Progênie								
Herdabilidade	0.2486	0.2873	0.2731	0.2949	0.4289	0.2585	0.2623	0.3533
Indiv/Progênie								
Acurácia	0.7620	0.8177	0.9019	0.9030	0.8404	0.8749	0.9073	0.9185
Progênie								
CV Exper.	20.45	17.31	18.80	24.25	20.90	14.13	18.94	23.51
Média	0.71	6.65	5.83	0.77	2.09	11.52	6.50	0.77

Tabela 2 – Médias e estimativas de parâmetros genéticos para características de crescimento e sobrevivência em Londrina nos anos de 2003 e 2004.

	Londrina - 2003			Londrina – 2004				
Parâmetro	Altura	Diâmetro	Perfilho	Sobrev	Altura	Diâmetro	Perfilho	Sobrev
	(m)	(cm)			(m)	(cm)		
Herdabilidade	0.2994	0.2517	0.0036	0.6725	0.2033	0.2382	0.1945	0.2745
Individual								
Herdabilidade	0.7097	0.6856	0.0455	0.8421	0.6137	0.6984	0.6931	0.7467
De Progênie								
Herdabilidade	0.3023	0.2426	0.0028	0.8135	0.2019	0.2179	0.1651	0.2456
Indiv/Progênie								
Acurácia	0.8424	0.8280	0.2133	0.9176	0.7834	0.8357	0.8325	0.8641
Progênie								
Média	0.36	3.56	3.67	0.72	1.53	9.45	6.15	0.72

Aos 19 meses e aos 28 meses de idade, as médias de altura, diâmetro e nº de perfilhos de Londrina sempre foram menores que as médias de Morretes (Tabelas 1 e 2). Pode-se observar que a altura para corte (1,60m do solo até a intersecção da folha-flecha com a primeira folha expandida) deu-se, em média, após 28 meses em Londrina (1,53m-Tabela 2) e antes de 24 meses em Morretes (2,09m - Tabela 1). O diâmetro médio do palmito em Londrina (9,45cm-Tabela 2) também esteve abaixo daquele obtido em Morretes (11,52cm-Tabela 1). O número médio de perfilhos em Londrina (3,67-Tabela 2), também foi menor que o observado em Morretes (5,83-Tabela 1). Estas diferenças refletirão na produção final de palmito, que afetará o preço obtido pelo produtor. A sobrevivência, que afeta a produtividade (produção por área) também foi maior em Morretes. A superioridade geral de Morretes pode ser devida à maior quantidade de água recebida pelas plantas de pupunha no litoral em relação a Londrina.

Aos 19 meses e aos 28 meses de idade, as herdabilidades em nível de indivíduos para os caracteres altura, diâmetro, n° perfilhos e sobrevivência variaram de 0% (número de perfilhos em Londrina) a 67,25% (sobrevivência em Londrina) (Tabelas 1 e 2). Exceto para a herdabilidade nula, as demais herdabilidades variam de média a alta (Resende, 2002b), fato que indica excelentes possibilidades para a seleção e melhoramento da pupunha para a produção de palmito no Paraná. As herdabilidades variaram com a idade da planta, ora aumentando, ora diminuindo

com a idade da planta. Também variaram com a característica considerada nas avaliações. As estimativas obtidas apresentam valores coerentes com os apresentados por FARIAS NETO & RESENDE (2001) para pupunha e por BOVI et al. (2003; 2004) para palmeira real.

As acurácias para a seleção de progênies foram, em geral, altas (acima de 70%). Os coeficientes de variação genéticos em nível de indivíduo variaram de 4% (baixos) a 50% (muito altos).

Os resultados referentes à produção de palmito e estimativas de parâmetros genéticos para da produção de palmito em Morretes e Londrina estão apresentados na Tabela 3 . Nestes locais, aos 36 meses de idade, pesos médios de picadinho foram de 265g e 203g, respectivamente; de tolete, 210g e 180g, respectivamente e de rodela, 156g e 153g, respectivamente (Tabela 3) e as herdabilidades em nível de indivíduo foram baixas para o caráter peso de palmito, variando de 5,27% a 9,67% (Tabela 3). As baixas herdabilidades obtidas para o caráter produção de palmito indicam a alta influência ambiental sobre o caráter. Por outro lado, as herdabilidades para características de vigor variaram de média a alta (Tabela 3), mostrando a importância do estabelecimento de correlações genéticas entre características de vigor e produção do palmito. A seleção indireta da produção de palmito através do vigor também contribui para a redução do ciclo de melhoramento em três a quatro anos, uma vez que não será necessário o corte das plantas visando avaliações de produção durante o processo de seleção.

TABELA 3 - Médias e estimativas de parâmetros genéticos para produção dos três tipos de palmito em Morretes e Londrina em 2004.

		Morretes			Londrina	
Parâmetro	Tolete	Rodela	Picado	Tolete	Rodela	Picado
Herdabilidade	0.0967	0.0527	0.3702	0.0119	0.0777	0.0520
Individual						
Herdabilidade	0.4408	0.2860	0.7991	0.1150	0.5019	0.4295
de Progênie						
Herdabilidade	0.0794	0.0435	0.3108	0.0097	0.0616	0.0399
Indiv/Progênie						
Acurácia	0.6639	0.5348	0.8939	0.3391	0.7084	0.6554
Progênie						
CV Exper.	23.44	18.10	23.23	22.84	23.46	28.07
Média (g)	180.50	153.061	202.70	209.91	155.56	264.96

Foram observadas baixas correlações genéticas entre a performance das progênies nos dois locais (Londrina e Morretes) para altura, vigor, sobrevivência e volume de estipe com palmito, variando de 8% a 25% (Tabela 4). A característica número de perfilhos apresentou correlação de 52% (Tabela 4). Esses baixos valores de correlação revelam a presença de interação genótipo x ambiente do tipo complexa, a qual é problemática para o melhorista e pode revelar a necessidade de programas de melhoramento específicos para cada local. A classificação dos melhores genótipos em Londrina diferiu da classificação dos melhores genótipos em Morretes, atestando a necessidade de melhoramento em cada local.

TABELA 4 – Resultados da interação genótipo x locais (Londrina e Morretes) para características de crescimento e sobrevivência em 2004.

Parámetro	Altura (m)	Diâmetro (cm)	Perfilho	Sobrev
Herdabilidade Individual	0.0134	0.0051	0.0336	0.0209
Herdabilidade de Progênie	0.2041	0.0883	0.5348	0.2888
Coef. Determ. Interação	0.0546	0.0634	0.0306	0.0635

Acurácia Progenie	0.4518	0.2972	0.7313	0.5374
RgLocais	0.20	0.08	0.52	0.25
CV Exper.	25.53	20.32	21.72	26.32
Média	1.82	10.47	6.34	0.75

Foram observadas baixas correlações genéticas entre a performance das progênies nos dois locais (Londrina e Morretes) para altura, vigor, sobrevivência e volume de estipe com palmito, variando de 8% a 25% (Tabela 4). A característica número de perfilhos apresentou correlação de 52% (Tabela 4). Esses baixos valores de correlação revelam a presença de interação genótipo x ambiente do tipo complexa, a qual é problemática para o melhorista e pode revelar a necessidade de programas de melhoramento específicos para cada local. A classificação dos melhores genótipos em Londrina diferiu da classificação dos melhores genótipos em Morretes, atestando a necessidade de melhoramento em cada local.

Os ganhos genéticos obtidos com a seleção dos 50 melhores indivíduos do experimento foram: altura em Londrina: 29,9%; altura em Morretes: 30,9%; diâmetro em Londrina: 26,5%; diâmetro em Morretes: 19,4%; perfilhos londrina: 24,7%; perfilhos morretes: 34,6%; sobrevivência londrina: 26,4%; sobrevivência em Morretes: 24,7%; volume da estipe com palmito em Londrina: 69,9%; volume da estipe com palmito em Morretes: 121,8%.

Verifica-se que ganhos consideráveis podem ser obtidos para todos os caracteres. Em 2005, foi feita a seleção de 270 palmeiras em Morretes e 279 palmeiras em Londrina. Os testes de progênies de Morretes e Londrina foram transformados em Pomares de Sementes por Mudas (PSMs), onde encontram-se as matrizes superiores, visando-se à produção de sementes. Ganhos genéticos em produtividade de palmito fresco de, no mínimo, 30% a mais são esperados, o que refletirá na renda dos produtores. Maiores ganhos poderão ser obtidos em conseguindo-se a propagação vegetativa dos perfilhos.

REFERÊNCIAS

BOVI, M.L.A.; RESENDE, M.D.V.; SPIERING, Sandra H. Genetic parameters estimation in king palm through a mixed mating system model. **Horticultura Brasileira**, Brasília, v. 21, n. 1, p. 93-98, 2003.

BOVI, M.L.A.; et al. Genetic analysis for sooty mold resistance and heart of palm yield in Archontophoenix.. **Scientia Agricola**, Piracicaba, v. 61, n. 2, p. 178-184, 2004.

CLEMENT, C.R.; BOVI, M.L.A. Padronização de medidas de crescimento e produção em experimentos com pupunheiras para palmito. **Acta Amazonica** v.30 n.3 pp.349-362. 2000.

FARIAS NETO, J.T.; RESENDE, M.D.V. Aplicação da metodologia de modelos mistos (REML/BLUP) na estimação de componentes de variância e predição de valores genéticos em pupunheira (Bactris gasipaes). **Revista Brasileira de Fruticultura**, Jaboticabal, v. 23, n. 2, p. 320-324, 2001.

KALIL FILHO, A.N.; et al. Presença/ausência de espinhos em progênies de pupunha (*Bactris gasipaes*) do projeto reca como fonte de sementes. **Boletim de Pesquisa Florestal**, Colombo, PR, v. 44, p. 127-132, 2002.

KALIL FILHO, A.N.; et al. Desenvolvimento da Pupunha (Bactris gasipaes Kunth. var. gasipaes Henderson) em Regiões Aptas ao seu Cultivo, no Estado do Paraná. 2005. **Comunicado Técnico** 152 *Embrapa Florestas*.

RESENDE, M.D.V. de. **Software SELEGEN – REML/BLUP**. Colombo: *Embrapa Florestas*, 2002a. 67p. (*Embrapa Florestas* – Documentos, 77).

RESENDE, M.D.V. de. **Genética biométrica e estatística no melhoramento de plantas perenes**. Brasília: Embrapa Informação Tecnológica, 2002b. 975p.

RESENDE, R.; FREITAS, P.S.L. de; HEIBEL JUNIOR, C. Irrigação da pupunheira na região noroeste do Paraná. **Comunicado Técnico** 135. *Embrapa Florestas*. 2006.