Theriogenology 299

USE OF CRYOPRESERVED SPERMATOZOA FOR CAPRINE IN VITRO FERTILIZATION (IVF)

A.A.Simplicio^{1,2}, B.G.Brackett¹, and L.Keskintepe¹

Department of Physiology & Pharmacology, College of Veterinary Medicine,
The University of Georgia, Athens, Georgia 30602; Brazilian Agricultural Research Agency
National Goat Research Center, PO Box D-10, Sobral, Ceara, Brazil.

Feasibility of using frozen-thawed semen in caprine IVF outside the breeding season was investigated. Two Nubian and 1 Nubian-Boer bucks were electroejaculated. Sperm were washed 2x (Proc.Rec.Adv. in Goat Prod. 2:1089-1094), frozen in skim milk (Brazilian Soc. Anim. Reprod. 171-177), or in egg-volk (World Rev. Anim. Prod. 8:80). Oocytes with 2-4 layers of cumulus cells from 3-6 mm follicles washed in Tyrode's with pyruvate and PVA, were incubated in 1 ml of Hepes-TCM-199 + 10 µg oFSH and 10 µg bLH (NHPP, NIDDK, NICHD, USDA)/ml + 20% FBS (MM) at 38.5°C. After 4.5 h oocytes were further incubated (23 h) in 75 µl of MM under paraffin oil and 5% O2, 5% CO2, 90% N2. Frozen sperm were thawed in a water bath (37°C, 15 sec), and selected by swim-up. IVF was in mDM (Theriogenology 37:1049-1060), supplemented as below, for 24 h. Embryo culture was in 50 µl of c-SOF+NEA (Biol. Reprod. 55:333-339) for 9 d. Data analysis was by ANOVA and Bonferroni t-test. Percentages of oocytes exposed to heparin-capacitated (HC) sperm that reached cleavage (C), morula (M), blastocyst (B), and expanded B (EB) were 82.8, 57.1, 35.7, 30.0 %, respectively; without heparin treatment of sperm data for C, M, B, EB were 44.3, 31.4, 18.6, 8.6 %, respectively. Further work employed HC sperm. Use of cryopreserved sperm with BSA for IVF yielded no C. Although extenders containing 8 to 20 % egg-volk enabled good motility after crypreservation in vitro fertilizing ability was lost in our conditions. By contrast, commercial semen processed in season with egg-yolk was effective for IVF (see table).

Table. Caprine IVF with Cryopreserved Spermatozoa

			Development stages / Inseminated oocytes (%)			
Freezing	Suppl.of	No. of	Cleaved	Morula	Blastocyst	Expanded
extender	IVF	oocytes	48 h	120 h	(B)	В
	medium	inseminated	_		168 h	216 h
Skim Milk	LS	40	33 (82.5) ^a	20 (50.0) ^d	12 (30.0) ^h	9 (22.5)
Skim Milk	FCS	37	$4(10.8)^{b}$	$1(2.7)^{e}$	0 ⁱ	0 ^m
Egg Yolk C ²	LS	41	24 (58.5) ^c	11 (26.8) ^f	7 (17.1) ^j	4 (9.7) ⁿ
Egg Yolk C	FCS	38	6 (15.8) ^b	4 (10.5) ^g	3 (7.9) ^k	0 ^m

Lamb serum. ²Sperm processed in season in egg yolk commercially. ^aDifferent superscripts in the same column denote significant differences (P<0.05).

Highest proportions of blastocysts resulted after sperm cryopreservation in skim milk extender, heparin capacitation, and insemination in media containing lamb serum.