Estudo Reológico de Polpa de Caju em Diferentes Concentrações

Patricia M. Azoubel¹; Débora C. Cipriani²; José L. Barbosa Jr.²; Suezilde da C.A. Ribeiro²; Graziella C. Antonio²; Fernanda E. X. Murr²

Resumo

Neste estudo foi avaliado o comportamento reológico de polpa de caju em diferentes concentrações (5,5 a 25,0°Brix) na temperatura de 30°C. Os resultados indicaram um aumento da viscosidade com o aumento da concentração. A polpa de caju teve o comportamento de um fluido não Newtoniano com características pseudoplásticas.

Palavras-chave: *Anacardium occidentale* L., reologia, viscosidade.

Abstract

The rheological behavior of cashew pulp at different concentrations (5.5 to 25.0°Brix) at temperature of 30°C was evaluated in this study. The results indicated an increase in viscosity with the increase in concentration. The cashew pulp showed a non Newtonian behavior with pseudoplastic characteristics.

Keywords: Anacardium occidentale L., rheology, viscosity.

1. Introdução

As propriedades reológicas de sucos, polpas e outros concentrados de frutas brasileiras são escassas na literatura [3]. O seu conhecimento é importante para o cálculo de perdas de cargas, potência necessária para o bombeamento, configuração do escoamento e tipo de bomba ideal [2].

Sendo assim, o presente trabalho teve como objetivo o estudo das propriedades reológicas de polpa de caju, em diferentes concentrações (5,5 a 25,0°Brix), na temperatura de 30°C.

2. Material e Métodos

O presente trabalho foi realizado no Laboratório de Medidas Físicas da FEA-UNICAMP, sendo utilizada polpa de caju (*Anacardium occidentale* L.) adquirida no comércio local, cuja concentração inicial foi de 9,6°Brix. A polpa passou por uma diluição, o que permitiu a obtenção de uma concentração de 5,5°Brix. Por outro lado, para obtenção da polpa concentrada (11,3, 15,5 , 17,0 , 20,0 , 23,4 e 25,0°Brix), a polpa adquirida no mercado local foi evaporada no rotavapor a 54°C. Em todos os experimentos, a polpa passou por um processo de filtração simples utilizando uma peneira malha 50 e abertura 300 μm , para que a interferência dos sólidos em suspensão fosse reduzida ou eliminada.

As medidas reológicas das polpas de caju foram feitas em triplicata a 30°C, utilizando um viscosímetro Brookfield (LV DV-II+).

3. Resultados e Discussão

O comportamento reológico da polpa de caju em diferentes concentrações e o ajuste dos dados experimentais pelos modelos Newtoniano e de Ostwald [3] é mostrado nas Figuras 1 e 2. A Tabela 1 apresenta os valores dos parâmetros de cada modelo. O melhor ajuste foi obtido pelo Modelo de Ostwald (maior R²).

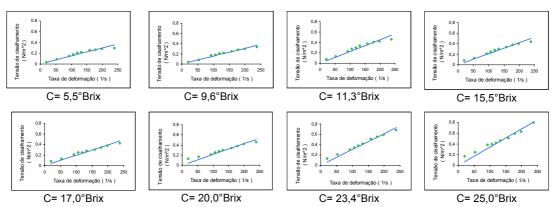


Figura 1. Reograma de polpa de caju (Modelo Newtoniano): (*) experimental e (—) modelo proposto

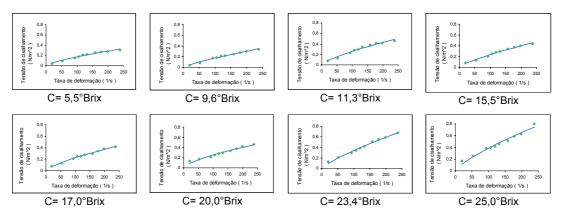


Figura 2. Reograma de polpa de caju (Modelo de Ostwald): (*) experimental e (—) modelo proposto

Tabela 1. Parâmetros dos modelos de ajuste dos dados experimentais

	Modelo Newtoniano		Modelo de Ostwald		
C (°Brix)	η	R^2	K	n	R ²
5,5	0,0015	0,9739	0,0058	0,7337	0,9849
9,6	0,0016	0,9820	0,0039	0,8207	0,9946
11,3	0,0023	0,9514	0,0092	0,7256	0,9884
15,5	0,0022	0,9803	0,0076	0,7485	0,9951
17,0	0,0020	0,9585	0,0081	0,7230	0,9958
20,0	0,0021	0,9254	0,0113	0,6748	0,9825
23,4	0,0021	0,9785	0,0087	0,7979	0,9950
25,0	0,0034	0,9585	0,0121	0,7526	0,9850

A polpa de caju possui comportamento de fluido não Newtoniano (n<1), com características pseudoplásticas (Figura 3). Resultados similares foram encontrados por Constenla et al. [1] para o suco de maçã e por Zainal et al. [4] para o suco de goiaba.

Ainda na Figura 3, pode ser verificado um aumento da viscosidade com o aumento da concentração. Segundo Constenla et al. [1], quando mais solutos (como o açúcar) estão dissolvidos em solução, a viscosidade aumenta devido ao aumento da ligação do hidrogênio com grupos hidroxilas e a distorção no perfil de velocidade do líquido pelas moléculas hidratadas do soluto.

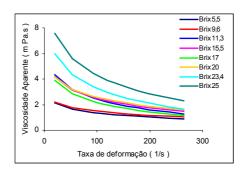


Figura 3. Gráfico viscosidade aparente *versus* taxa de deformação

4. Conclusões

A polpa de caju diluída e concentrada apresentou comportamento pseudoplástico, com valores da viscosidade aumentando com o aumento do teor de sólidos solúveis.

5. Agradecimentos

A FAPESP (Fundação de Amparo a Pesquisa do Estado de São Paulo) pelo apoio financeiro.

6. Referências Bibliográfica

- [1] CONSTENLA, D.T.; LOZANO, J.E.; CAPRISTE, G.H. Thermophysical properties clarified apple juice as a function of concentration and temperature. Journal of Food Science, v.54, n.3, p.663-668, 1989.
- [2] FORMAGGIO, G.J. Projeto, construção e ensaio de um viscosímetro capilar. Campinas, 1982. Dissertação de Mestrado- Universidade Estadual de Campinas.
- [3] VIDAL, J.R.M.B. Estudo reológico de suco de manga- efeito dos sólidos insolúveis. Campinas, 1997, 81p. Dissertação de Mestrado-Universidade Estadual de Campinas.
- [4] ZAINAL, B.S.; RAHMAN, R.A.; ARIFF, A.B.; SAARI, B.N.; ASBI, B.A. Effects of temperature on the physical properties of pink guava juice at two different concentrations. Journal of Food Engineering, v.43, p.55-59, 2000.