Carlos Alberto Costa Veloso¹ e Anna Cristina Malcher Muniz²

Introdução

A citricultura no Brasil tem apresentado marcante expansão ao longo dos últimos anos, em função da excelente demanda dos mercados nacional e internacional, voltados ao consumo "in natura" e/ou à fabricação de suco concentrado. Com o avanço conseguido pela citricultura nesse período, o Estado do Pará passou a assumir posição de destaque, ficando entre os seis maiores produtores de laranja no Brasil. Entretanto, a produtividade dos pomares comerciais, utilizando a laranjeira como principal fruteira ainda é baixa, com um rendimento médio de 300 frutos/planta (Anuário... 1997).

Uma série de fatores pode ser responsável pela baixa produtividade, dos quais podemse destacar: existência de laranjais que ainda não atingiram a plena produção; falta de tratamentos fitossanitários; práticas culturais inadequadas; adubação e correção inadequadas de acidez do solo (Veloso et al. 1999). A adubação assume relevante importância quando se constata a existência de grandes áreas citrícolas, em solos de baixa fertilidade, como os da Região Amazônica.

A adubação nitrogenada é indispensável para manter a produção alta e constante. As doses de adubo dependerão da idade, tamanho e produção das plantas. Cohen (1976) indica que as plantas maduras requerem aproximadamente 100 a 300 kg de N/ha. O nitrogênio está muito correlacionado com o desenvolvimento vegetativo, principalmente com o de plantas novas (Malavolta, 1983). Em relação ao fósforo, apesar de as quantidades requeridas pela planta cítrica serem bem menores, quando comparadas com as de Ca, N e K, nos solos tropicais os teores de P no solo é muito baixo e age como fator limitante na produção. O nutriente atua na fotossíntese, na respiração, no armazenamento e transferência de energia, na divisão celular, no crescimento das células, além de outros processos. Quanto ao efeito do potássio, as doses empregadas nas regiões citrícolas variam muito, entre 150 a 230 kg/ha/ano, dependendo das características químicas dos solos e da produção. Entretanto, a influência do K na produção e qualidade dos frutos é facilmente notada, durante a maturação ocorre uma diminuição no teor foliar, provavelmente pela migração das folhas para os frutos e tecidos lenhosos (Cohen, 1976).

¹ Eng. Agrôn, Dr. Embrapa Amazônia Oriental, Caixa Postal 48, CEP 66.017-970. Belém, PA.. E-mail: veloso@cpatu.embrapa.br

² Eng. Agrôn, M.Sc. Estudante de Pós-Graduação da FCAP, Caixa Postal 917, CEP 66077-530. Belém, PA.

O objetivo deste trabalho foi estudar o efeito da aplicação de doses de nitrogênio, fósforo e potássio sobre a produção e qualidade dos frutos da laranjeira-pêra em formação, no Município de Capitão Poço, PA.

Material e Métodos

O experimento foi conduzido na área da fazenda da Citropar - Cítricos do Pará S.A., situada na mesorregião do nordeste paraense, no Município de Capitão Poço, no período compreendido entre fevereiro de 1996 e dezembro de 1999, em solo classificado como Latossolo Amarelo distrófico, textura franco-arenosa, cuja amostragem, antes da instalação do experimento, foi efetuada na camada de 0-20 cm de profundidade, e que apresentou os seguintes resultados: pH (H_2O) = 4,9; M.O.= 16,9 g/kg; P= 1,3 mg dm⁻³; e os cátions trocáveis, em mmol_C dm⁻³, K = 1,5; Ca²⁺ =5,0; Mg²⁺=2,0; Al³⁺ =19,0; H + Al= 54,0.

Utilizou-se o delineamento em blocos ao acaso, com os tratamentos dispostos num esquema fatorial fracionado do tipo (4x4x4) 1/2, correspondendo a quatro doses de nitrogênio, quatro doses de fósforo e quatro doses de potássio. Cada parcela foi composta de seis plantas da variedade "Pêra" (*Citrus sinensis L. Osbeck*) sobre limão "Cravo" (*Citrus limonia L. Osbeck*), espaçadas 6,8 m entre fileiras e 4,3 m entre plantas. Os tratamentos no primeiro ano corresponderam a quatro doses de nitrogênio (75; 150; 225 e 300 g/planta de N) na forma de uréia, quatro doses de fósforo (70; 110; 150 e 190 g/planta de P_2O_5) na forma de superfosfato simples e quatro doses de potássio (75; 150; 225 e 300 g/planta de K_2O) na forma de cloreto de potássio. A partir do segundo ano agrícola, quando as plantas completaram 3 anos de idade, elevaram-se as doses de N, para (100; 200; 300 e 400 g/planta de N), as doses de fósforo para (80; 130; 180 e 230 g/planta de P_2O_5) e as doses de potássio para (100; 200; 300 e 400 g/planta de K_2O). A adubação fosfatada foi realizada anualmente de uma única vez. As adubações, nitrogenada e potássica, foram aplicadas parceladamente de três vezes, em intervalos de 45 dias, em cobertura.

Os frutos das plantas úteis foram contados, pesados e feita a análise qualitativa em amostra de cada planta útil da parcela, para determinação do peso médio, teor de suco, acidez total titulável, sólidos solúveis totais, relação sólidos solúveis totais/acidez total e espessura da casca.

Os dados obtidos foram submetidos à análise estatística utilizando-se o programa estatístico SAS (Statistical Analysis System). Efetuou-se análise de correlação e regressão

para a produção de frutos/planta, produção de frutos, teor de suco, acidez total titulável, sólidos solúveis totais, relação sólidos solúveis totais/acidez total e espessura da casca em função das doses de N, P_2O_5 e K_2O .

Resultados e Discussão

A análise de correlação linear mostrou correlação positiva e altamente significativa entre a produção de frutos, número de frutos/plantas com o teor de suco e a espessura da casca. Não houve correlação significativa entre a produção de frutos com sólidos solúveis totais, acidez total e a relação sólidos solúveis/acidez.

Produção de Frutos

Os resultados acumulados de três anos indicaram, pela análise da variância, efeito significativo do nitrogênio, fósforo e ausência de resposta do potássio, para a produção de frutos/planta e t/ha (Tabela 1), o que coincide com os dados obtidos por Magalhães (1987) em outras áreas cultivadas com citros no Brasil, onde uma adubação nitrogenada adequada torna-se necessária para obtenção de altas produtividades.

Os dados de produção de laranja em t/ha apresentaram comportamento similar aos de número de frutos/planta, verificando-se, entretanto, que as maiores produções máximas estimadas foram de 109 t/ha, para o ano de 1999. Levando-se em conta que a produção ótima seria atingida com 90% da máxima produção com as doses testadas, a análise de regressão possibilitou estimar que os melhores resultados foram obtidos com a aplicação de 333 g/planta de nitrogênio, para a laranjeira "Pêra".

A nutrição nitrogenada adequada, segundo Malavolta (1983), não havendo outros fatores limitantes, é evidenciada no desenvolvimento rápido, no aumento da ramificação dos galhos frutíferos e na formação de folhas verdes e brilhantes. De acordo com Sanchez (1981), além da fixação biológica, um aporte importante de N em solos tropicais é devido às chuvas, podendo ser superior a 10 kg de N/ha. Segundo este autor, nas regiões com estação seca definida, pode haver acumulação de nitratos neste período, explicada pela nitrificação.

Cohen (1976) indica que as plantas maduras requerem aproximadamente 100 a 300 kg de N/ha, dependendo da situação dos fatores naturais do meio que afetam o crescimento das plantas, pois doses de 260 kg de N/ha são utilizados apenas em pomares com alta produtividade (Smith,1969).

Tabela 1. Efeito do nitrogênio, fósforo e potássio sobre as características fitotécnicas da laranjeira 'Pêra', em 1998 e 1999.

				Anos				
atamentos ·		1998			1999			
	Número	Peso	Produção	Espessura	Número	Peso	Produção	Espessura
	frutos/	médio/	(t/ha)	da casca	frutos/	médio/	(t/ha)	da casca
	planta	frutos (g)		(mm)	planta	frutos		(mm)
N1	354,88	210,50	25,41	2,79	840,77	271,65	83,85	2,87
N2	435,00	192,38	28,83	3,02	913,73	259,04	84,41	2,64
N3	521,00	216,25	38,71	2,92	1278,50	258,81	121,38	2,65
N4	610,75	213,63	45,03	2,90	1044,44	259,50	100,26	2,71
D 1	440,75	207,50	35,99	2,83	913,67	264,28	97,89	2,76
	380,63	209,75	31,85	2,97	·		98,69	2,76
F2	360,03	209,75	31,65	2,91	1044,79	257,74	90,09	2,70
P3	588,25	204,50	27,26	3,06	1079,75	255,33	89,52	2,66
P4	512,00	211,00	42,87	2,77	1039,23	271,66	103,79	2,69
K1	451,00	208,50	35,11	2,95	938,75	259,39	90,99	2,71
K2	455,25	205,88	32,68	2,85	952,92	262,38	91,36	2,79
К3	492,25	207,50	32,07	2,94	1018,96	264,64	96,02	2,59
K4	523,13	210,88	38,11	2,89	1166,81	262,60	111,53	2,79
CV (%)	32,02	7,67	34,81	12,54	26,42	8,95	29,36	10,89

No que diz respeito ao fósforo observou-se que as equações de regressão possibilitaram estimar que os melhores resultados foram obtidos com a aplicação de 288 g/planta de P_2O_5 , para a laranjeira "Pêra" em 1999. Também Cohen (1976) demonstrou que em alguns países foram estabelecidas doses de adubação para uma produção de 20 t/ha. Na Espanha, 100 a 120 kg/ha; no Japão, 150 kg/ha; e em Israel, 100 kg de P/ha. Smith (1969) comprovou que a aplicação de 1,9 kg/planta aumentou a produção de limão de 9% a 60%. Em Matão e Botucatu, resposta a P foram observadas por Cantarella et al. (1992), nestes locais a análise de solo

revelou baixos teores de P, em ambos os casos a resposta foi linear, com tendência de produção da laranja Valência de estabilizar próximo da dose máxima usada (140 kg/ha de P_2O_5).

Observou-se na Tabela 1, reduções da produção com a elevação das doses de K₂O. Os efeitos de doses de K aplicadas sobre a produção de frutos/planta e t/ha não ocorreram resposta em relação a aplicação de K. As respostas ao potássio tem sido poucas e, segundo Smith (1969), e confirmados por Magalhães (1987) e Cantarella et al. (1992), são necessários vários anos para caracterizar o baixo nível de K da folha, com reflexos na produção de laranja. Assim, embora os efeitos de potássio não tenham ocorrido, os resultados indicam a necessidade de se manter uma adubação equilibrada.

Conclusões

Há resposta positiva de nitrogênio e fósforo com relação à produção de laranja pêra (frutos/planta e t/ha) e, na qualidade do fruto (teor de suco e acidez total) com a aplicação de 333 g/planta de N e 288 g/planta de P_2O_5 .

Os teores de N, P e K nas folhas aumentam com a aplicação dos adubos nitrogenados, fosfatados e potássicos.

Referências Bibliográficas

ANUARIO ESTATÍSTICO DO BRASIL. Rio de Janeiro: IBGE, 1997. v.57, p.3-32.

CANTARELLA, H.; QUAGGIO, J.A.; BATAGLIA, O.C.; VAN RAIJ, B. Response of citrus do NPK fertilization in a network of field trials in São Paulo State, Brazil. Proceedings of International Society of Citriculture. v.2, p.607-612, 1992.

COHEN, A. **Citrus fertilizacion**. Bern: International Potash Institute, 1976. 45 p. (International Potach Institute. Bulletin, 4).

MAGALHÃES, A.F. de J. Influência da adubação na composição mineral do solo, nas folhas e produção da laranja 'pera'. Revista Brasileira de Fruticultura, Cruz das Almas, v.9, n.3, p.31-37,1987.

MALAVOLTA, E. **Nutrição mineral e adubação dos citros**. Piracicaba: Instituto da Potassa & Fosfato, 1983. p13-71 (Instituto da Potassa & Fosfato. Boletim Técnico, 5).

SANCHEZ, P.A. **Suelos del tropico**: características y manejo. San Jose: IICA, 1981. 660 p. (IICA. Libros y Materiales Educativos, 48).

SMITH, P.F. Effects of nitrogen rates on tining of application on Marsh grapefruit in Flórida. In:

INTERNATIONAL CITRUS SYMPOSIUM, 3., 1969, Califórnia. **Proceedings.** California: Universidade Califórnia , 1969. p.1559.

VELOSO, C.A.C.; BRASIL, E. C.; MENDES, F.A.T.; SILVA, A. de. B.; TRINDADE, D.R. **Diagnóstico da citricultura na microrregião do Guamá, PA**. Belém: Embrapa Amazônia Oriental, 1999. 26p. (Embrapa Amazônia Oriental. Documentos, 24).