PRODUTIVIDADE E QUALIDADE DE FRUTOS DE PROGÊNIES DE MEIOS-IRMÃOS DE MARACUJAZEIRO AMARELO

Alírio José da Cruz Neto¹, Eder Jorge de Oliveira², Juan Paulo Xavier de Freitas³, Leandro Ribeiro dos Santos¹, Flávia Dias Santos⁴, Cláudia Garcia Neves⁵, Tailan Queiroz Cavalcante⁶, Fernanda de Azevedo Souza⁶

(1) Bolsista IT1 – Fapesb / Embrapa Mandioca e Fruticultura Tropical, Rua da Embrapa, s/n, Caixa Postal 007, 44380-000 Cruz das Almas - BA. E-mail: alirioneto@hotmail.com, Iribeiro40@gmail.com; (2) Pesquisador da Embrapa Mandioca e Fruticultura Tropical - BA. E-mail: eder@cnpmf.embrapa.br; (3) Bolsista ITEC3 – Fapesb / Embrapa Mandioca e Fruticultura Tropical, E-mail: juanagronomia@hotmail.com; (4) Bolsista de Iniciação científica Júnior - Embrapa Mandioca e Fruticultura Tropical, E-mail: inhadias_27@hotmail.com; (5) Mestranda do curso de Ciências Agrárias da Universidade Federal do Recôncavo da Bahia, Campus Universitários, 44380-000 Cruz das Almas - BA. E-mail: claudiagarcia23@hotmail.com; (6) Bolsista de Iniciação científica Júnior – Fapesb / CNPq, E-mail: tailank@hotmail.com, ferazesouza@gmail.com

Introdução

O Brasil é o principal produtor de maracujá do mundo, especialmente do maracujazeiro amarelo (*Passiflora edulis* Sims.). A Bahia destaca-se como maior produtor do Brasil, porém poucos estudos foram realizados com intuito de gerar tecnologias e produtos para aumentar a produtividade da cultura no Estado. Como consequência, não existem variedades de maracujazeiros desenvolvidas e registradas para o Estado. Por isso, os cultivos da Bahia possuem baixa produtividade (13,1 t/ha), comparada ao potencial de produção da cultura, estimado em 40 a 50 t/ha (Melletti et al., 2000).

O programa de melhoramento da Embrapa Mandioca e Fruticultura Tropical vem trabalhando com a seleção entre e dentro de progênies de meios-irmãos de maracujazeiro amarelo visando o desenvolvimento de novas variedades. Assim, o objetivo deste trabalho foi a avaliação do potencial produtivo e da qualidade de frutos de progênies de meios-irmãos de maracujazeiro amarelo.

Material e Métodos

Foram avaliadas 20 progênies de meios-irmãos de maracujazeiro amarelo, em delineamento de blocos casualizados com quatro repetições, e parcela de quatro plantas. O experimento foi instalado na área experimental da Embrapa Mandioca e Fruticultura Tropical em Cruz das Almas (BA). As análises físico-químicas foram realizadas em cinco frutos por parcela.

As características avaliadas foram: produtividade, expressa em t.ha⁻¹ (PROD); número de frutos por parcela (NF); comprimento de fruto (CF), em cm; diâmetro de fruto (DF) em cm; espessura de casca (EC) em mm; peso do fruto (PF), em gramas; sólidos solúveis totais (SST), em ^obrix; acidez total titulável (ATT), em mg de ácido cítrico por 100 ml⁻¹ de suco; rendimento de polpa (RP). A análise de variância e o teste de médias foram realizados com auxílio do programa Genes (Cruz, 2006).

Resultados e Discussão

Observou-se diferenças significativas apenas para as características NF e CF, a 5 e 1% de probabilidade, respectivamente (Tabela 1). Este fato evidencia que a seleção destas progênies na etapa anterior do ciclo de seleção recorrente foi bastante drástica para manter a variabilidade genética para as outras características.

Tabela 1. Resumo da análise de variância para características de produtividade e qualidade de frutos em 20 progênies de meios-irmãos de maracujazeiro amarelo.

Efeitos	NF*	PROD	CF	DF	EC	PF	SST	ATT	RP
QM Trat.	5972.5 *	115.31 ^{ns}	0.671**	0.22 ^{ns}	10,05 ^{ns}	1120,47 ^{ns}	1,95 ^{ns}	0.33 ^{ns}	13,06 ^{ns}
Média	215.8	34.21	7.7	7.41	7.6	164.73	12.3	3.59	31.63
CV	24.2	26.95	5.7	5.66	36.0	15.64	12.6	12.72	14.93

*NF= número de frutos; PROD= produtividade (PROD); CF= comprimento de frutos em cm; DF= diâmetro dos frutos em cm; EC= espessura da casca em mm; PF= peso de fruto; SST= sólidos solúveis totais; ATT= acidez total titulável; RP= rendimento de polpa.

Em relação ao NF a amplitude dos dados foi de 138 (K08) a 282 (L06) frutos por parcela, com média de cerca de 216 frutos. Os genótipos L07, M20, G16, L03, J20, I08, H02, K20, B20, L21, C02, J18, M17, I02 e L06 foram os mais produtivos, superando a testemunha BRS GA (149 frutos) (Tabela 2). No caso da produtividade, embora não haja diferença estatística pela ANAVA e teste de Scott & Knott, a amplitude dos dados foi de 23,2 a 41,5 t.ha⁻¹. As progênies J18, L21, K20, H02, L06, I08, C02, I02, B20 e M17 destacaramse das demais por apresentarem produtividade média acima de 35 t.ha⁻¹, enquanto o controle BRS GA produziu cerca de 27,8 t.ha⁻¹ (Tabela 2).

Quanto às características físicas, os tratamentos BRS GA e K07 apresentaram comprimento e diâmetro do fruto acima de 8,0cm e 7,5cm, respectivamente. Estes resultados são bastante interessantes, já que estas características são primordiais na escolha de genótipos a serem recomendados para o consumo in natura. A espessura da casca apresentou amplitude de 6,1mm a 13,5mm. Genótipos com valores entre 7mm e 8mm apresentam maior rendimento de polpa. Neste caso, a associação de ambas as características foram observadas para os genótipos M17, C02, L06, J18 e BRS GA (Tabela 2).

Tabela 2. Médias de características relacionadas à produtividade e qualidade de frutos em 20 progênies de meios-irmãos de maracujazeiro amarelo.

Progênies	NF*	PROD	CF	DF	EC	PF	SST	ATT	RP
A17	186.3 b	27.6 a	7.5 b	7.3 a	6.8 a	152.2 a	12.2 a	3.6 a	31.3 a
B19	179.0 b	28.9 a	7.7 b	7.5 a	8.9 a	166.4 a	11.4 a	3.7 a	30.5 a
B20	238.5 a	41.4 a	7.6 b	7.6 a	8.0 a	178.2 a	12.3 a	3.5 a	31.5 a
BRS GA**	149.0 b	27.8 a	9.0 a	8.0 a	7.7 a	192.8 a	11.8 a	2.9 a	34.3 a
C02	241.5 a	39.8 a	7.9 b	7.7 a	7.8 a	179.4 a	12.7 a	3.7 a	32.3 a
G16	215.0 a	32.7 a	7.3 b	7.4 a	6.5 a	154.3 a	13.7 a	3.9 a	34.3 a
H02	231.3 a	38.2 a	7.9 b	7.2 a	6.8 a	169.4 a	10.9 a	3.5 a	31.5 a
102	254.8 a	40.8 a	7.8 b	7.2 a	6.7 a	164.3 a	12.3 a	3.2 a	34.8 a
108	226.8 a	39.5 a	7.9 b	7.8 a	6.0 a	181.2 a	11.7 a	3.8 a	32.3 a
J18	244.8 a	35.1 a	7.5 b	7.4 a	7.9 a	147.5 a	12.8 a	4.0 a	34.0 a
J20	217.5 a	31.1 a	7.4 b	7.2 a	6.1 a	144.1 a	12.6 a	3.2 a	31.5 a
K07	145.8 b	29.0 a	8.4 a	7.6 a	13.6 a	205.9 a	12.1 a	3.4 a	30.3 a
K08	138.3 b	23.2 a	7.6 b	7.6 a	7.6 a	176.5 a	13.1 a	4.0 a	30.5 a
K20	233.3 a	36.8 a	7.5 b	7.3 a	8.3 a	160.2 a	12.5 a	3.5 a	27.3 a
L03	216.3 a	32.3 a	7.6 b	7.3 a	7.2 a	152.7 a	12.0 a	3.6 a	29.8 a
L06	282.8 a	39.2 a	7.1 b	7.1 a	7.3 a	142.4 a	13.1 a	4.1 a	32.8 a
L07	208.0 a	31.3 a	7.4 b	7.3 a	6.6 a	153.6 a	12.2 a	3.6 a	31.5 a
L21	239.0 a	36.2 a	7.7 b	7.1 a	7.2 a	154.3 a	12.5 a	3.5 a	30.8 a
M17	254.3 a	41.5 a	7.7 b	7.5 a	7.5 a	166.3 a	12.5 a	3.6 a	32.0 a
M20	214.8 a	32.0 a	7.5 b	7.2 a	7.2 a	153.5 a	10.9 a	3.6 a	30.0 a

*NF= número de frutos; PROD= produtividade (PROD); CF= comprimento de frutos em cm; DF= diâmetro dos frutos em cm; EC= espessura da casca em mm; PF= peso de fruto; SST= sólidos solúveis totais; ATT= acidez total titulável; RP= rendimento de polpa. **BRS GA = BRS Gigante Amarelo

A média de PF foi de 164,7 gramas, com amplitude de 147,5 (J18) e 205,85 g (K07). Estes valores estão acima do encontrado por Negreiros et al. (2008), o que demonstra a potencialidade destas progênies. Destaque especial pode ser dado para as progênies I08 (181,2 g) e K07 (205,9 g) com peso médio bem próximo da testemunha comercial, que possui 192,8g. Para RP obteve-se uma média geral de 31,63%, variando de 27,3 a 34,8%, com destaque para os genótipos J18, BRS GA, G16 e I02 com valores acima de 34%. No caso do SST, a amplitude dos dados foi de 10,9 e 13,7%, merecendo destaque a L06, K08 e G16 com valores acima de 13%. Os valores de SST foram baixos,

provavelmente em virtude da época de avaliação que compreendeu o período chuvoso, em que as estimativas de brix são menores. De modo geral, 90% dos valores encontrados nas progênies estão em conformidade com a legislação, que preconiza brix mínimo de 11,00 °brix (Brasil 2003).

O valor médio da ATT foi de 3,59 mg de ácido cítrico por 100 ml⁻¹, com amplitude de 2,91 a 4,13 mg de ácido cítrico por 100 ml⁻¹. Como o Ministério da Agricultura no Brasil (Brasil, 2003) estabelece como padrão o valor mínimo de 2,5 mg de ácido cítrico por 100 ml⁻¹ para ATT para suco de maracujá, todas as progênies avaliadas atendem as especificações da legislação brasileira.

Conclusões

Os resultados mostraram pequena variância para a maioria das características produtivas e de qualidade dos frutos, indicando que a seleção praticada na etapa anterior à obtenção destas progênies foi bastante rigorosa. Entretanto, as médias de número de frutos, produtividade e sólidos solúveis totais, indicaram que a progênie C02 superou a testemunha em 62,1; 43,4 e 7,6%, respectivamente, constituindo-se em excelente opção para futuros testes de competição de cultivares.

Agradecimentos

À Fapesb e ao CNPq pelo auxílio financeiro e concessão das bolsas de estudo.

Referências Bibliográficas

BRASIL. Ministério da Agricultura e do Abastecimento. Instrução Normativa Nº 12 de 4 de Setembro de 2003. **Diário Oficial**, Brasília, 2003. Seção1, p.72-76.

Cruz, C.D. Programa Genes: Biometria. Editora UFV. Viçosa (MG). 382p. 2006

MELETTI, L.M.M.; SANTOS, R.R.; MINAMI, K. Melhoramento do maracujazeiro-amarelo: obtenção do cultivar 'composto IAC-27'. **Scientia Agricola**, v. 57, p.491-498, 2000.

NEGREIROS, J.R.S; NETO, S.E.A; ALVARES, V.S.; LIMA, V.A.; OLIVEIRA, T.K. Caracterização de progênies de meios-irmãos de maracujazeiro-amarelo em Rio Branco-Acre. **Revista Brasileira de Fruticultura**, v.30, p.431-437, 2008.