AVALIAÇÃO DE DIPLÓIDES DE BANANA CULTIVADOS EM ÁREA INFESTADA PELO AGENTE CAUSAL DO MAL-DO-PANAMÁ: SEGUNDO CICLO

Sebastião de Oliveira e Silva¹, Valquiria Martins Pereira², Lindineia Rios Ribeiro³; Ângelo Lima de Souza Guimarães⁴, Edson Perito Amorim¹

¹Pesquisador, Dr. Embrapa Mandioca e Fruticultura Tropical, Rua Embrapa, s/nº - Cruz das Almas (BA), 44380-000. E-mail: ssilva@cnpmf.embrapa.br

²Mestranda em Ciências Agrárias/UFRB. Cruz das Almas-BA. Email: <u>vaumarpe@hotmail.com</u>

³Mestranda em Recursos Genéticos Vegetais/UEFS. Feira de Santana-BA.. E-mail: neiarios@hotmail.com

⁴Estudante Engenharia Agronômica/UFRB. Cruz das Almas - BA.. E-mail: angelolim@gmail.com.br.

RESUMO

O mal-do-Panamá, causado pelo fungo *Fusarium oxysporum* f.sp. *cubense*, é considerado uma das mais importantes doenças da bananeira, que provoca elevadas perdas na produção. Esse trabalho objetivou avaliar as características agronômicas e a reação ao *Fusarium* de diplóides de bananeira. Foram avaliados 17 diplóides em delineamento inteiramente casualizado, com 10 repetições de uma planta. Estudaram-se oito características agronômicas e a incidência de *Fusarium*. Existe uma considerável variabilidade entre os diplóides avaliados. Os genótipos Tongat e o híbrido *M. ornata x M. velutina* apresentarem respectivamente os valores mais elevados e mais baixos para a maioria das características avaliadas.

INTRODUÇÃO

O mal-do-Panamá, causado pelo fungo *Fusarium oxysporum* f.sp. *cubense*, é considerado uma das mais importantes doenças da bananeira, podendo provocar elevadas perdas na produção, quando são utilizadas cultivares susceptíveis. O patógeno foi constatado pela primeira vez em 1874 em plantios de banana na Austrália. No Brasil, o primeiro relato da sua incidência foi confirmado no estado de São Paulo em 1930, na cultivar Maçã (Kimati e Galli 1980). O uso de variedades resistentes é o único método seguro de controle da doença. O objetivo deste trabalho foi avaliar as características agronômicas e a reação ao *Fusarium* de diplóides de bananeira, cultivados em área artificialmente infestada com o patógeno.

MATERIAL E MÉTODOS

O trabalho foi realizado na Embrapa Mandioca e Fruticultura, em Cruz das Almas (BA). As avaliações foram realizadas nos anos de 2007/2008. O local de avaliação foi artificialmente infestado com *Fusarium oxysporum* f.sp. *cubense* (*FOC*) mediante cultivo sucessivo de banana 'Maçã', altamente suscetível ao patógeno (Cordeiro et al. 1993). A fim de promover uma distribuição uniforme do inóculo. Foram avaliados os diplóides Perak, Birmania, Tongat, Buitenzorg, Sumuk, 8694-15, Nº118, Jaran, Tambi, Pa-Musore, Monyet, Nba-14, Microcarpa, Pipit, Khai Naion, Khi Maeo, *M. ornata* x *M. velutina* em delineamento inteiramente casualizado, com 10 repetições de uma planta. Foi realizada a análise de variância e as médias agrupadas pelo teste de Scott e Knott (1974) a 5% de significância.

No florescimento foram avaliadas a altura da planta e o diâmetro do pseudocaule a 30 cm do solo. Na colheita avaliaram-se: peso do cacho (kg), de penca (kg) e de fruto (g), número de pencas e de frutos por cacho e de frutos por penca, o número de dias do florescimento à colheita e a incidência do mal-do-Panamá. A avaliação da incidência do mal-do-Panamá foi realizada com base na expressão dos sintomas internos da doença, mediante cortes transversais do rizoma e exame da descoloração vascular causada pela infecção por FOC, atribuindo-se notas conforme a escala proposta por Cordeiro et al. (1993), como segue: (0), ausência de descoloração vascular; (1), pontos isolados de descoloração no câmbio vascular (CV); (2), descoloração de até 1/3 do CV; (3), descoloração entre 1/3 e 2/3 do CV; (4), descoloração superior a 2/3 do CV; e (5), descoloração total do CV. Para análise da variância os dados da avaliação do mal-do-Panamá foram transformados para $\sqrt{x+0.5}$.

RESULTADOS E DISCUSSÃO

Na Tabela 1, encontram-se as médias de altura de planta (cm), diâmetro de pseudocaule (cm), número de dias da emissão à colheita, número de pencas por cacho, número de frutos por cacho, peso de cacho (kg), de penca (g) e de frutos (g) e avaliação do mal-do-Panamá, do segundo ciclo, de 17 genótipos diplóides de bananeira. Todas as características apresentaram agrupamentos segundo o teste Scott Knott a 5% de probabilidade.

Tabela 1. Médias de caracteres¹ observados na época da colheita de 17 genótipos diplóides de bananeira avaliados no segundo ciclo de produção. Cruz as Almas, BA, 2010².

Genótipos	ALT (cm)	DMP (cm)	PPC (Dias)	NPC	NFC	PCA (kg)	PPE (g)	PMF (g)	Mal-do- Panamá ³
Perak	179,03e	7,61e	552,11d	5,00e	62,00e	1,59d	315,08d	21,84c	1,00c
Birmania	179,37e	10,11d	601,34d	5,68d	67,68e	2,08d	369,17d	25,11b	2,68b

Tongat	245,46b	17,64 a	895,23a	12,61a	208,67a	10,43a	843,20c	49,00b	1,00c
Buitenzorg	220,10d	10,30d	647,60c	6,20d	82,70d	1,48d	242,00d	18,10c	1,00c
Sumuk	231,12c	12,23c	708,23c	6,97c	96,77d	8,15b	1113,64b	170,57a	1,00c
086094-15	190,53e	17,38a	648,16c	8,88b	161,62b	7,19b	797,76c	40,92b	1,00c
Nº118	172,00e	9,62d	756,34b	4,67e	68,88e	1,63d	353,83d	20,12c	4,40a
Jaran	273,11a	15,56b	847,22a	7,78c	143,44c	6,57b	842,43c	43,06b	1,10c
Tambi	164,30e	7,70e	889,80a	5,57d	62,30e	0,89d	158,78d	25,90b	1,00c
Pa-Musore	235,56c	14,22c	627,56c	5,82d	66,30e	1,55d	269,07d	21,12c	1,00c
Monyet	228,58c	10,00d	656,58c	5,40e	57,35e	2,02d	371,30d	30,88b	1,00c
Nba-14	207,37d	12,75c	801,23b	4,89e	50,11e	3,41c	700,03c	56,86b	1,00c
Microcarpa	234,57c	12,40c	670,00c	6,11d	100,89d	4,53c	689,52c	35,00b	1,00c
Pipit	258,12b	15,68b	774,00b	7,00c	122,23c	7,15b	1031,88b	55,88b	1,00c
Khai Naion	280,36a	17,76 a	681,36c	7,00c	118,64d	9,55a	1345,26a	68,88b	2,00b
Khi Maeo	249,86b	14,90b	672,46c	7,11c	123,11c	4,96c	675,28c	33,77b	1,00c
M. ornata x M. velutina	108,77f	4,32f	529,23d	5,18e	27,26f	0,80d	154,25d	27,00b	2,16b
CV (%)	10,13	15,74	15,31	14,89	22,13	48,21	39,35	50,62	4,79

 1 ALT: altura de planta (m), DMP: diâmetro do pseudocaule (cm), PAC: número de dias do plantio à colheita, PCA: peso do cacho (kg), NPC:número de pencas por cacho, NFC:número de frutos por cacho, PCA: peso de cacho (kg), PPE: peso das pencas (kg), PMF: peso médio dos frutos (g), AMP: avaliação para mal-do-Panamá. 2 Médias seguidas pela mesma letra nas colunas não diferem estatisticamente entre si pelo teste de SKOTT e KNOTT (1974) a 5 % de probabilidade; 3 Dados da avaliação do mal-do-Panamá (AMP) foram transformados para $\sqrt{x+0.5}$.

Para altura de planta e diâmetro de pseudocaule os genótipos formaram cinco agrupamentos, com o Khai Naion (280,36 cm e 17,76 cm respectivamente) apresentando os maiores valores e o híbrido *M. ornata x M. velutina* (108,77 cm e 4,32 cm respectivamente). com os menores valores para as duas características. De uma forma geral genótipos altos apresentaram diâmetro de pseudocaule elevado, à exceção do diplóide melhorado 086094-15. Estes caracteres são importantes no melhoramento genético de bananeira, refletindo na capacidade de sustentação do cacho (Donato et al., 2006).

Para PPC (período entre plantio à colheita do segundo ciclo), houve a formação de quatro agrupamentos, destacando-se como o mais tardio o diplóide Tongat com 895,23 dias e o mais precoce o diplóide *M. ornata x M. velutina* que levou apenas 529.23 dias para ser colhido.

Para NPC (número de pencas por cacho), a variação foi de 12,61 para o Tongat a 4,67 do diplóide Nº118, com a formação de cinco agrupamentos. Para a variável NFC formaram-se seis grupos, o genótipo Tongat apresentando também o maior valor de número de frutos (208,67) enquanto o híbrido ornamental *M. ornata x M. velutina* produziu apenas 27,26. Vale ressaltar que existe uma correlação entre o número de pencas e de frutos por cacho e que o híbrido melhorado 086094-15 apresentou valores elevados para estas características que constituem critério de seleção.

O maior valor de peso do cacho foi de 10,43 kg apresentado pelo o genótipo Tongat, e o menor foi de 0,80 do híbrido *M. ornata x M. velutina*. O peso do cacho expressa a capacidade produtiva do genótipo, no entanto, não pode ser considerado isoladamente na escolha de uma variedade, pois outros caracteres também influenciam o processo de seleção (Silva et al. 2002). O peso da penca apresenta alta correlação com o PCA, já que as

pencas correspondem ao cacho sem o engaço. Como era de esperar os genótipos com alto peso de cacho apresentam invariavelmente alto peso de penca o mesmo ocorre com os indivíduos com baixo peso de cacho. O Khai Naion com penca de 1345,26 g foi o genótipo com o maior destaque para a característica enquanto o menor peso foi apresentado híbrido *M. ornata x M. velutina* (154,25 g).

O PMF, com três agrupamentos, teve variação de 170,57 g (Sumuk) a 18,10 g (Buitenzorg), apesar de apresentar o coeficiente de variação de 50,62%. O peso médio dos frutos é um caráter importante para os trabalhos de melhoramento, influenciado pelas condições ambientais, não podendo ser considerado isoladamente, mas sim associado a outros componentes que refletem a qualidade dos frutos, a exemplo do comprimento e diâmetro dos frutos (Silva et al. 2002).

O nível de infestação do mal-do-Panamá variou de 1 a 4,40 sendo maior valor observado no genótipo Nº118 que se mostrou suscetível. Por apresentarem incidência da doença inferior a 1,4 o genótipo Perak, Tongat, Buitenzorg, Sumuk, 8694-15, Nº118, Jaran, Tambi, Pa-Musore, Monyet, Nba-14, Microcarpa, Pipit e Khi Maeo (1,0) foram considerados resistentes (Cordeiro et al. 1993).

CONCLUSÃO

Existe uma considerável variabilidade entre os diplóides avaliados. Os genótipos Tongat e o híbrido *M. ornata x M. velutina* e apresentarem respectivamente os valores mais elevados e mais baixos para a maioria das características avaliadas.

REFERÊNCIAS BIBLIOGRÁFICAS

CORDEIRO ZJM, SHEPHERD K, SOARES FILHO WS and DANTAS JLL (1993) Avaliação de resistência ao mal-do-Panamá em híbridos tetraplóides de bananeira. **Fitopatologia Brasileira 18:** 478-483.

DONATO SLR, SILVA SO, LUCCA FILHO AO, LIMA MB, DOMINGUES H and ALVES JS (2006) Comportamento de variedades e híbridos de bananeira (*Musa* spp.), em dois ciclos de produção no sudoeste da Bahia. **Revista Brasileira de Fruticultura 28:**139-144.

KIMATI, H., GALLI, F. Doenças da bananeira: m*usa* sp. In: GALLI, F. (Coord.). **Manual de fitopatologia.** São Paulo: Agronômica Ceres, 1980. V. 2: Doenças das plantas cultivadas, Cap. 8, p. 87-101.

SILVA SO, ALVES EJ, LIMA MB and SILVEIRA JRS Bananeira. In: BRUCKNER, CH (Org.). **Melhoramento de Fruteiras Tropicais**. Viçosa-MG, 2002, p.101-157.