Estabilidade de Cultivares de Milho no Nordeste Brasileiro

<u>Hélio Wilson Lemos de Carvalho¹</u>, Ivênio Rubens de Oliveira¹ Milton José Cardoso², Cleso Antônio Pato Pacheco³, Leonardo Melo Pereira Rocha³, José Nildo Tabosa⁴, Cinthia Souza Rodrigues⁵, Vanessa Marisa Miranda Menezes⁵, Camila Rodrigues Castro⁶

Resumo

Este trabalho teve por objetivo conhecer a adaptabilidade e a estabilidade de 43 cultivares de milho em 16 ambientes do Nordeste brasileiro, no biênio 2009/2010, para fins de recomendação. Utilizou-se o delineamento experimental em blocos ao acaso, com duas repetições. As cultivares avaliadas mostraram comportamento diferenciado nas condições desfavoráveis de ambiente, destacando-se os híbridos DKB 330, SHS 7090, BM 810, Omega, AGN 30 A 70 e BRS 1030, componentes do grupo de materiais de melhor adaptação (b o > média geral), os quais evidenciaram adaptabilidade ampla (b₁=0), constituindo-se em alternativas importantes para exploração no Nordeste brasileiro. O conjunto avaliado mostrou baixa previsibilidade nos ambientes considerados.

Introdução

Cerca de três milhões de hectares do Nordeste brasileiro destinam-se ao cultivo do milho. Nessas áreas, as médias de produtividade, em exploração comercial, oscilam de 800 kg/ha, nos sistemas de produção dos pequenos e médios produtores rurais, predominantes em áreas do sertão nordestino, a níveis superiores a 6.000 kg/ha, nos sistemas de produção de melhor tecnificação, constantes em áreas de cerrados. Nos últimos anos, a zona agreste dessa ampla região, vem despontando no cenário da agricultura regional, com rendimentos médios de grãos, em nível comercial, superiores a 6.000 kg/ha. Esses altos níveis de produtividade têm sido registrados também em trabalhos e competição de variedades e híbridos de milho, em áreas do agreste sergipano, baiano e alagoano, confirmando a aptidão dessa faixa do Nordeste brasileiro para o bom desenvolvimento do cultivo do milho, conforme ressaltam (Souza et al. 2004, Oliveira et al. 2005 e Carvalho et al. 2008) e, em áreas dos cerrados, localizados no Sul do Maranhão e no sudoeste piauiense, conforme assinalam Cardoso et al. (2007. O objetivo deste trabalho foi avaliar a adaptabilidade e a estabilidade de cultivares de milho em diversos ambientes do Nordeste brasileiro, para fins de recomendação.

Material e Métodos

No biênio 2009 -2010 foram realizados dezesseis ensaios de milho no Nordeste brasileiro, sendo oito realizados no ano agrícola de 2009 e os oito restantes, em 2010. Dentro de cada ano agrícola, esses ensaios foram distribuídos nos Estados do Maranhão (quatro ensaios), Piauí (três ensaios), Sergipe (um ensaio) e Bahia (um ensaio).

Foram avaliadas 43 cultivares em blocos ao acaso, com três repetições. Cada parcela constou de quatro fileiras de 5,0 m de comprimento, em espaços de 0,80 m, e 0,20 m entre covas dentro das fileiras. Foram colocadas três sementes por cova, mantendo-se, após o desbaste, duas plantas por cova. As adubações foram realizadas conforme análise de solo de cada área experimental.

Os pesos de grãos foram submetidos à análise de variância pelo modelo de blocos ao acaso. A análise de variância conjunta obedeceu ao critério de homogeneidade dos quadrados médios residuais (Gomes, 1990) e foi

¹ Pesquisadores da Embrapa Tabuleiros Costeiros, Av. Beira Mar, 3250, C.P. 44, Aracaju, SE, CEP: 49025-040. E-mails:ivenio@cpatc.embrapa.br; helio@cpatc.embrapa.br

² Pesquisador da Embrapa Meio-Norte, Av. Duque de Caxias, 5650, Buenos Aires, Teresina, PI, CEP: 64006-220, E-mail:milton@cpamn.embrapa.br

³ Pesquisadores da Embrapa Milho e Sorgo, Rod. MG 424, km 45, Sete Lagoas, MG, CEP: 35701-970. E-mails: cleso@cnpms.embrapa.br, leonardo@cnpms.embrapa.br

⁴ Pesquisadores do IPA, Caixa Postal 1022, Recife-PE, e-mail: tabosa@ipa.br

⁵ Bolsista PIBIC / CNPq/Embrapa Tabuleiros Costeiros, Av. Beira Mar, 3250, C.P. 44, Aracaju, SE, CEP: 49025-040. E-mail: cinthia-sr@hotmail.com; vanessammm2003@yahoo.com.br

⁶ Estagiária Embrapa Tabuleiros Costeiros, Av. Beira Mar, 3250, Jardins, C.P. 44, Aracaju, SE, CEP: 49025-040. E-mail: camila.rcastro@hotmail.com

realizada conforme Vencovsky & Barriga (1992), considerando-se como aleatórios os efeitos de blocos, anos e locais, e como fixo, o efeito de cultivares.

Os parâmetros de adaptabilidade e estabilidade foram estimados pelo método de Cruz et al. (1989).

Resultados e Discussão

Houve diferenças em relação aos anos e locais. Constataram-se, também, diferenças no desempenho das cultivares avaliadas, na média dos ambientes. As diferenças significativas das interações cultivares x locais e cultivares x anos revelaram que a classificação das cultivares não foram coincidentes nos locais e anos de avaliação, respectivamente, sugerindo a existência de um comportamento linear diferenciado das cultivares em face dos diferentes ambientes, permitindo-se assim, o estudo pela análise da estabilidade proposta.

Quanto ao coeficiente de regressão (b₁), que corresponde à resposta linear da cultivar a variação nos ambientes desfavoráveis, as estimativas variaram de 0,14 a 1,47, respectivamente, em relação aos híbridos BRS 3025 e 2 B 710, sendo ambos estatisticamente diferentes da unidade (Tabela 1). Considerando-se o comportamento produtivo das 22 cultivares de melhor adaptação (b₀>média geral), 19 materiais apresentaram estimativas de b₁ significativamente diferentes da unidade e 3 materiais apresentaram estimativas de b₁ não significativas (b₁ = 1), revelando comportamento diferenciado das cultivares em ambientes desfavoráveis.

Os híbridos DKB 330, SHS 7090, BM 810, Omega, AGN 30 A 70 e BRS 1030, componentes do grupo de materiais de melhor adaptação (b₀>média geral) evidenciaram adaptabilidade ampla (b₁=0), constituindo-se em alternativas importantes para a agricultura regional. Os híbridos 2 B 707, 2 B 688, DKB 177, AGN 30 A 91, 2 B 655, 2 B 587, Impacto, dentre outros, também do grupo de materiais de melhor adaptação, mostraram ser exigentes nas condições desfavoráveis, justificando suas recomendações aos ambientes favoráveis. Ainda nesse grupo de melhor adaptação, apenas o híbrido SHS 7090, mostrou ser exigentes nas condições desfavoráveis de ambiente.

No tocante a estabilidade, todo o conjunto avaliado mostrou os desvios da regressão estatisticamente diferentes de zero, revelando um comportamento imprevisível nos ambientes estudados. Cruz et al. (1989) consideram, no entanto, que aqueles materiais que apresentaram estimativas de $R^2 > 80\%$ não devem ter seus graus de previsibilidade comprometidos. Assim, as cultivares que mostraram valores de $R^2 > 80\%$ apresentaram um bom ajustamento às retas de regressão.

Conclusões

- 1 Os materiais avaliados mostram comportamento diferenciado nas condições desfavoráveis de ambientes.
- 2 Os híbridos DKB 330, SHS 7090, BM 810, Omega, AGN 30 A 70 e BRS 1030, componentes do grupo de materiais de melhor adaptação (b ₀ >média geral) evidenciam adaptabilidade ampla (b₁=0), constituindo-se em alternativas importantes para a agricultura regional.

Referências

CARDOSO, M. J.; CARVALHO, H. W. L. de; SANTOS RODRIGUES, A. RODRIGUES, S.S. Performance de cultivares de milho com base na análise de estabilidade fenotípica no meio-norte brasileiro. **Agrotrópica**, Ilhéus, v. 19, n. único, p. 43-48, 2007.

CARVALHO, H. W. L.de.; CARDOSO, M. J.; LEAL, M. de L, da S.; SANTOS, M. X. dos.; SILVA, A. A. G. S.; LIRA, M. A. L.; TABOS, J. N.; SOUSA, E. M.; FEITOZA, L. F.; MELO, K. E. °. Adaptabilidade e estabilidade de milho no Nordeste brasileiro. **Agrotópica,** Ilhéus, v. 20, p. 5-12, 2008.

CRUZ, C. D.; TORRES, R. A. de.; VENCOVSKY,R. An alternative approach to the stability analisis by Silva and Barreto. **Revista Brasileira de Genética**, v. 12, p.567 a 580, 1989.

GOMES, F. P. Curso de estatística experimental. 8ª Ed. São Paulo. Nobel, 1990. 450p.

OLIVEIRA, V. D., CARVALHO, H. W. L. de., CARDOSO, M. J., LIRA, M. A. CAVALCANTE, M. H. B., RIBEIRO, S. S. Adaptabilidade e estabilidade de cultivares de milho na zona agreste do Nordeste brasileiro na safra de 2006. **Agrotrópica**, 19:63-68. 2007.

RAMALHO, M A. P.; SANTOS, J. B. dos; ZIMMERMANN, M. J de O. **Genética quantitativa em plantas autógamas**: aplicação no melhoramento do feijoeiro. Goiânia, Editora UFG, 1993. cap. 6, p. 131-169. (Publicação, 120).

SOUZA, E. M. de.; CARVALHO. H. W. L. de.; LEAL, M. de L. da S.; SANTOS, D. M. dos Adaptabilidade e estabilidade de cultivares de milho nos Estados de Sergipe e Alagoas. **Revista Ciência Agronômica**, Fortaleza, v. 35, n. 1

VENCOVSKY. R.; BARRIGA, P. **Genética biométrica no fitomelhoramento.** Ribeirão Preto: Sociedade Brasileira de Genética, 1992. 496p.

Tabela 1. Estimativas de parâmetros de adaptabilidade e estabilidade de 43 cultivares de milho em 16 ambientes do Nordeste brasileiro, no decorrer dos anos agricolas 2009-2010, pelo método de Cruz et al (1989). CV(%)= 9 e média= 7519 kg/ha.

Cultivares	Médias de grãos (kg/ha)			•			2	D ² (2()
	Geral	DESFAVORÁVEL	Favorável	$\mathbf{b_1}$	\mathbf{b}_2	$\mathbf{b_1} + \mathbf{b_2}$	$\mathbf{s^2_d}$	\mathbb{R}^2 (%)
2B707	8979a	8171	10019	1,36**	-0,17**	1,19**	1848890,06**	68
2B688	8816a	8035	9821	1,26**	-0,05**	1,22**	1285061,54**	73
DKB177	8698a	7984	9616	1,09**	0,18**	1,27**	1873809,81**	59
AGN30A91	8409b	7615	9431	1,11**	-0,03**	1,08**	842960,82**	76
2B655	8384b	7771	9174	1,17**	0,57**	1,74**	1240338,38**	75
2B587	8344b	7491	9442	1,45**	-0,15**	1,30**	2451077,92**	64
AGN30A70	8326b	7579	9285	0,99ns	1,10**	2,08**	2240989,94**	61
IMPACTO	8263b	7537	9197	1,25**	0,26**	1,51**	1750828,26**	68
SOMMA	8041c	7275	9026	1,06**	0,01**	1,08**	1124799,68**	69
OMEGA	7954c	7325	8763	0,97ns	0,60**	1,57**	781201,84**	77
BX1200	7931c	7276	8773	1,04*	0,35**	1,38**	988993,56**	73
BM810	7887c	7347	8582	0,86**	0,26**	1,13**	1377034,58**	57
XB6012	7884c	7007	9012	1,29**	0,24**	1,53**	1242321,49**	76
GNZ2500	7862c	7208	8704	1,11**	-0,41**	0,70**	1123023,87**	68
2B710	7861c	7000	8967	1,47**	-1,05**	0,41**	1717398,75**	70
BM502	7842c	7015	8906	1,41**	0,04**	1,45**	1484258,96**	75
RB9308	7815c	7244	8550	1,08**	0,09**	1,16**	1286803,07**	67
SHS7090	7762c	7142	8560	0,97**	0,19**	1,16**	814384,64**	73
BRS1031	7718d	7020	8616	1,15**	0,18**	1,33**	672308,24**	82
DKB330	7581d	7142	8146	0,73**	0,15**	0,87**	739895,13**	63
BRS1035	7554d	6713	8637	1,38**	0,12**	1,50**	1520243,37**	74
BRS1030	7539d	6827	8455	0,99ns	-0,06**	0,93**	806274,75**	72
BM2202	7474e	7063	8004	0,75**	0,28**	1,03**	425768,27**	77
BM207	7469e	6665	8504	1,28**	-0,14**	1,14**	420823,56**	89
BRS1010	7392e	6821	8127	0,99ns	0,23**	1,22**	1271604,91**	65
DKB789	7381e	6656	8313	1,14**	-0,42**	0,73**	955692,05**	73
XB8030	7301e 7218e	6635	7968	0,95*	0,54**	1,49**	1171953,38**	68
PRE32D10	7218C 7129f	6418	8042	1,18**	-0,94**	0,24**	529610,93**	83
XB7116	71291 7105f	6605	7748	0,78**	0,34**	1,12**	999738,05**	61
PRE22T10	7000f	6359	7748 7826	0,78**	-0,16**	0,75**	995512,99**	63
GNZ2005	6988f	6472	7620 7651	0,91**	0,29**	1,14**	739560,55**	71
TAURUS	6961f	6508	7545	0,85**	-0,42**	0,33**	648087,37**	62
		6414		0,76**				37
BRS3035	6960f	6062	7664 8091		-0,20** -0,49**	0,60** 0,91**	2262982,78**	
PRE12S12	6949f			1,40** 0,90**			475542,28**	89
CARGO	6924f	6421	7572		-0,85**	0,06**	821771,58**	64
XB8010	6896f	6475	7437	0,53**	0,48**	1,01**	1739483,20**	34
BRS2022	6724g	6126	7494	0,89**	-0,22**	0,67**	814870,91**	66
BRS3025	6696g	6569	6860	0,14**	0,02**	0,16**	1704628,14**	3
PL6882	6658g	6044	7448	0,80**	-0,17**	0,64**	645648,29**	67
BRS2020	6628g	6161	7229	0,63**	0,07**	0,71**	581095,66**	61
PRE22T12	6540g	6043	7180	0,77**	-0,09**	0,67**	305612,12**	80
PRE22D11	6537g	5925	7325	0,92**	0,21**	1,14**	1217015,93**	63
PRE22T11	6250h	5937	6816	0,45**	-0,80**	-0,34**	1025209,27** nente para b ₁ b ₂ e b	29

^{**} e* Significativos, respectivamente, a 1% e 5% de probabilidade, pelo teste t de Student, respectivamente para b_1 , b_2 e b_1 + b_2 . * e ** Significativos a 1% e 5% de probabilidade pelo teste F para $\mathbf{s^2_{d^*}}$ As médias seguidas pelas mesmas letras não diferem entre si pelo teste de Scott-Knott a 5% de probabilidade.