

XXV Congresso Nacional de Milho e Sorgo - 29/08 a 02/09 de 2004 - Cuiabá - Mato C

LÚCIA VALENTINI¹, ALDO SHIMOYA², PEDRO C. S. CARNEIRO³, CLESO A. P. PACHECO⁴ e CLEBER C. da S. COSTA¹

¹Pesagro-Rio - Estação Experimental de Campos, Caixa Postal 114331, Campos dos Goytacazes, RJ - CEP 28080-000 - E-mail: lvalentini@censanet.com.br - ²E-mail: aldoshimoya@yahoo.com.br - ³E-mail: carneiro@ufv.br - ⁴E-mail: cleso@cnpms.embrapa.br

Palavras-chave: Zea mays, variedades, interação genótipo x ambiente, rendimento.

INTRODUÇÃO

No Estado do Rio de Janeiro o milho é uma cultura de subsistência, voltada principalmente para os pequenos produtores, cuja produtividade média é considerada baixa, em virtude dos sistemas de produção serem em sua maioria pouco tecnificados. Dentre as tecnologias geradas pela pesquisa para a cultura do milho, a indicação de variedades melhoradas tem contribuído para o incremento da produtividade estadual, pois além de ser de baixo custo é de fácil adoção pelos produtores. O desenvolvimento e a recomendação de cultivares de milho pelas instituições públicas e privadas associam basicamente boa adaptação às características agronômicas desejáveis, entretanto um dos entraves que ocorrem é a inconsistência no comportamento destas cultivares frente às variações ambientais, resultante da interação genótipos x ambientes. Assim, o objetivo deste trabalho foi avaliar a adaptabilidade e estabilidade de produção de 12 variedades de milho na região Norte Fluminense.

MATERIAL E MÉTODOS

Neste estudo, os dados foram obtidos do ensaio Nacional de Variedades de Milho, coordenado pela Embrapa Milho e Sorgo, em que os tratamentos consistiram de 13 cultivares, sendo 12 variedades e um híbrido, cujas características agronômicas encontram-se na Tabela 1. O delineamento experimental utilizado nos ensaios foi o de blocos ao acaso, com três repetições. A parcela compreendeu duas linhas de 4,0 m, espaçadas de 0,9 m entre linhas e 0,2 m entre plantas. Foram colhidas as duas linhas, de forma integral, totalizando 7,2 m² de área útil. No ano agrícola 2000/2001 foram conduzidos dois ensaios, um (ensaio 1) com alta adubação para fósforo e outro (ensaio 2) com baixa adubação para fósforo, em área experimental da Pesagro-Rio, com plantio em 23/10/2000. Já no ano agrícola 2002/2003 dois outros ensaios foram instalados, um (ensaio 3) na Estação Experimental da Pesagro-Rio (com plantio em 24/10/2002) e outro (ensaio 4) no assentamento rural Zumbi I (com plantio em 01/11/2002). Além destes ensaios, no ano agrícola 2003/2004 outro ensaio (ensaio 5) foi conduzido na Estação Experimental da Pesagro-Rio (com plantio em 28/10/2003). Todos os ensaios foram realizados na região de Campos dos Goytacazes, R.J., e cada ensaio foi considerado como um ambiente, perfazendo um total de cinco ambientes. As adubações de plantio e de cobertura foram realizadas com base nos resultados das análises dos solos, de acordo com as recomendações do Manual de Adubação para o Estado do Rio de Janeiro (ALMEIDA et al., 1988). Os tratos culturais consistiram de capinas manuais para o controle de plantas daninhas e da aplicação de inseticida para o controle da lagarta do cartucho. Apesar dos ensaios terem sido instalados no período das águas, houve necessidade de irrigação, sendo utilizado o método de aspersão convencional, quando necessário. Os dados de peso de grãos foram corrigidos para a umidade de 13% e, posteriormente, transformados para t.ha⁻¹. Fez-se também uma análise de variância individual para verificar a necessidade de se fazer a correção do estande para cada parcela.

RESULTADOS E DISCUSSÃO

Tabela 1. Características agronômicas e origem das cultivares avaliadas nos ensaios conduzidos em Campos dos Goytacazes, RJ

Cultivares	Empresa	Tipo	Ciclo	Textura do grão	Cor do grão
AL Bandeirante	Cati	V	P	Semiduro	Alaranjada
BR106	Embrapa	V	SMP	Semidentado	Amarelo-ouro
BR451	Embrapa	V	P	Semidentado	Branco
BR473 c II	Embrapa	V	P	Semiduro	Amarelo-alaranjada
BRS4150	Embrapa	V	P	Semiduro	Amarelo-alaranjada
BRS Saracura	Embrapa	V	P	Semiduro	Laranja
BR Asa Branca	Embrapa	V	P	Semiduro	Amarelo-laranja
BR São Vicente	Embrapa	V	P	Semiduro	Amarelo-laranja
BRS Assum Preto	Embrapa	V	SP	Semiduro	Amarelo-alaranjada
BR Sertanejo	Embrapa	V	SMP	Semiduro	Amarela
BRS Planalto	Embrapa	V	P	Semiduro	Amarelo-laranja
BRS São Francisco	Embrapa	V	P	Semidentado	Amarelo-laranja
AG 1051	Monsanto	HD	N	Dentado	Amarela

V = variedade; HD = hibrido duplo; P = precoce; SMP = semiprecoce; SP = superprecoce; N = norms

$$\begin{split} & \sum_{i=1}^n (X_{i_i} - Y_{i_i})^2 \\ & P_i : \text{\'e a estimativa do parâmetro MAEC, em termos gerais, para o cultivar i;} \\ & X_{ij} : \text{\'e a produtividade do i-\'esimo cultivar no j-\'esimo local;} \\ & Y_{i_i} : \text{\'e a inimativa da produtividade do genótipo hipotético ideal no ambiente j;} \\ & n : \text{\'e o número de locais.} \\ & Para os ambientes favoráveis, com índices positivos incluindo o valor zero, o parâmetro MAEC (P_{ij}) foi estimado conforme a seguir: \\ & \sum_{i=1}^n (X_{i_i} - Y_{i_i})^2 \\ & P_{ii} = \frac{z^2}{2f} \quad \text{, em que} \\ & \text{\'e \'e o número de ambientes favoráveis,} \\ & X_{ij} \in Y_{inj} \text{ como definidos acima;} \\ & Da mesma forma para os ambientes desfavoráveis, cujos índices são negativos, \\ & \sum_{i=1}^d (X_{i_i} - Y_{i_i})^2 \\ & P_{ii} = \frac{z^2}{2d} \quad \text{, em que} \\ & \text{\'e o número de ambientes desfavoráveis.} \\ & \text{A estatística P_i ainda foi ponderada pelo fator dado a seguir:} \\ & \text{\'e} = \frac{CV_{ij}}{2} \text{, em que} \end{split}$$

CV_j representa o coeficiente de variação residual do ambiente j e CVT a soma dos coeficientes de variação dos j ambientes. De forma que os locais com maior precisão experimental, apresentando coeficientes de variação menores, têm maior peso na análise da performance genotípica, uma vez que as menores distâncias ao cultivar ideal significa maior adaptabilidade e estabilidade de comportamento. Todas as análises estatísticas foram realizadas com o uso do programa computacional Genes (CRUZ, 2001).

Pode-se observar na Tabela 2, efeito significativo de cultivares para a característica peso de grãos nos ensaios 3, 4 e 5, indicando a existência de variabilidade entre as cultivares avaliadas. Também se verifica menor precisão experimental nos ensaios 1 e 2, dada pelo coeficiente de variação residual (CV). Na Tabela 3 encontram-se as médias do peso de grãos (t.ha-1) das 13 cultivares avaliadas em cada um dos cinco ambientes, bem como as médias de cada ambiente e sua amplitude de variação. Verifica-se que o híbrido duplo AG 1051 apresentou a maior média de produtividade em todos os ensaios de avaliação e que algumas variedades também apresentaram elevada produtividade não diferindo deste híbrido (testemunha) em alguns locais. Entretanto, verifica-se que a superioridade destas cultivares variou em função dos ensaios, evidenciando a ocorrência de interação genótipos x ambientes, que apresentou efeito significativo pela análise conjunta (Tabela 4). Estes resultados reforçam a necessidade de um estudo mais detalhado para identificação das cultivares de maior adaptabilidade e estabilidade. A Tabela 5 apresenta os valores de P_i referentes às 13 cultivares para as condições gerais, ambientes favoráveis e desfavoráveis. Verifica-se que o híbrido duplo AG 1051 e a variedade AL Bandeirante apresentam adaptabilidade geral, pois seus valores de P_i são pequenos tanto nas condições favoráveis quanto nas desfavoráveis e na geral. Já as variedades BR 106 e BR Sertanejo apresentam adaptabilidade específica aos ambientes favoráveis, com valores de P_i pequenos apenas nestas condições, sendo, portanto, responsivas à melhoria das condições ambientais; enquanto as variedades BR São Francisco e BRS 4150 são consideradas rústicas, ou seja, de adaptabilidade específica às condições desfavoráveis, com pequenos valores de Pi apenas nestas condições desfavoráveis.

Pode-se concluir que o híbrido AG 1051 e a variedade AL Bandeirante apresentam adaptabilidade geral; entre as variedades, BR 106 e BR Sertanejo apresentam adaptabilidade específica aos ambientes favoráveis e BR São Francisco e BRS 4150 adaptabilidade específica às condições desfavoráveis.

Tabela 2. Resumo das análises de variância individuais da característica peso de grãos obtidos dos ensaios conduzidos em Campos dos Goytacazes, RU

Fonte de		Quadrados Médios						
Variação GL	Ensaio 1	Ensaio 2	Ensaio 3	Ensaio 4	Ensaio 5			
Bloco	2	2,969426	0,021254	0,262226	0,593587	0,865918		
Cultivares	12	3,476832 **	0,862919**	3,304420"	2,761744"	2,316015"		
Resíduo	24	2,163979	0,800858	0,167804	0,485458	0,285550		
CV (%)		37,2	15,6	10,1	14,0	8,1		

[&]quot;" Significativo a 1% e não significativo, respectivamente, pelo teste F.

Tabela 3. Médias de peso de grãos (t.ha') obtidas de cada ensaio individual e conjunta conduzido em Campos dos Goytacazes, RI

Cultivares	Ensaio 1	Ensaio 2	Ensaio 3	Ensaio 4	Ensaio 5	Conjunta
AG1051	5,15 a	6,52 a	5,80 a	6,77 a	8,99 a	6,65 a
AL Bandeirante	5,42 a	6,30 a	3,77 b	6,01 a	6,69 b	5,64 a
BR Sertanejo	3,49 a	5,86 a	5,45 a	6,01 a	7,376	5,64 a
BR São Francisco	4,79 a	5,84 a	4,27 b	4,69 b	6,24b	5,17 a
BRS Saracura	3,23 a	5,95 a	5,11 a	4,79 b	6,45 b	5,11 a
BR 451	3,71 a	4,95 a	4,01 b	5,69 a	6,80 b	5,03 a
BR473 c II	4,65 a	5,38 a	3,93 Ъ	4,53 b	5,77 b	4,85 a
BR Asa Branca	3,21 a	5,81 a	3,53Ъ	5,36 a	6,33 b	4,85 a
BR 106	4,44 a	6,27 a	1,97 c	4,54b	6,92 b	4,83 a
BRS 4150	5,40 a	4,69 a	3,80 Ъ	3,45 c	6,22 b	4,71 a
BRS Assum Preto	2,37 a	5,43 a	4,38 b	5,02 b	5,53 b	4,55 a
BRS Planalto	2,42 a	5,42 a	3,94b	4,48 b	6,23 b	4,50 a
BR São Vicente	3,17 a	6,09 a	2,59 c	3,57 c	5,91 b	4,26 a
Média	3,96 B	5,73 A	4,04 B	4,99 B	6,57 A	5,06
Maior valor	1,15	3,65	1,76	2,42	5,40	
Menor valor	7,02	7,55	6,12	6,86	9,21	

Médias seguidas pela mesma letra minúscula nas colunas e maiúscula na linha não diferem entre si pelo teste de Scott Knott ao nível de 5% de probabilidade.

Tabela 4. Resumo da análise de variância conjunta dos dados de peso de grãos obtidos dos ensaios conduzidos em Campos dos Goytacazes, RJ

Fonte de Variação	GL	GLA'	QM
Cultivares (C)	12	12	5,83815"
Ambientes (A)	4	4	48,64581"
CxA	48	29	1,72095"
Residuo	194	65	0,79317
CV (%)			17,6

Grau de liberdade ajustado. "Significativo a 1% pelo teste F.

Tabela 5. Estimativas de P₃, segundo a metodologia de Carneiro (1998), para 13 cultivares de milho avaliadas em ensaios conduzidos em Campos dos Goytacazes, RJ.

Cultivar	Média	P. geral	Cultivar	P, favorável	Cultivar	P, desfavorável
AG1051	6,65	0,9088	AG1051	0,6787	AG1051	1,0621
AL Bandeirarte	5,64	1,2567	BR106	1,0887	AL Bandeirarte	1,3430
BRS São Francisco	5,17	1,6512	AL Bandeirarte	1,1274	BRS São Francisco	1,8210
BR Sertamejo	5,64	1,7825	BR Sertamejo	1,1482	BRS4150	1,9383
BR473 e II	4,85	1,8765	BRS Saracura	1,3058	BR473 c II	1,9942
BRS4150	4,71	1,9235	BR São Vicente	1,3838	BR Sertanejo	2,2053
BR106	4,83	1,9605	BR Asa Branca	1,3867	BR45l	2,3192
BR451	5,03	2,0499	BRS São Francisco	1,3966	BR106	2,5418
BRS Saracura	5,11	2,1294	BRS Planaho	1,5675	BRS Saracura	2,6785
BR Asa Branca	4,85	2,2530	BR451	1,6439	BR Asa Branca	2,8339
BR São Vicente	4,26	2,6385	BR473 c II	1,7001	BRS Assum Preto	3,4428
BRS Assum Preto	4,55	2,7630	BRS Assum Preto	1,7434	BR São Vicente	3,5070
BRS Planalto	4,50	2,7861	BRS4150	1,9013	BRS Planaho	3,5986

LITERATURA CITADA

ALMEIDA, D. L. de A. et al. *Manual de adubação para o Estado do Rio de Janeiro*. Itaguaí: Ed. Universidade Rural, 1988. 179 p. (Série Ciências Agrárias, 2).

CARNEIRO, P. C. S. *Novas Metodologias de Análise da Adaptabilidade e Estabilidade de Comportamento*. 1998. 168f. Tese (Doutorado em Genética e Melhoramento) - Universidade Federal de Viçosa, Viçosa.

CRUZ, C. D. *Programa Genes – versão windows*: aplicativo computacional em genética e estatística. Viçosa, MG: Ed. UFV, 2001. 648 p.

CRUZ, C. D.; CARNEIRO, P. C. S. *Modelos biométricos aplicados ao melhoramento genético*. Viçosa: UFV, 2003. 585 p.

LIN, C. S.; BINNS, M. R. A superiority measure of cultivar performance for cultivar x location data. *Can. J. Plant Sci.*, v. 68, n. 3, p.193-198, 1988.

PIMENTEL-GOMES, F. *Curso de estatística experimental*. 14. ed. Piracicaba, 2000. 477 p.

SCHMILDT, E. R. Correção de rendimento de parcelas, estratificação ambiental e adaptabilidade e estabilidade de cultivares de milho. Viçosa: UFV, 2000. 110 p. Tese de Doutorado.

XXV Congresso Nacional de Milho e Sorgo - 29/08 a 02/09 de 2004 - Cuiabá - Mato C