ADAPTAÇÃO DE MILHO ÀS CONDIÇÕES DE SECA: 4. Identificação e caracterização de genótipos, estudos de mecanismos.¹

<u>Frederico Ozanan Machado DURÃES</u>², Paulo César MAGALHÃES², Manoel Xavier dos SANTOS², Antônio Carlos de OLIVEIRA²

Introdução

Genótipos de milho melhor adaptados e com mais alto rendimento podem ser mais eficientes se atributos que conferem rendimento sob condições limitantes de água são identificados e usados como critério de seleção. Resultados experimentais evidenciam que seleção para reduzido intervalo entre florescimentos masculino e feminino – IFMF, sob estresse hídrico controlado imposto no florescimento, promove um efetivo e rápido procedimento para mais alto e mais estável rendimento de grãos em milho tropical (DuPlessis & Dijkhuis 1967; Bolaños & Edmeades 1996; Durães et al. 1997, 1998, 2000a,b, 2001).

O foco principal desse trabalho é, com o auxílio de parâmetros morfo-fisiológicos e bioquímicos, selecionar genótipos de milho constrastantes para IFMF, cultivados sob estresse hídrico controlado, visando o melhoramento para tolerância à seca, através de métodos convencionais e seleção assistida por marcadores (SAM).

Material e Métodos

Os estudos foram realizados na Embrapa Milho e Sorgo, em Sete Lagoas e Janaúba, MG, desde 1994, em períodos sucessivos de primavera-verão e outono-inverno, sob condições de campo (solo Latossolo Vermelho Escuro, fase "cerrado"), com irrigações suprimidas nas fases de pré-floração e floração.

A deficiência hídrica no solo tem sido caracterizada e monitorada utilizando-se as técnicas de "monitoramento de umidade do solo" por tensiometria, gravimetria e sonda de neutrons; e através dos métodos "termometria a infravermelho" (IEHC, Jackson, 1982), utilizando a equação de Penman-Monteith (Campbell, 1977) e por métodos "termoelétricos do pulso de calor e do balanço de energia" no caule das plantas (Gomide, 1990). Estudos sobre possíveis mecanismos envolvidos na adaptação à seca tem sido realizados também em casa de vegetação, utilizando-se de técnicas de *screening* em solos envasados e controle de umidade via mini-lisímetros de pesagem. Têm-se procurado caracterizar a performance desses materiais quanto a estresses hídricos cíclicos na fase vegetativa e durante o florescimento, como também identificar mecanismos que contribuam para baixo IFMF em genótipos de milho (Durães *et al.* 2001; Faria *et al.* 2001; Viana *et al.* 2001 a, b)

A estratégia utilizada baseia-se na seleção inicial de genótipos de uma população sintético elite, oriunda do programa de melhoramento da Embrapa Milho e Sorgo. Selecionaram-se linhagens contrastantes para o parâmetro fenotípico IFMF. Obtiveram-se a caracterização dessas linhagens e o avanço no grau de endogamia, bem como a geração segregante em F2, e a produção de F3, para fins de genotipagem por marcadores moleculares. Selecionaram-se, após os primeiros experimentos, um grupo de oito linhagens (com alto grau de endogamia, S8): L1= L1170, L2= L1147, L3= L13.1.2, L4= L6.1.1, L5= L10.1.1, L6= L8.3.1, L7 = L1.2.1, L8 = L1.2.3. Em experimentos de campo, com irrigação plena e com supressão de irrigação por época do florescimento, avaliaram-se características de plantas; e, utilizaram-se medidas de tendência central e construiram-se agrupamentos dos dados (método de percentagem), com o seguinte critério de valores e distribuição em quartil: 1 (0 a 25%), 2 (26 a 50%), 3 (51 a 75%), 4 (76 a 100%), com respeito à diferença entre o maior e o menor valor.

² Pesquisador, Embrapa Milho e Sorgo. Caixa Postal 151, CEP 35701-970 – Sete Lagoas, MG. e-mail: fduraes@cnpms.embrapa.br (¹ Apoio Prodetab e SEP)

Alguns dos resultados obtidos são mostrados nas Tabelas 1 e 2. Para cada variável realizaram-se a classificação das linhagens em quatro grupos, baseados em quartil (Tabela 1).

Tabela 1 - Dados de agrupamento, no período de florescimento a maturidade fisiológica de sementes de linhagens de milho contrastantes para o parâmetro fenotípico IFMF. Embrapa Milho e Sorgo. Sete Lagoas, MG. Junho/2001.

Sete Lagoas, MG. Ju			
Linhagens	Agrupamentos/Variável		
	Altura de Planta (cm)		
L8	> 152		
L2, L7, L1	126 a 136		
L4, L5	114 a 119		
L3, L6	90 a 101		
	Altura de 1 ^ª Espiga (cm)		
L5	> 69		
L1, L2, L8, L7	56 a 69		
L4	42 a 55		
L3, L6	35 a 41		
,	IFMF (Intervalo entre florescimentos masculino e feminino, em dias)		
L8, L3, L6, L5, L4	-2,5 a -0,1		
L7	0,0 a 0,9		
-	1,0 a 1,9		
L2, L1	2,0 a 5,0		
12, 11	Área Foliar (cm²), na Floração		
L8, L7, L5	> 4260		
L6, L7, L5 L1	3546 a 4260		
L4, L3, L2	2201 a 3545		
L6	2116 a 2200		
	[Clorofila, µg.g ⁻¹ MF Foliar], na Floração		
L4	> 3000		
L5, L3	2701 a 3000		
L8, L7, L2	2001 a 2700		
L6, L1	1900 a 2000		
	Período de Enchimento de Grãos (dias)		
L8, L3	> 43,0		
L1	41 a 42		
L6, L4	39 a 41		
L2, L7, L5	37 a 39		
	Rendimento de grão (g) ^a , na colheita		
L7, L4, L8	> 55,8		
L6, L3, L5	41,6 a 55,8		
L1	27,4 a 41,5		
L2	13,1 a 27,3		
	IC (Índice de Colheita)		
L6, L8, L4	> 0,50		
L5, L3, L7	0,44 a 0,50		
-, -, ·	0,34 a 0,43		
L2, L1	0,25-0,33		
22, 21	Intensidade de Enfermidade (Puccinia polysora)		
L1, L5	> 6,5		
L1, L5 L3, L6, L4	5,1 a 6,5		
L8, L2			
	3,0 a 5,0		
L7	< 3,0		

a Média de 03 plantas/Linhagem.

O parâmetro IFMF, considerado como indicador para selecionar genótipos com tolerância à seca (Bolaños & Edmeades 1993; Durães *et al.* 1997; Labory *et al.* 1997), prestouse para discriminar as linhagens estudadas (Tabela 1). As linhagens L3, L4, L5, L6 e L8 apresentaram protogenia (valores negativos de IFMF, entre -2,1 a -1,5). O valor negativo (-1,5) da linhagem L3, classificada como de baixo IFMF, foi também relatado por Labory *et al.* 1997.

b Enfermidade causada por *P. polysora* (avaliada através de escala visual - 1, ausência a 9 - mais de 75%)

Observa-se a ocorrência, na Tabela 1, uma tendência de que os maiores valores (positivos) do IFMF estão relacionados com os menores Índice de Colheita (IC).

No verão de 1999/2000, estudo em dialelo, permitiu avaliar o potencial genético, para rendimento de grãos, de F1's e seus recíprocos de seis linhagens endogâmicas (L1 = L1170, L2 = L1147, L3 = L13.1.2, L4 = L6.1.1, L5 = L10.1.1, L6 = L8.3.1) de milho contrastantes para IFMF, visando tolerância à seca (Durães et al. 2000b). Os híbridos F1's apresentaram médias variando, significativamente, entre 3459,3 kg/ha (L1170xL6.1.1) a 1487,3 kg/ha (L1147xL1170), mostrado na Tabela 2.

Tabela 2 - Rendimento médio de grãos (kg/ha, a 13% de umidade) de híbridos F1's de milho, cultivados em dois regimes hídricos diferenciados (com irrigação plena durante o ciclo e com supressão de irrigação no florescimento). Ano Agrícola 1999/2000. Sete Lagoas, MG, Brasil. Junho/2001.

Rendimento de Grãos				
Híbridos F1's	Sob Regimes Hídr	Redução no		
e recíprocos		Supressão da Irrigação	Rendimento de Grãos	
	Irrigação Plena	no Florescimento	(%) ⁽²⁾	
L1170 x L1147	3437 (110,55)	1931 (129,86)	43,82	
L1170 x L13.1.2	4554 (146,48)	2498 (167,99)	45,15	
L1170 x L6.1.1	4592 (147,70)	3459 (232,62)	24,67	
L1170 x L10.1.1	3812 (122,61)	1693 (113,85)	55,59	
L1170 x L8.3.1	3932 (126,47)	2333 (156,89)	40,67	
L1147 x L1170	3527 (113,44)	1487 (100,00)	57,84	
L1147 x L13.1.2	4784 (153,88)	2792 (187,76)	41,64	
L1147 x L6.1.1	4295 (138,15)	2571 (172,90)	40,14	
L1147 x L10.1.1	3916 (125,96)	2259 (151,92)	42,31	
L1147 x L8.3.1	3847 (123,74)	2424 (163,01)	36,99	
L13.1.2 x L1170	4333 (139,37)	3037 (204,24)	29,91	
L13.1.2 x L1147	3990 (128,34)	2268 (152,52)	43,16	
L13.1.2 x L6.1.1	4808 (154,65)	3055 (205,45)	36,46	
L13.1.2 x L10.1.1	3109 (100,00)	2479 (166,71)	20,26	
L13.1.2 x L8.3.1	4123 (132,61)	2257 (151,78)	45,26	
L6.1.1 x L1170	4309 (138,60)	3096 (208,20)	28,15	
L6.1.1 x L1147	4291 (138,02)	3121 (209,89)	27,85	
L6.1.1 x L13.1.2	4959 (159,50)	2801 (188,37)	37,57	
L6.1.1 x L10.1.1	4191 (134,80)	2646 (177,94)	26,13	
L6.1.1 x L8.3.1	5004 (160,95)	2743 (184,47)	38,13	
L10.1.1 x L1170	3646 (117,27)	2423 (162,95)	33,54	
L10.1.1 x L1147	3947 (126,95)	1548 (104,10)	60,78	
L10.1.1 x L13.1.2	3662 (117,79)	2396 (161,13)	34,57	
L10.1.1 x L6.1.1	4517 (145,29)	2368 (159,25)	47,58	
L10.1.1 x L8.3.1	3458 (111,23)	1702 (114,46)	50,78	
L8.3.1 x L1170	4468 (143,71)	2941 (197,78)	34,18	
L8.3.1 x L1147	3390 (109,04)	1827 (122,86)	46,11	
L8.3.1 x L13.1.2	4407 (141,75)	2437 (163,89)	44,70	
L8.3.1 x L6.1.1	5105 (164,20)	3128 (210,36)	38,73	
L8.3.1 x L10.1.1	3333 (107,20)	2008 (135,04)	39,75	
Média	4125 (133) a	2458 (165,27) b	40,52	

Médias seguidas de letras diferentes, na linha, diferem entre si, ao nível de 5% de probabilidade.

Com irrigação plena, a estimativa da capacidade geral de combinação (CGC) aponta o melhor efeito para a linhagem L6.1.1. Para o efeito da capacidade específica de combinação (CEC) de híbridos F1's, resultou nas melhores combinações para F1's (L1147xL10.1.1; L6.1.1xL8.3.1; L1147x L13.1.2 e o recíproco L13.1.2xL1147). O efeito da CGC de híbridos, para o caráter rendimento de grãos, mostrou que a linhagem L6.1.1 apresentou maior valor de CGC, em ambos os experimentos (com irrigação plena e com supressão de irrigação no florescimento), e as linhagens L1170 e L8.3.1, baixos valores de CGC. Não houve efeito significativo da CEC entre F1's e também para efeito de recíprocos entre as linhagens

⁽¹⁾ Dados entre parêntese, na coluna, equivalem à produção relativa

⁽²⁾ Redução no rendimento de grãos (em %), por genótipo, em ambiente de supressão de irrigação no florescimento

estudadas, sob o estresse hídrico imposto no florescimento. Os resultados demonstram potencial das linhagens selecionadas para a obtenção de híbridos de alta produtividade.

REFERÊNCIAS

- Bolaños, J. & Edmeades, G.O. The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. **Field Crops Res. 48**:65-80. 1996
- Bolaños, J. & Edmeades, G.O. Eight cycles of selection for drought tolerance in lowland tropical maize. II. Responses in reproductive behavior. **Field Crops Res. 31**:253-268. 1993.
- Campbell, G.S. An introduction to environmental biophysics. Spring Verlag, New York, 1977.
- DuPlessis, D.P. & Dijkhuis, F.J. The influence of the time lag between pollen-shedding and silking on the yield of maize. **S Afr J Agric Sci 10**:667-674. 1967.
- Durães, F.O.M.; Magalhães, P.C.; Santos, M.X.; Lopes, M.A.; Paiva, E. Critérios morfo-fisiológicos utilizados para seleção de genótipos de milho visando tolerância à seca. pp. 291. **In**: CONGRESSO BRASILEIRO DE FISIOLOGIA VEGETAL, 6. Belém, 1997. Resumos. Belém, PA. SBFV. 1997. (Revista Brasileira de Fisiologia Vegetal, São Carlos, v.5. n.1. p. 1-120. Jan./Fev. 1997).
- Durães, F.O.M.; Magalhães, P.C.; Santos, M.X., Lopes, M.A., Paiva, E. Intervalo entre florescimentos masculino e feminino como parâmetro fenotípico útil ao melhoramento de milho tropical para tolerância à seca. pp. 27. In: CONGRESSO NACIONAL DE MILHO E SORGO, 22., Recife, 1998. Resumos. Recife, PE. ABMS; IPA; Embrapa. 1998.
- Durães, F.O.M.; Santos, M.X.; Paiva, E.; Couto, L. Oliveira, A.C. Estratégia de melhoramento de milho visando tolerância à seca. 93 pp. **In**: CONGRESSO NACIONAL DE MILHO E SORGO, 23. Uberlândia, 2000. Resumos. Uberlândia, MG. ABMS; CNPMS. Maio, 2000a.
- Durães, F.O.M.; Oliveira, A.C.; Santos, M.X.dos; Gama, E.E.G.; Guimarães, C.T. Combining ability of maize inbred lines under drought stress condition. **In:** CONGRESSO NACIONAL DE GENÉTICA, 46. Águas de Lindóia, 2000. Resumos. Águas de Lindóia, SP. SBG. 2000b.
- Durães, F.O.M.; Oliveira, A.C.; Neis, L.; Verginassi, A.; Britto, D.D.S. Avaliação da precocidade de emissão da raiz primária em milho e parâmetros de parte aérea para screening de Al, em solução nutritiva. **In:** CONGRESSO BRASILEIRO DE FISIOLOGIA VEGETAL, 8. Ilhéus, 2001. Resumos. Ilhéus, BA. SBFV;CEPLAC/CEPEC;UESC. Setembro, 2001.(submetido)
- Faria, R.A.M.; Durães, F.O.M.; Rodrigues, J.D.; Magalhães, P.C. Produção de fitomassa em genótipos contrastantes de milho submetidos a dois ciclos de estresse hídrico. **In:** CONGRESSO BRASILEIRO DE FISIOLOGIA VEGETAL, 8. Ilhéus, 2001. Resumos. Ilhéus, BA. SBFV;CEPLAC/CEPEC;UESC. Setembro, 2001.(submetido)
- Gomide, R.L. A transient heat probe sensor for measuring transpiration in the stem of woody plants. University of Arizona, Tucson, U.S.A., 1990. pp. 166. (Ph.D. Dissertation).
- Jackson, R.D. Canopy temperature and crop water stress. In: Advances in irrigation. Dr. Hillel (ed.), Vol. 1, Academic Press, N.Y., 1982. pp. 43-85.
- Labory, C.R.G.; Teixeira, F.F.; Santos, M.X.; Magalhães, P.C.; Durães, F.O.M.; Couto, L.; Paiva, E. Estimativa de parâmetros genéticos de caracteres relacionados a tolerância ao déficit hídrico no milho tropical. **In:** CONGRESSO NACIONAL DE GENÉTICA, 43. Poços de Caldas, 1997. Resumos. Poços de Caldas, MG. SBG. 1997.
- Viana, M.C.M.; Durães, F.O.M.; Queiroz, C.G.S.; Albuquerque, P.E.P. Fluorescência da clorofila em linhagens de milho (*Zea mays* L.) submetidas ao déficit hídrico. **In:** CONGRESSO BRASILEIRO DE FISIOLOGIA VEGETAL, 8. Ilhéus, 2001. Resumos. Ilhéus, BA. SBFV;CEPLAC/CEPEC;UESC. Setembro, 2001a. (submetido)
- Viana, M.C.M.; Queiroz, C.G.S.; Souza, I.R.P.; Durães, F.O.M. Atividade de enzimas antioxidantes em linhagem de milho (*Zea mays* L.) submetida a déficit hídrico. **In:** CONGRESSO BRASILEIRO DE FISIOLOGIA VEGETAL, 8. Ilhéus, 2001. Resumos. Ilhéus, BA. SBFV;CEPLAC/CEPEC;UESC. Setembro, 2001b. (submetido)