CARACTERIZAÇÃO DE SISTEMAS RADICULARES DE LEGUMINOSAS CULTIVADAS SOB IRRIGAÇÃO NO VALE DO SÃO FRANCISCO: 2. BIOMASSA E NUTRIENTES

Tâmara Cláudia de Araújo Gomes(1); José Antonio Moura e Silva(2); Emanuelle Mercês Barros Soares(3); Perciane Gonçalves de Sá(4); Clementino Marcos Batista de Faria(5); Maria Sonia Lopes da Silva(6); (1,3,4,5,6) Embrapa Semi-Árido, Cx.Postal 23, 56.300-970, Petrolina, PE, tamara@cpatsa.embrapa.br (1), mercessoares@yahoo.com.br (3), clementi@cpatsa.embrapa.br (5), sonia@cpatsa.embrapa.br (6); (2) Bolsista do CNPq/Programa RHAE, jantonio@cpatsa.embrapa.br.

Palavras chave: raízes, profundidade, semi-árido

No semi-árido nordestino, as cidades de Petrolina (PE) e Juazeiro (BA) são o centro de um pólo formado por mais seis municípios. A agricultura irrigada, e mais especificamente, a fruticultura irrigada, promoveu um grande dinamismo na economia local, tornando-o o aglomerado urbano mais próspero do Vale do São Francisco.

Movidos principalmente pelo potencial do mercado de produtos orgânicos, os agricultores da região têm apresentado crescente interesse por conhecimentos que permitam a adoção do citado modelo de cultivo.

Os solos que predominam no Submédio São Francisco são o Latossolo Vermelho-Amarelo e o Argissolo Amarelo, ambos de textura arenosa, pobres em matéria orgânica e com baixa retenção de água e nutrientes. As implicações oriundas da pouca disponibilidade de matéria orgânica nos solos da região resultam em prejuízos de cunho socioeconômico e ambiental, devido ao maior risco de contaminação pelo alto índice de uso de agrotóxicos, menor produtividade e menor possibilidade de obtenção de produtos alimentícios funcionais e saudáveis que atendam a aspectos nutricionais.

Portanto, técnicas que favoreçam o aporte de matéria orgânica e a sua manutenção são estratégias que podem auxiliar o processo de viabilização de unidades orgânicas nessa região. A utilização de plantas intercalares consorciadas ou rotacionadas com frutíferas, possibilita a produção de altas quantidades de resíduos, permitindo o aumento do teor de carbono do solo e CTC, reduzindo a lixiviação de cátions e água e melhorando a reciclagem de nutrientes. Além disso, a produção de material vegetal "in situ" e a sua utilização como cobertura morta, diminuirá a evaporação da água aplicada, minimizando os riscos de salinização das áreas cultivadas.

O uso de leguminosas para cobertura de solo se destaca como uma prática de grande potencial no fornecimento de N e aumento no rendimento das culturas comerciais. Geralmente, as leguminosas são preferidas para adubação verde pela sua velocidade de crescimento (cobertura de solo), capacidade de produzir massa e boa adaptabilidade em solos de baixa fertilidade (PAVAN & CHAVES, 1998).

Geralmente as estimativas do fornecimento de nutrientes pelo uso de adubos verdes não considera a quantidade imobilizada nas raízes, que em muitas espécies chega a ser superior à da parte aérea (IGUE et al., 1984). Este autores estimam que de 30 a 50 % dos nutrientes da planta podem ser imobilizados pelas raízes. Por outro lado, SCARANARI & INFORZATO (1952) citados por ALVARENGA (1993) ponderam que a quantidade de matéria orgânica deixada pelas raízes é pequena em comparação com a que é produzida pela parte aérea. Entretanto, sua ação é importante pois ela é adicionada em profundidade.

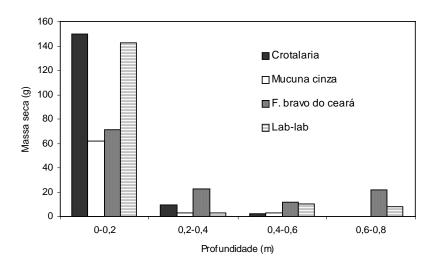
Dessa forma, objetivou-se avaliar o acúmulo de nutrientes na biomassa radicular de leguminosas cultivadas sob irrigação por sulco no Vale do São Francisco, contrapondo-o com aquele obtido na biomassa da parte aérea.

O estudo foi realizado em abril de 2002, no campo experimental de Bebedouro, pertencente à Embrapa Semi-Árido, em Petrolina-PE. Foram realizadas avaliações do sistema radicular e parte aérea das espécies mucuna cinza (*Mucuna cochinchinensis*) e feijão bravo-do-ceará (*Canavalia brasiliensis*), plantadas no espaçamento 0,6 x 0,4 m, bem como de *Crotalaria juncea* e lab-lab (*Dolichos lablab*), no espaçamento de 0,6 x 0,3 m. As leguminosas foram plantadas em Latossolo Vermelho Amarelo (PEREIRA & SOUZA, 1968) de textura franco-arenosa (Tabela 1), sendo avaliadas aos 60 dias após o plantio.

A avaliação da contribuição das raízes para o total de biomassa produzida e nutrientes imobilizados pelas leguminosas foi realizada empregando-se o método do monolito (BOHM, 1979). Para isso, foi aberta uma trincheira por espécie, no sentido longitudinal às linhas de plantio e dimensões de 1,2, 1,0 e 0,8 m de comprimento, largura e profundidade, respectivamente, abrangendo oito plantas de *Crotalaria juncea* e lab-lab (quatro de cada linha das laterais da trincheira), e seis das demais espécies (três em cada lado da trincheira). Foram coletados monolitos de 0,2 x 0,2 x 1,2 m nos dois lados da trincheira, de onde as raízes foram separadas por peneiramento e levadas para laboratório para lavagem, secagem em estufa a 65°C. Para avaliação da parte aérea, as plantas foram cortadas rente ao solo, lavadas e secas. As determinações dos teores de N, P, K, Ca, Mg, Na, B, Cu, Fe, Mn e Zn nos tecidos vegetais (raízes e parte aérea) foram realizadas conforme a técnica descrita por Malavolta et al. (1997).

O lab-lab, a *C. juncea* e o feijão bravo-do-ceará apresentaram valores de biomassa de raízes aproximados, contrapondo-se àquele da mucuna cinza (Tabela 1), a qual também apresentou a menor biomassa aérea produzida.

A biomassa radicular produzida pelo lab-lab, mucuna cinza e *C. juncea* representou uma contribuição percentual para com o total de biomassa produzida que variou entre 36 e 39 %. Por outro lado, o resultado ressalta a maior eficiência do feijão-bravo-do-ceará, cuja contribuição foi de apenas 23%, embora tenha apresentado maior produção de biomassa aérea. Outra característica favorável foi a distribuição mais uniforme de sua biomassa radicular em profundidade (Figura 1), indicando seu potencial na absorção de água, maior possibilidade de reciclagem de nutrientes e distribuição de matéria orgânica para camadas mais profundas.


Face à estratégia experimental utilizada, ressalta-se que o resultado obtido reflete a biomassa produzida em função apenas de uma planta por cova. Tal resultado, embora possua seu valor relativo, encontra-se subestimado, uma vez que a densidade de cultivo comercialmente utilizada preconiza o plantio de duas plantas por cova.

Em relação à imobilização de nutrientes, observa-se que exceto pelo ferro, sódio e cobre, todos os nutrientes encontram-se principalmente concentrados na biomassa aérea das leguminosas (Tabela 2). O lab-lab foi a espécie que imobilizou maiores quantidades de nitrogênio, fósforo e potássio na biomassa radicular, enquanto o feijão bravo-do-ceará destacou-se pela imobilização de nitrogênio, potássio e principalmente cálcio em sua biomassa aérea.

Tabela 1. Valores médios ± desvio padrão da biomassa seca das raízes*, da parte áerea e total, de leguminosas cultivadas sob irrigação por sulco no Vale do São Francisco (uma planta por cova).

Identif.	Biomassa de raízes * (kg/ha)	Biomassa aérea (kg/ha)	Biomassa total (kg/ha)	Contribuição das raízes (%)	
Lab-lab	$1307,89 \pm 173,80$	$1983,75 \pm 376,53$	$3291,64 \pm 202,74$	39,73	
C. juncea	$1289,62 \pm 70,18$	$2269,17 \pm 19,25$	$3558,79 \pm 50,92$	36,24	
F.bravo do ceará	$1018,41 \pm 190,82$	$3408,26 \pm 1382,69$	$4426,67 \pm 1573,51$	23,01	
Mucuna cinza	$541,21 \pm 22,93$	$870,28 \pm 175,21$	$1411,49 \pm 152,27$	38,34	

^{*}Até 0,80 m de profundidade

Figura 1. Distribuição da biomassa seca de raízes (g/m²) em profundidade

Tabela 2. Conteúdo de nutrientes imobilizados na biomassa radicular e aérea de leguminosas cultivadas sob irrigação por sulco no Vale do São Francisco (uma planta por cova), por hectare.

ESPÉCIE	CONTEÚDO DE NUTRIENTES										
	N	P	K	Ca	Mg	Na	В	Cu	Fe	Mn	Zn
RAÍZES (kg/ha)											
Lab-lab	67,02	12,92	53,17	18,77	3,89	3,47	0,10	0,06	4,42	0,13	0,10
C. juncea	47,30	6,45	34,74	7,72	2,90	1,97	0,09	0,06	6,13	0,19	0,19
M. cinza	24,70	3,71	13,38	6,02	1,81	0,17	0,03	0,08	2,25	0,10	0,08
F. b. ceará	36,78	5,86	29,88	13,78	3,43	0,41	0,08	0,04	3,88	0,08	0,08
PARTE AÉREA (kg/ha)											
Lab-lab	137,75	17,60	77,96	47,55	7,40	0,22	0,12	0,04	1,22	0,51	0,16
C. juncea	132,16	17,18	61,83	27,66	8,55	0,49	0,07	0,06	0,65	0,45	0,14
M. cinza	61,16	8,65	23,29	16,82	4,74	0,15	0,04	0,05	0,55	0,45	0,10
F. b. ceará	197,54	20,76	109,23	179,07	14,55	0,93	0,24	0,10	2,53	0,82	0,16
TOTAL (kg/ha)											
Lab-lab	204,77	30,52	131,13	66,32	11,29	3,69	0,22	0,11	5,64	0,64	0,26
C. juncea	179,46	23,63	96,58	35,39	11,46	2,46	0,16	0,12	6,78	0,64	0,33
M. cinza	85,86	12,36	36,67	22,85	6,55	0,32	0,07	0,12	2,81	0,55	0,18
F. b. ceará	234,33	26,61	139,11	192,85	17,99	1,33	0,32	0,14	6,42	0,90	0,23
CONTRIBUIÇÃO DAS RAÍZES (%)											
Lab-lab	32,73	42,34	40,55	28,30	34,46	93,95	45,36	60,88	78,38	20,55	39,46
C. juncea	26,36	27,29	35,97	21,83	25,33	80,09	55,02	52,22	90,36	29,52	58,63
M. cinza	28,77	30,03	36,50	26,37	27,64	54,14	40,72	61,59	80,36	18,52	42,81
F. b. ceará	15,70	22,00	21,48	7,14	19,08	30,60	25,48	29,17	60,53	8,86	32,33

Referências

ALVARENGA, R.C. Potencialidades de adubos verdes para conservação e recuperação de solos. Viçosa, Universidade Federal de Viçosa, 1993. 112p.

BOHM, W. Meyhods of studying root systems. New York: Springer-Varlag, 1979. 194p.

IGUE, K.; ALCOVER, M.; DERPSCH, R.; PAVAN, M.A.; MELLA, S.C.; MEDEIROS, G.B. Adubação orgânica. Londrina: IAPAR, 1984. 33p. (IAPAR. Informe da Pesquisa, 59)

MALAVOLTA, E.; VITTI, G.C.; OLIVEIRA, S.A. Avaliação do estado nutricional das plantas: princípios e aplicações. 2.ed. Piracicaba: POTAFOS, 1997. 319p.

PAVAN, M. A.; CHAVES, J.C.D. A importância da matéria orgânica nos sistemas agrícolas: IAPAR, 1998. 36p. ilust. (IAPAR. Circular Técnica, 98).

PEREIRA, J.M.; SOUZA, R.A. Mapeamento detalhado da área da Barra de Bebedouro. Petrolina; SUDENE, 1968. 5p. (Mineogr.)