PRODUÇÃO DE MUDAS DE PIMENTA ORNAMENTAL USANDO RESÍDUOS AGROINDUSTRIAIS E AGROPECUÁRIOS COMO SUBSTRATO¹

Fred Carvalho Bezerra², Daniel Barbosa Araújo³, Raimundo Nonato de Assis Junior⁴, Fernando Vasconcelos Meyer Ferreira⁵, Tiago da Costa Silva⁴, Helon Hébano de Freitas Sousa⁶

INTRODUÇÃO

A crescente geração de resíduos pelo homem constitui-se atualmente motivo de preocupação com relação a sua destinação final, tendo em vista que os mesmos podem causar graves problemas de contaminação ambiental e de saúde humana e animal. Com relação aos resíduos orgânicos, os mesmos podem ser utilizados como fertilizantes e substratos agrícolas (Ozores-Hampton et al., 1999; Roe 1998). Atualmente, grande parte da produção de mudas em geral é feita em recipientes e o tipo de substrato é muito importante para se obter mudas de qualidade. Nesse contexto o uso de resíduos agroindustriais e agropecuários regionais na formulação de substrato é uma alternativa para minimizar os efeitos negativos desses resíduos como também possibilitar uma redução de custo na aquisição desse insumo na produção de mudas. A floricultura no Nordeste brasileiro vem apresentando um crescimento significativo nos últimos anos, como por exemplo, o cultivo de plantas anuais envasadas, entre essas pimentas ornamentais. O objetivo desse trabalho foi testar onze substratos formulados a partir de resíduos agroindustriais e agropecuários na produção de mudas de pimenta dedo de moça (*Capsicum baccatum*)

MATERIAL E MÉTODOS

Os substratos foram formulados utilizando-se quatro compostos orgânicos e outros materiais. O composto 1 foi obtido a partir com restos de CEASA (frutas, verduras e legumes) + esterco de gado (3:1, v/v), o composto dois com restos de CEASA (frutas, verduras e legumes) + cama de frango (3:1, v/v), o composto 3 com bagaço de cana + esterco bovino (3:1, v/v) e o composto quatro com bagaço de cana + cama de frango (3:1, v/v). O processo de compostagem durou sessenta dias. Esses compostos foram misturados com pó da casca de coco verde e/ou com bagana de carnaúba (resíduo da indústria da

¹ Resumo expandido apresentado no VII ENSub, 15 - 18 de setembro de 2010, Goiânia, Goiás

² Pesquisador Embrapa Agroindústria Tropical;

³ Estudante de Pós-graduação;

⁴ Professor UFC;

⁵ Estudante de graduação;

⁶ M.Sc., Engenheiro Agrônomo

produção de cera de carnaúba) na formulação dos substratos. Os substratos testados foram: S1 = composto 1 + pó da casca de coco verde + bagana de carnaúba (1:1:1, v/v); S2 = composto 1 + pó da casca de pó de coco verde (1:2, v/v); S3 = composto 1 bagana de carnaúba (1:2, v/v); S4 = composto 2 + pó da casca de coco verde + bagana de carnaúba (1:1:1, v/v); S5 = composto 2 + pó da casca de coco verde (1:2, v/v); S6 = composto 2 + bagana de carnaúba (1:2, v/v); S7 = composto 3 + pó da casca de coco verde (1:1, v/v); S8 = composto 3 + bagana de carnaúba (1:1, v/v); S9 = composto 4 + pó da casca de coco verde (1:1, v/v); S10 = composto 4 bagana de carnaúba (1:1, v/v). Um substrato comercial foi usado como controle (S11).

As sementes foram semeadas em bandejas plásticas contendo 200 células (18ml/célula) com três sementes/célula, deixando-se uma muda/célula após o raleio e irrigadas de acordo com a necessidade. A germinação foi determinada sete dias após a semeadura. A percentagem de sobrevivência e a produção de matéria fresca e seca da parte aérea, a altura e o número de folhas definitivas forma determinados aos 25 dias ao final do experimento, isto é, 25 dias após a emergência das plântulas. O delineamento utilizado foi o de blocos ao acaso com quatro repetições e dez mudas /repetição.

RESULTADOS E DISCUSSÃO

As percentagens de germinação e de sobrevivência foram estatisticamente iguais para todos os substratos testados (Tabela 1). Os maiores valores observados para número de folhas variaram de 5,72 cm (S8) a 5,97 cm (S10), com resultados estatisticamente iguais para os substratos com valores dentro desse intervalo. Para a variável altura das plântulas, foram observados os maiores valores para aquelas produzidas nos substratos S1, S2, S3, S6, S7,S8, S10 e S 11. As produções de massa fresca e de massa seca, de uma maneira geral, apresentaram tendências semelhantes para os substratos testados, onde se sobressaíram os substratos S1, S3, S6, S8 e S10. Foi constatado nesse trabalho, que alguns dos substratos testados apresentaram melhores resultados do que aqueles observados para o substrato comercial usado como controle. Bezerra e colaboradores (2009), trabalhando com substratos semelhantes aos testados nesse trabalho na produção de mudas de pimentão, também observaram essa tendência

Tabela 1 - Percentagem de germinação e de sobrevivência, número de folhas, altura e massa seca da parte aérea de plântulas de pimenta ornamental com 25 dias, produzidas em diferentes substratos.

Substrato	Germinação	Sobrevivência	Número de folhas	Altura	Massa	
					fresca	seca
%				cm	g	mg
S 1	100,00 a	100,0 a	5,90 a	6,29 a	3,36 a	305,0 a
S2	94,4 a	97,2 a	5,07 cde	5,09	2,51 bc	220,0bcd
				abc		
S 3	91,7 a	100,0 a	5,88 abc	6,37 a	3,80 a	347,0 ab
S4	89,9 b	97,2 a	4,00 f	3,14 d	1,38 e	111,0 e
S5	100,0 a	100,0 a	4,27 ef	3,81 cd	1,57 de	125,0 e
S6	100,0 a	100,0 a	5,80 abc	6,39 a	3,61 a	308,0 a
S 7	83,3 c	100,0 a	5,14 bcd	5,02	2,34 cd	217,0 cd
				abc		
S 8	97,2 a	100,0 a	5,72 abc	6,24 a	3,24 ab	295,0 bc
S 9	77,8 d	100,0 a	4,54 c	4,34	1,91 cde	159,0 de
				bcd		
S10	100,0 a	100,0 a	5,97 a	5,71 ab	3,35 a	298,0 ab
S11	97,2 a	100,0 a	4,44 def	5,02 abc	1,82 cde	167,0 de

Valores seguidos da mesma letra na coluna não diferem entre si pelo teste de Tuckey a 5% de probabilidade S1: composto 01 + pó da casca de coco verde + bagana de carnaúba (1:1:1, v/v); S2: composto 01 + pó de coco verde (1:1, v/v); S3: composto 01 + bagana de carnaúba (1:1, v/v); S4: composto 01 + bagaço de cana (1:1, v/v); S5: composto 01 + casca de arroz carbonizada (1:1, v/v); S6: composto 02 + pó da casca de coco verde + bagana de carnaúba (1:1:1, v/v); S7: composto 02 + pó de coco verde (1:1, v/v), S8: composto 02 + bagana de carnaúba (1:1, v/v); S9: composto 02 + bagaço de cana (1:1, v/v); S10: composto 02 + casca de arroz carbonizada (1:1, v/v); S11: substrato comercial (controle).

CONCLUSÃO

De acordo com os resultados observados, todos os substratos que continham bagana de carnaúba na sua formulação (S1, S3, S4, S6, S8 E S10), independente do composto usado, apresentaram os melhores resultados entre todos os substratos testados para todas as variáveis avaliadas.

REFERÊNCIAS BIBLIOGRÁFICAS

BEZERRA, F.C.; SILVA, T.C.; FERREIRA, F.M.V. 2009. Produção de mudas de pimentão em substratos à base de resíduos orgânicos. Horticultura Brasileira 27: S1356-S1360.

OZORES-HAMPTON, M.; VAVRINA, C. S.; OBREZA, T. A. 1999. Yard trimming-biosolids compost: Possible alternative to sphagnum peat moss in tomato transplant production. Compost Science & Utilization 7, (4). p. 42-49.

ROE, N. E. Compost utilization for vegetable and fruit crops. 1998. HortScience, 33 (6), p.934-937...