AVALIAÇÃO DA VIABILIDADE DE USO DO β-APO-8'-CAROTENAL COMO PADRÃO INTERNO NA ANÁLISE DE CAROTENÓIDES EM MILHO POR CLAE

MARIA CRISTINA DIAS PAES* (mcdpaes@cnpms.embrapa.br); Carlos Henrique PIRES¹ (pires@cnpms.embrapa.br).

¹EMBRAPA Milho e Sorgo, Laboratório de Qualidade de Grãos. Rodovia MG 424 KM 45, Sete Lagoas, MG, 35701-970

ABSTRACT

This study aimed to evaluate the viability of β -Apo-8´-carotenal as an internal standard in the carotenoids analysis of maize samples using the HPLC. The chromatograms of carotenoids extracted from a commercial maize hybrid (BRS1001) allowed for the identification of a compound with same elution time as β -Apo-8´-carotenal. The co-elution influenced the calculation of the extraction coefficient based on the internal standard, which in turn influenced carotenoids quantification present in the maize kernel. Therefore, the use of β -Apo-8´-carotenal is not recommended for this purpose for maize samples.

Keywords: carotenoids, internal standard, β-Apo-8'-carotenal, maize, corn.

1 – INTRODUÇÃO

Carotenóides são compostos encontrados em alimentos, considerados de grande importância para a saúde humana, principalmente por apresentarem atividades biológicas importantes, dentre elas, a capacidade antioxidante e a atividade pro vitamínica A (RODRIGUEZ-AMAYA & KIMURA 2004). A análise destas substâncias por CLAE tem sido vastamente utilizada, entretanto, para amostras de milho, dada à complexidade do perfil de carotenóides da matriz, ainda não foi estabelecido um padrão interno que possibilite determinar a eficiência de extração na análise. O objetivo desse trabalho foi avaliar a viabilidade de uso do β-Apo-8′-carotenal como padrão interno na análise de carotenóides em grãos de milho por CLAE.

2 – MATERIAL E MÉTODOS

Para o ensaio foram utilizadas amostras de grãos de milho do cultivar comercial BRS1001, produzido na safra 2007/2008, representando duas repetições de campo. A colheita, secagem e estocagem dos grãos foram devidamente controladas para incidência de luz, temperatura e presença de oxigênio. A moagem das amostras foi conduzida em moinho ciclone, tendo sido realizada na mesma data da análise. A extração dos carotenóides das amostras foi realizada seguindo o protocolo descrito por KURILICH & JUVIC (1999), sendo a análise

^{* -} A quem correspondência deverá ser enviada.

realizada em cromatógrafo líquido Shimadzu modelo LC-10 equipado com coluna polimérica YMC C 30 (5μm, 4,6x250mm, Waters, Milford, MA, USA), acoplado a detector de arranjo de diodo. O gradiente de eluição foi conduzido a 0,8 mL. min⁻¹ em condições de gradiente linear 80:20 a 15:85 de metanol: éter metil *tert* –butil em 25 minutos, seguido por constante de 80:20 em 5 minutos, finalizando com 6 minutos de equilíbrio. O padrão interno utilizado foi o β-apo-8′-carotenal (Fluka Biochemica, Switzerland) cuja pureza foi certificada em mesmas condições cromatográficas, sendo superior a 98%. As análises foram conduzidas em triplicata, sendo determinadas as médias de eficiência de extração do padrão.

3 – RESULTADOS E DISCUSSÃO

O cromatograma e o espectro de absorção obtido para o β-Apo-8´-carotenal utilizado no experimento é apresentado na Figura 1, permitindo identificar o tempo de retenção do mesmo, nas condições analíticas especificadas, em 13.35minutos.

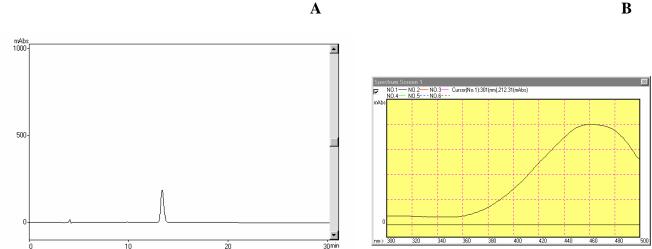
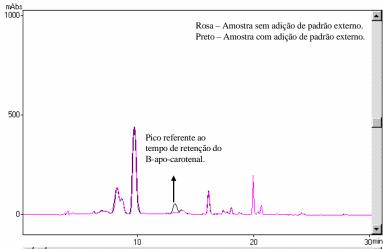
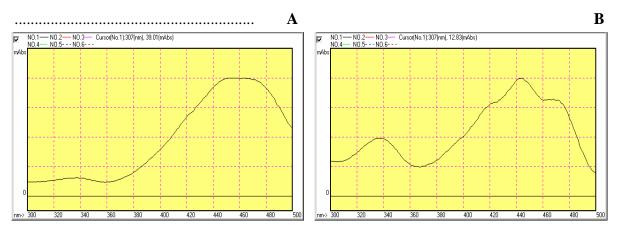




Figura 1. Cromatograma (A) e espectro de absorção(B), obtido em DAD, em éter-metil-*tert*-butil:metanol para β-Apo-8-carotenal.

A análise cromatográfica dos carotenóides extraídos do milho, sem a adição do padrão interno e com adição do mesmo permitiu a identificação de composto com mesmo tempo de eluição do β-Apo-8´-carotenal (Figura 2). A co-eluição do padrão interno com o analito, cujo espectro de absorção é apresentado na Figura 3, influenciou a determinação da eficiência de recuperação do padrão interno, conseqüentemente, a quantificação dos carotenóides na amostra. Portanto, isto pode ser considerado um artefato na análise de carotenóides em amostras de milho por CLAE nas condições especificadas neste experimento.

Figura 2. Cromatogramas sobrepostos, obtidos por CLAE, dos carotenóides de grãos de milho com (rosa) e sem adição (preto) de padrão interno (β-Apo-8-carotenal). Coluna C₃₀, metanol: étermetil-*ter*-bultil em gradiente como fase móvel em razão 0,8mL.min⁻¹

Figura 3.Espectros de absorção do eluente com tempo de retenção 13,3min, obtido no DAD, para extrato de amostra sem (A) e com (B) adição de padrão externo (β-Apo-8-carotenal).

4 – CONCLUSÃO

β-Apo-8´-carotenal não deve ser utilizado como padrão interno em análise de carotenóides em grãos de milho por CLAE, quando utilizada coluna C₃₀ e metanol: metanol:éter-metil-*tert*-butil como fase móvel.

5 – REFERÊNCIAS

KURILICH, A. C.; JUVIK, J. A. . Quantification of carotenoid and tocopherol antioxidants in *Zea mays*. **Journal of Agricultural and Food Chemistry**, 47:1948-1995, 1999

RODRIGUEZ-AMAYA, D.B.; KIMURA, M. HarvestPlus Handbook for Carotenoid Analysis. Washington, DC and Cali: IFPRI and CIAT, 2004. 58p. (HarvestPlus Technical Monograph, 2).