

LXXIX Reunião Brasileira de Fertilidade do Solo e Nutrição de Plantas XIII Reunião Brasileira sobre Micorrizas XI Simpósio Brasileiro de Microbiologia do Solo VIII Reunião Brasileira de Biologia do Solo Guarapari – ES, Brasil, 13 a 17 de setembro de 2010.

Centro de Convenções do SESC

Composição química na palha do milho e no solo em função do cultivo de milho solteiro e consorciado com *Brachiaria ruziziensis*

Gessi Ceccon⁽¹⁾, <u>Islaine Caren Fonseca</u>⁽²⁾, Antonio Luiz Neto Neto⁽²⁾, Aline de Oliveira Matoso⁽³⁾, Rodrigo César Sereia⁽⁴⁾, Danilo Cesar Meneguzzi Terra⁽⁵⁾

(¹¹) Analista, Embrapa Agropecuária Oeste, CEP 79.804-970, Dourados, MS, gessi@cpao.embrapa.br; (²²) Acadêmicos de Agronomia, da Universidade Federal da Grande Dourados - UFGD, bolsistas PET/SESU/MEC, email: islainecaren@gmail.com (apresentadora do trabalho); (³¹) Mestranda, UNESP, Faculdade de Ciências Agronômicas, Botucatu, SP, bolsista, FAPESP; (⁴¹) Acadêmico de Agronomia, UFGD, Bolsista CNPq/Pibic. (⁵) Acadêmico, Faculdade de Agronomia e Engenharia Florestal de Garça, Garça, SP.

RESUMO - O trabalho foi desenvolvido em Itaporã, MS, em Latossolo Vermelho Distroférrico, textura argilosa, com o objetivo de avaliar o rendimento de massa de milho safrinha solteiro e consorciado com Brachiaria ruziziensis semeados em mar/08; a composição química das duas espécies no momento da dessecação (set/08) e a disponibilidade de nutrientes no solo em três épocas: na dessecação (set/08), na semeadura da soja (nov/08) e na floração da soja (jan/09). As amostras de solo foram coletadas na profundidade de 0 a 0,10 m, e analisadas de acordo com Silva (1999). A braquiária reduziu o rendimento de massa seca do milho no consórcio, quando comparado com o milho solteiro, mesmo assim, o rendimento total de massa no consórcio (10,1 Mg ha⁻¹) foi superior ao do milho solteiro (8,2 Mg ha⁻¹). O milho reduziu a absorção de Ca e Mn, sem reduzir a absorção de N, P, Mg, S e Zn, com o incremento da absorção de potássio. Não houve efeito entre tratamentos para Fe, Cu e B. Houve interação significativa entre modalidades de cultivo e épocas de avaliação para Ca, K, P, CTC e Zn no solo; porém, sem interação para pH, Mg, MO e Mn. Os sistemas de manejo interferem na disponibilidade de nutrientes do milho e do solo, sendo que o cultivo consorciado apresenta maior estabilidade na concentração de nutrientes no solo nas épocas de avaliação.

Palavras-chave: consórcio, potássio, fósforo.

INTRODUÇÃO - Na produção de grãos das culturas anuais, na região Centro-Oeste o milho safrinha apresenta maior expressão durante o cultivo de outono-inverno. Em Mato Grosso do Sul (MS)

predomina a sucessão com soja no verão (Ceccon & Rocha, 2009). No entanto, o milho no outono-inverno tem apresentado instabilidade produtiva (Ibge, 2010), que pode ser atribuído à ocorrência de seca e/ou geada durante o seu cultivo (Lazzarotto, 2002). Além disso, a baixa cobertura do solo (31,6%) verificada em lavouras de milho safrinha em MS (Ceccon & Rocha, 2009) diminui a capacidade de infiltração e armazenamento de água no solo, acarretando em sucessivas reduções de produtividades das culturas.

O consórcio de milho safrinha com forrageiras perenes, em plantio direto, produz maior quantidade de resíduos vegetais (Ceccon, 2007), proporcionando aumento nos teores de nutrientes (Borghi & Crusciol, 2007), matéria orgânica do solo e controle da erosão (Salton et al., 2005), com manutenção da fertilidade do solo.

De acordo com Bertol et al. (1998), os resíduos do milho apresentam maior durabilidade em comparação à aveia-preta. Para Salton et al. (2008), as espécies forrageiras podem reciclar consideráveis quantidades de nutrientes, especialmente nitrogênio e cálcio, e liberar os mesmos ao longo do tempo, de forma a suprir parcialmente as necessidades nutricionais das culturas semeadas em sucessão.

O trabalho foi realizado com o objetivo de avaliar o rendimento de massa de milho e de *B. ruziziensis*, a composição química das espécies no momento da dessecação, e a disponibilidade de nutrientes no solo em três épocas.

MATERIAL E MÉTODOS - O trabalho foi desenvolvido na propriedade da Famíla Crivelaro, no Distrito de Montese, em Itaporã, MS, em

Latossolo Vermelho Distroférrico, textura argilosa, entre março de 2008 e janeiro de 2009.

O delineamento experimental foi em blocos ao acaso, com parcelas subdivididas e cinco repetições. As parcelas principais foram constituídas pelas modalidades de cultivo (milho safrinha e milho safrinha consorciado com *B. ruziziensis*) e as subparcelas pelas épocas de amostragem de solo (set/08, na dessecação das plantas; nov/08, na semeadura da soja; e jan/09, na floração da soja). Cada parcela foi constituída de 50 linhas de 100 m.

A semeadura direta do milho foi realizada em março de 2008, em linhas espaçadas de 0,90 m. No tratamento consorciado, a *B. ruziziensis* foi semeada em linhas intercaladas às linhas do milho. A adubação foi realizada apenas nas linhas do milho, utilizando 300 kg ha⁻¹ da fórmula 08-20-20 na semeadura.

Em setembro de 2008, imediatamente antes da dessecação, foram coletadas amostras de palha de milho e de *B. ruziziensis* na superfície do solo, em amostras de 0,90m², coincidindo sobre a linha de milho e de braquiária.

A amostragem do solo foi realizada na profundidade de 0 a 0,10 m. As amostras foram analisadas no Laboratório de Análise de Solos, Plantas e Corretivos da *Embrapa Agropecuária Oeste* (Silva, 1999). Os resultados foram submetidos a análise de variância e as médias, comparadas pelo teste de Tukey, a 5 % de probabilidade.

RESULTADOS E DISCUSSÃO - A análise de variância apresentou efeito das modalidades de cultivo para a maioria das variáveis analisadas nas plantas e no solo.

A presença da braquiária reduziu o rendimento de massa seca do milho, no entanto, o rendimento de massa seca do consórcio (10,1 Mg ha⁻¹) foi superior ao rendimento do milho solteiro (8,2 Mg ha⁻¹), conforme apresentado por Ceccon (2007). Além disso, a presença de duas espécies com diferentes constituições em decomposição, como milho (Bertol, 1998) e braquiária (Salton et al., 2008) contribuem para maior cobertura do solo e disponibilização de nutrientes (Borghi & Crusciol, 2007) de forma uniforme ao solo no tempo, favorecendo a cultura em sucessão.

No consórcio o milho reduziu a absorção de Ca e Mn, porém sem reduzir a absorção de N, P, Mg, S e Zn; houve incremento na absorção de K (Tabela 1). Não houve efeito de cultivo para absorção de Fe, Cu e B, respectivamente, 4.825; 10,1; 10,8 mg kg⁻¹ de massa seca de milho.

A *B. ruziziensis* apresentou maior concentração de nutrientes em sua palha, exceto S que não diferiu do milho solteiro (Tabela 1). Com isso, o cultivo em consórcio apresentou maior ciclagem de nutrientes

para a cultura em sucessão, geralmente a soja, cuja liberação pode acontecer nos diversos estádios de desenvolvimento da cultura, principalmente floração e enchimento de grãos.

Houve interação significativa entre modalidades de cultivo e épocas de avaliação para Ca, K, P, CTC e Zn no solo, porém, sem interação para pH, Mg, matéria orgânica e Mn.

Na coleta realizada em setembro, durante a dessecação, o solo sob milho solteiro apresentou maiores concentrações de Ca, Zn e CTC, porém sem diferir nos teores de K e menor teor de P. Na segunda coleta, nesse mesmo solo, apenas o Zn foi superior ao solo sob cultivo consorciado. Na terceira coleta, durante a floração da soja, o solo sob milho solteiro apresentou maiores teores de K e P, sendo que o cultivo consorciado apresentou maiores concentrações de Ca, porém sem diferença na CTC e Zn (Tabela 2).

Com a evolução das coletas, para o milho solteiro, houve diminuição nas concentrações de Ca e na CTC do solo, porém houve aumento nas concentrações de K e P. No solo sob cultivo consorciado foram observadas pequenas diferenças estatísticas, conferindo uma tendência de maior estabilidade na disponibilidade dos nutrientes no solo. Isso pode ser devido à ciclagem mais rápida dos nutrientes da braquiária, conforme descrito por Salton et al. (2008), comparativamente com o milho, conforme sugerido por Bertol et al. (1998). O milho solteiro apresentou maior extração e ciclagem de nutrientes, na terceira coleta, que pode ser devido ao maior diâmetro de colmos, assim como apresentado por Bertol et al. (1998) o que torna mais lenta sua decomposição.

CONCLUSÕES - Os sistemas de manejo interferem na composição química na palha do milho e no solo. O cultivo consorciado apresenta menor oscilação na concentração de nutrientes no solo ao longo do tempo.

REFERÊNCIAS

BERTOL, I.; CIPRANDI, O.; KURTZ, C. & BAPTISTA, A.S. Resistência de resíduos culturais de aveia e milho sobre a superfície do solo em semeadura direta. R. Bras. Ci. Solo, 22:705-712, 1998.

BORGHI, E. & CRUSCIOL, C.A.C. Produtividade de milho, espaçamento e modalidade de consorciação com *Brachiaria brizantha* no sistema plantio direto. Pesq. Agropec. Bras., 42:163-171, 2007.

CECCON, G. Milho safrinha com solo protegido e retorno econômico em Mato Grosso do Sul. R. Plantio Direto, 17(97): 17-20, 2007.

CECCON, G. & ROCHA, E.M. Sistemas de produção de milho safrinha em Mato Grosso do Sul. In: SEMINÁRIO NACIONAL DE MILHO SAFRINHA, 10., 2009, Rio Verde. Anais... Rio Verde, FESURV, 2009. p.25-31.

IBGE. Levantamento sistemático da produção agrícola- abril 2010: produção - Mato Grosso do Sul - abril 2010. [Rio de Janeiro], 2010. Disponível em: http://tinyurl.com/35jzb9r>. Acesso em: 31 maio 2010.

LAZZAROTTO, C. Época de semeadura e riscos climáticos para o milho da safra outono-inverno, no Sul de Mato Grosso do Sul. Dourados, Embrapa Agropecuária Oeste, 2002. 4p. (Embrapa Agropecuária Oeste. Comunicado técnico, 70).

SALTON, J.C.; MACHADO, L.A.Z.; COSTA, A.R. & LIMA, R.R.B. Potencial de reciclagem e disponibilização de nutrientes por plantas forrageiras perenes cultivadas durante a entressafra em Mato Grosso do Sul. In: REUNIÃO BRASILEIRA DE

MANEJO E CONSERVAÇÃO DO SOLO E DA ÁGUA, 17., 2008, Rio de Janeiro. Manejo e conservação do solo e da água: anais. Rio de Janeiro, SBCS, UFRRJ, 2008. 1 CD-ROM.

SALTON, J.C.; MIELNICZUK, J.; BAYER, C.; FABRICIO, A.C.; MACEDO, M.M.; BROCH, D.L.; BOENI, B. &' CONCEIÇÃO, P.C. Matéria orgânica do solo na integração lavoura-pecuária em Grosso do Sul. Dourados, Embrapa Agropecuária Oeste, 2005. 58p. (Embrapa Agropecuária Oeste. Boletim de pesquisa e desenvolvimento, 29).

SILVA, F.C. da (Org.). Manual de análises químicas de solos, plantas e fertilizantes. Brasília, DF, Embrapa Comunicação para Transferência de Tecnologia; Rio de Janeiro, Embrapa Solos; Campinas, Embrapa Informática Agropecuária, 1999. 370p.

Tabela 1. Rendimento e composição química da massa de milho safrinha em cultivo solteiro e consorciado com *B. ruziziensis*, em Itaporã, 2008.

	RM	N	Ca	P	K	Mg	S	Mn	Zn
	Mg ha ⁻¹			2	; kg ⁻¹			mg	kg ⁻¹
Milho Solteiro	8,2 a	5,7 b	2,9 b	0,4 b		1,5 b	0,9 ab	_	20,4 b
Milho consorciado	5,2 b	4,3 b	1,8 c	0,3 b	5,4 b	1,3 b	0.8 b	80 b	17,0 b
B. ruziziensis	4,8 b	11,2 a	4,0 a	0,9 a	18,7 a	2,5 a	1,1 a	125 b	27,0 a
Média	6,1	7,1	2,9	0,5	9,1	1,8	0,9	97	21,5
C.V. (%)	17	25	14	18	13	10	14	17	14

RM: rendimento de massa seca das espécies. Médias seguidas da mesma letra não diferem pelo teste de tukey a 5% de probabildiade.

Tabela 2. Composição química do solo em diferentes épocas, após o cultivo de milho safrinha solteiro e consorciado com *B. ruziziensis*, em Itaporã, MS, 2008/09.

			Epócas							
Cultivo	Set./08		Nov./08		Jan./09					
	Ca (cmol _c dm ⁻³)									
Milho Solteiro	7,22 a	Α	5,76 a		4,72 b	В				
Milho + <i>B.ruziziensis</i>	5,32 b	AB	4,92 a		6,30 a	AB				
C.V. (%)	0,02	112	14,5	_	3,23 4					
			K (cmol _c	dm ⁻³)						
Milho Solteiro	1,26 a	AB	·	В	1,56 a	AB				
Milho + B. ruziziensis	1,13 a	A	1,47 a		0,88 b	A				
C.V. (%)	,		32,1		,					
			P (mg dr	n ⁻³)						
Milho Solteiro	5,8 b	В	6,3 a		13,0 a	Α				
Milho + B.ruziziensis	8,0 a	A	6,9 a	A	8,3 b	A				
C.V. (%)			18,9							
			CTC (cmo	$l_c dm^{-3}$)						
Milho Solteiro	16,6 a	A	14,6 a		13,5 a	В				
Milho + <i>B.ruziziensis</i>	14,6 b	A	13,7 a	A	14,2 a	A				
C.V. (%)			5,2							
			Zn (mg dm	n ⁻³)						
Milho Solteiro	4,7 a	A	5,7 a	Á	5,0 a	A				
Milho + B.ruziziensis	3,5 b	В	3,8 b	В	5,3 a	A				
C.V. (%)	•		17,8		•					

Médias seguidas da mesma letra, minúscula na coluna e maiúscula na linha, em cada elemento, não diferem pelo teste de tukey a 5% de probabildiade.