Validação de Marcadores EST-SSRs em Diplóides de Bananeira Contrastantes Para Resistência à Sigatoka Amarela e Negra

<u>Paulo Henrique da Silva¹</u>; Cláudia Fortes Ferreira²; Alberto Duarte Vilarinhos³; Edson Perito Amorim⁴; Ana Yamaguishi Ciampi⁵; Robert Neil Gerard Miller⁶; Manoel Teixeira Souza Júnior⁷

RESUMO

A cultura da bananeira é considerada uma importante fonte de alimento e de renda para muitas famílias, sendo a maior parte produzida por pequenos produtores. O Brasil é o quarto maior produtor de banana no mundo com produção de aproximadamente 7 milhões de toneladas em 2009. O principal fator limitante para a baixa produção é a deficiência de cultivares resistentes às principais pragas e doenças. Uma das estratégias para contornar esse problema é a liberação de novas variedades resistentes, por meio do melhoramento genético. Sendo assim, o aumento pelo interesse da utilização da tecnologia de marcadores moleculares vem crescendo, pois permite a seleção de genótipos com maior confiabilidade e redução no tempo para lançamento de uma nova cultivar, tornando-se uma ferramenta fundamental para os programas de melhoramento. Para a utilização desta ferramenta é necessário o desenvolvimento de marcadores que apresentem grande conteúdo de informação para serem utilizados em trabalhos futuros. Portanto, o objetivo do trabalho foi validar e otimizar marcadores EST-SSR identificados em clones de BAC e ESTs de *Musa acuminata* Burmanicoides var. Calcutta 4 e validados em 22 genótipos de *Musa* spp. variando de diplóides melhorados a selvagens. O valor médio do PIC e da heterozigosidade foi de 0,5.

INTRODUÇÃO

A cultura da bananeira é uma importante fonte de alimento e de renda para milhares de famílias brasileiras, sendo que a maior parte de sua produção vem de plantios de pequenos produtores que detêm de pouca tecnologia. O Brasil é o quarto maior produtor de banana no mundo com produção de aproximadamente 7 milhões de toneladas em 2009 (FAO, 2011).

O principal fator limitante para a baixa produção do Brasil é principalmente a deficiência de cultivares resistentes às principais doenças de importância econômica como a Sigatoka Amarela e Negra (Silva et al., 2002). Sendo assim, os programas de melhoramento exercem um papel importante na busca de genótipos com grande potencial de produtividade e resistência a doenças. Com o aumento na eficiência de seleção, os ganhos genéticos têm sido alcançados, porem novas estratégias vem sendo buscadas e com isto vem ocorrendo um significativo aumento pelo interesse da utilização de marcadores moleculares, que permite a seleção de genótipos com maior confiabilidade e redução no tempo para lançamento de uma nova cultivar, tornando-se uma ferramenta fundamental para os programas de melhoramento.

Portanto, o objetivo do trabalho foi validar e otimizar marcadores EST-SSR identificados em clones de BAC e ESTs de *Musa acuminata* Burmanicoides var. Calcutta 4 e validados em 22 genótipos de *Musa* spp. variando de diplóides melhorados a selvagens. O valor médio do PIC e da heterozigosidde foi de 0.5. O primer CNPMF-57 apresentou o maior PIC = 0.80. Esses marcadores serão de grande utilidade para estudos de diversidade genética, estudos de população e mapeamento genético da bananeira.

¹Mestrando em Genética e Melhoramento de Plantas, Universidade Federal de Lavras, Lavras-MG, CEP:37200-000, e-mail: pphsilva@hotmail.com;

²Pesquisadora da Embrapa Mandioca e Fruticultura, Cruz das Almas - BA, CEP:44380-000, e-mail: claudiaf@cnpmf.embrapa.br;

³Pesquisador da Embrapa Mandioca e Fruticultura, Cruz das Almas - BA, CEP:44380-000, e-mail: vila@cnpmf.embrapa.br;

⁴Pesquisador da Embrapa Mandioca e Fruticultura, Cruz das Almas – BA, CEP:44380-000, e-mail

^{*}Pesquisador da Embrapa Mandioca e Fruticultura, Cruz das Almas – BA, CEP:44380-000, e-mail: edson@cnpmf.embrapa.br;

⁵Pesquisadora da Embrapa Recursos genéticos e Biotecnologia, Brasília-DF CEP:,70770-901 e-mail: aciampi@cenargen.embrapa.br;

⁶Professor da Universidade Católica de Brasília, Brasília-DF, CEP: 70790-160, e-mail: miller@oos.ucb.br;

⁷Pesquisador da Embrapa Agroenergia, Brasília-DF, CEP: 70770-901, e-mail: manoel.souza@embrapa.br.

MATERIAL E MÉTODOS

Para a realização do trabalho foram utilizados 22 genótipos diplóides de bananeira contrastantes para resistência à Sigatoka negra e amarela, oriundos do Banco de Germoplasma de bananeira da Embrapa Mandioca e Fruticultura, a citar: 1741-01, SH32-63, 4279-06, 1318-01, 0323-03, 1304-06, 0116-01, 9179-03, Burmanica, Calcutta-4, Microcarpa, Berlin, Lidi, Khai Nai On, Nyarma Yik, Jaribuaya, Raja Uter, Sowmuk, Tjau Lagada, F2P2, 03115-Planta1 e 03115-Planta-2.

Foram otimizados e validados um total de 8 pares de primers identificados em bibliotecas de EST e BAC de *Musa acuminata* Burmanicoides var. Calcutta 4. O DNA utilizado para as reações de amplificação foi extraído de cada genótipo a partir das folhas jovens utilizando o método CTAB (brometo de centiltrimetilâmonio) proposto por Doyle & Doyle (1990). O DNA foi quantificado por meio de eletroforese em gel de agarose a 0,8% e o resultado comparado com DNA padrão comercial de peso molecular já conhecido (concentração de 10 ng/µL). Os produtos da eletroforese foram visualizados por meio de luz ultravioleta em um transiluminador, e as imagens capturadas com o sistema Kodak® de fotodocumentação.

As reações de amplificação foram conduzidas em termociclador BioRad MyCycler Thermocycler, contendo: 30 ng of DNA, 1.5 mM de MgCl₂, 100 µM de cada dNTPs, 0.2µM de cada primer e 0.75 U de *Taq* em tampão10x (Biosystems) em volume final de 15µl contendo os seguintes ciclos: 1 ciclo inicial de 94°C por 3 min., seguido de 30 ciclos de: 94 °C por 40s, temperatura de anelamento especifica para cada primer (Tabela 1.) por 40 s, 72 °C por 1 min., e uma extensão final pela polimerase de 72°C por 4 min.

Os produtos das amplificações foram validados em géis desnaturantes de poliacrilamida a 6,0% conduzidos em condições normais, e corados com prata de acordo com o protocolo sugerido por Creste et al., 2001.

RESULTADOS E DISCUSSÃO

A análise dos resultados foi obtida por meio do software Power Marker versão 3.23 de (Liu & Muse, 2005).

A média de conteúdo de informação de polimorfismo (PIC - Polymorphism Information Content) foi de 0,50 sendo que o primer CNPMF-56 apresentou menor PIC = 0,20 e o primer CNPMF-57 o maior PIC = 0,80. A média do número de alelos por loco foi de (4.5) (Tabela 1). Os primers demonstraram ser altamente informativos de acordo com os valores dos PICs.

Tabela 1 – Primers otimizados e validados, seqüência forward e seqüência reverse, PIC – Conteúdo Informativo de polimorfismo, Heterozigosidade, Temperatura de anelamento especifica para cada primer e número de alelos. Cruz das Almas, 2011.

Primers	Forward (5' – 3') / Reverse (5'- 3')	PIC	H*	Ta °C	Alelos
Cnpmf 53	GGAACACAAACACGATGCAG/TTTGCACTTTGTTCAGGCAG	0.75	0.62	56	7
Cnpmf 56	AACATGCAGAGGGAGTGGTC / ATTGCTGATGGAGATGGAGG	0.20	0.30	56	2
Cnpmf 57	TATCAAGCCTAATCGGCCAC / TGCATCAAAAATTTCCAGCTC	0.80	0.54	52	8
Cnpmf 60	TGAAATCTGAACCCTGGTGG / ACGCACACACACACACAATG	0.70	0.90	56	8
MASR 156	CGGGAGTTCCACGGATAAT / GGCTTTGTTGAGAGTCCAGC	0.30	0.32	56	2
MASR 169	ACCTGAAGAGGCTTGCAGAA / TGCGTGCAATCCAAAAATAA	0.40	0.41	58	4
MASR 177	ACGCTGGCGTGTCTCTATTC / TCCTCATTCAGGAAACGACC	0.42	0.60	58	3
MASR 189	GATGGTTCGTCCGTCAGATT / CACAGTCACCAAATCCATCG	0.23	0.32	58	2
Média		0.50	0.50		4.5

^{*}Heterozigosidade de cada primer obtida com análise no software Power Marker.

Os Fragmentos amplificados foram separados em géis de poliacrilamida e o padrão de bandeamento apresentado pelo primer MASR-169 encontra-se na Figura 1.

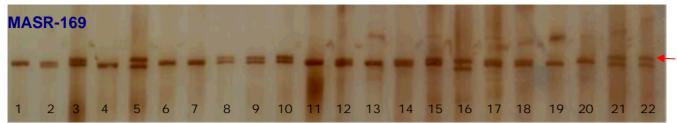


FIGURA 1 – Padrão de bandeamento do primer MASR-169 em gel de poliacrilamida 6%. Genótipos de bananeira (1-22): 1) 1741-01, 2) SH32-63, 3) 4249-06, 4) 1318-01, 5) 0323-03, 6) 1304-06, 7) 0116-01, 8) 9179-03, 9) Burmanica, 10) Calcutta-4, 11) Microcarpa, 12) Berlin, 13) Lidi, 14) Khai Naion, 15) Nyarma Yik, 16) Jaribuaya, 17) Raja Uter, 18) Sowmuk, 19) Tjau Lagada, 20) F2P2, 21) 03115-Planta1, 22) 03115-Planta. Cruz das Almas, 2011. A seta indica um dos aleleos.

Os valores do PIC demostraram que os primers são altamente informativos e serão de grande utilidade para estudos de diversidade genética, estudos de população e mapeamento genético da bananeira.

AGRADECIMENTOS

A FAPESB pela concessão da bolsa de estudo, ao Macroprograma-II e CNPq pelo financiamento do projeto e à FAPEMIG pelo apoio à participação no Congresso.

REFERÊNCIAS

CRESTE, S.; TULMANN NETO, A.; FIGUEIRA, A. Detection of single sequence repeat polymorphisms in denaturing polyacrilamide sequencing gels by silver staining. **Plant Molecular Biology Reporter**, Athens, v.19, n.4, p.299-306, 2001.

DOYLE, J.J.; DOYLE, J.L. Isolation of plant DNA from fresh tissue. Focus, v.12, p. 13-15, 1987.

FAO. Food and Agriculture Organization of the UnitedNations. **FaoStat**. Disponível em: http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567>. Acesso em: 15 maio 2011.

LIU, K.J.; MUSE S.V. PowerMarker: an integrated analysis environment for genetic marker analysis. **Bioinformatics**, v.21, p.2128-2129,

SILVA, S. de O. e; ALVES, E.J.; LIMA, M.B.; SILVEIRA, J.R.S. Bananeira. In: BRUCKNER, C.H. (Ed.). **Melhoramento de fruteiras tropicais**. Viçosa: UFV, 2002. p.101-157