25. Avaliação de acessos de *Aegilops tauschii* quanto ao recrescimento das raízes em solução nutritiva após exposição ao alumínio

Costa, C.T.¹; Brammer, S.P.²; Bonow, S.²; Susin, L.³; ⁽¹⁾Embrapa Trigo, BR 285, km 294, Passo Fundo, RS, <u>cibeletc@yahoo.com.br</u>, bolsista de Apoio Técnico II-FAPEMIG; ⁽²⁾Embrapa Trigo, Passo Fundo, RS; ⁽³⁾ Universidade de Passo Fundo – UPF.

A presença do alumínio no solo é um dos fatores mais limitantes na produção de cereais em solos ácidos (Sasaki et al, 2004). Em solos com pH abaixo de 5, a forma predominante deste elemento é Al³+, que inibe o elongamento e a divisão nas pontas de raiz das plantas, reduzindo o transporte de água e nutrientes (Zhou et al, 2007). Halloran e colaboradores (2008) relatam que devido ao fato de ser o doador do genoma D do trigo hexaplóide (*Triticum aestivum*), o *Ae. tauschii* tem sido pesquisado como fonte de genes de resistência a estresses bióticos e abióticos e os resultados demonstram a presença de ampla variação para características comerciais importantes, com potencial para incorporação no trigo hexaplóide. Entretanto, mesmo com a descoberta do gene ALMT1, que confere resistência ao alumínio tóxico e que está localizado no genoma D (Sasaki et al, 2004), há poucos estudos na literatura sobre o potencial do *Ae. tauschii* para tolerância ao alumínio.

O objetivo deste trabalho foi caracterizar acessos de *Ae. tauschii* quanto à tolerância ao alumínio tóxico. Para tanto, foram feitas medições de raízes recrescidas em solução nutritiva após um período de exposição a 1 e 2mg/L de Al³+. Toma-se como exemplo Silva e colaboradores (2006), que verificaram a retomada do crescimento da raiz como o único caráter, entre os cinco estudados, capaz de discriminar eficientemente cultivares sensíveis e tolerantes ao alumínio.

Os acessos utilizados neste trabalho foram selecionados de acordo com a similaridade genética estimada para esta espécie, desenvolvida na Universidade de Passo Fundo e na Embrapa Trigo, conforme Almeida (2006). As sementes dos acessos foram fornecidas pelo Banco Ativo de Germoplasma da Embrapa Trigo. A metodologia utilizada para a realização da hidroponia foi baseada em Voss et al (2006) e Stodart et al (2007), com algumas alterações. A desinfestação das sementes foi feita com hipoclorito de sódio (1%) por 2 minutos, seguido de álcool etílico 70% por 2 minutos. As sementes foram enxaguadas com água destilada e colocadas em placas de petri com papel germitest umedecido e mantidas em estufa incubadora tipo B.O.D. por 3 semanas a 0,5 °C para vernalização. Após esse período as sementes foram submetidas à temperatura de 23 °C por 40 horas, a fim de promover a geminação, acrescentando-se sementes de trigo (Triticum aestivum L.) Anahuac 75 e IAC 5, que serviram como controles sensível e tolerante, respectivamente. A escolha destes cultivares como controles foi devido a inexistência de outros parâmetros de comparação para a espécie Ae. tauschii e por serem duas cultivares de trigo já conhecidas quanto à tolerância/sensibilidade ao alumínio. Dezesseis sementes de cada acesso, que apresentaram germinação semelhante, foram transferidas para duas telas plásticas, divididas em alvéolos. Colocou-se as telas sobre tiras de isopor, dentro de bandejas de plástico, em contato com dois litros de solução nutritiva sem fósforo. A aeração foi feita com dois tubos de vidro em cada bandeja. Decorridas 117 horas, as telas de plástico com as sementes foram tranferidas para bandejas com solução nutritiva contendo 1 e 2mg/L de AlCl₃ por 24 horas. Lavou-se as raízes das plantas com água destilada e colocou-se em bandejas com solução nutritiva sem Al⁺³, por 24 horas. As raízes foram novamente lavadas com água destilada por 10 minutos, coradas em hematoxilina, por 10 minutos e enxaguadas com água destilada por 10

minutos. A raiz principal de cada semente teve seu recrescimento medido com auxílio de um paquímetro digital.

As médias de recrescimento obtidas no trabalho são apresentadas na tabela 1. Quando expostas à 1mg/L de Al³⁺, houve diferença na capacidade de recrescimento das raízes em 21 acessos, aos quais foram tão sensíveis quanto o Anahuac 75. Os outros 19 acessos apresentaram médias de recrescimento das raízes variando de 0,33 a 5,47mm. Isso demonstra que alguns genótipos de Ae tauschii superaram o Anahuac 75, indicando que o genoma D realmente possa ser considerado fonte de tolerância ao Al³⁺. Os acessos que apresentaram desempenho superior foram NE 20215-Y; NE 20202-A; NE 20201-A; NE 29227-C; NE 20196-B e RL 5665. Contudo, nenhum dos acessos de Ae. tauschii analisados foi tão tolerante como o controle IAC 5, pois este cultivar não demonstrou restrição no crescimento das raízes, uma vez que não havia marca de hematoxilina para fazer as medições. A pequena retomada de crescimento das raízes em relação ao IAC 5 pode ser explicada pelo fato de que no trigo hexaplóide os outros dois genomas devem exercer alguma influência no mecanismo de tolerância/sensibilidade ao alumínio. Além disso, a amostragem de acessos pode não ter sido suficientemente grande para representar a variabilidade existente em Ae. tauschii, já que os materiais utilizados são originários de um mesmo local, onde a presença de alumínio no solo não é tão significativa.

Quanto à presença ou ausência de tolerância ao alumínio, a dose de 1mg/L de Al³+ em solução nutritiva foi eficiente para identificar acessos de *Ae. tauschii* com alguma tolerância. Porém, quando expostas à 2mg/L de Al³+, a identificação da variabilidade presente nos acessos *Ae. tauschii* analisados foi limitada. Assim, uma análise posterior deverá ser feita com a utilização de 0,5mg/L de Al³+ em solução nutritiva, a fim de diferenciar os genótipos que apresentaram recrescimento igual a zero.

Referências bibliográficas

ALMEIDA, A.B. Identificação e caracterização de fontes de resistência à ferrugem da folha em *Triticum tauschii* COSS. SCHMAL. 2006. 81 f. Dissertação (Mestrado em Agronomia), Universidade de Passo Fundo, Passo Fundo.

HALLORAN, G.M.; OGBONNAYA, F.C.; LAGUDAH, E.S. *Triticum* (Aegilops) *tauschii* in the natural and artificial synthesis of hexaploid wheat. Australian Journal of Agricultural Research, v. 59, p. 475-490, 2008.

SASAKI, T.; YAMAMOTO, Y.; EZAKI, B.; KATSUHARA, M.; AHN, S. RYAN, P.; DELHAIZE E.; MATSUMOTO, H. A wheat gene encoding an aluminium-activated malate transporter. The plant journal, v. 37, p. 645-653, 2004.

SILVA, G.O.; CARVALHO, F.I.F.; OLIVEIRA, A.C.; SILVA, J.A.G.; BENIN, G.; VIEIRA, E.A.; BERTAN, I.; HARTWIG, I.; FINATTO, T. Parâmetros de avaliação da tolerância ao alumínio tóxico em diferentes cultivares de aveia (Avena sativa L.). R. Bras. Agrociência, v. 12, p. 401-404, 2006.

STODART, B.J.; RAMAN, H.; COOMBES, N.; MACKAY, M. Evaluating landraces of bread wheat *Triticum aestivum* L. for tolerance to aluminium under low pH conditions. Genet Resour Crop Evol, v. 54, p. 759-766, 2007.

VOSS, M.; SOUSA, C.N.A.; BAIER, A.C.; JUNIOR, A.N.; BOFF, T. Método de avaliação de tolerância à toxidez de alumínio em trigo, em condições de hidroponia, na Embrapa Trigo. Passo Fundo: Embrapa Trigo, 2006. 16 p.

ZHOU, L.; BAI, G.; CARVER, B.; ZHANG, D. Identification of new sources of aluminium resistance in wheat. Plant Soil, v. 297, p. 105-118, 2007.

Tabela 1. Genótipos de *Ae. tauschii* utilizados no trabalho e médias de recrescimento das raízes (mm) expostas a doses de 1 e 2mg/L de Al⁺³ em solução nutritiva, ordenadas de acordo com a resposta à 1mg/L de Al⁺³. Embrapa Trigo, Passo Fundo, 2008.

Genótipo	1mg/L de Al ⁺³	2mg/L de Al ⁺³
NE 20191-E	0,00	0,00
NE 20206-C	0,00	0,00
NE 20207-Y	0,00	0,00
NE 20210-II	0,00	0,00
NE 20223-A	0,00	0,00
NE 20226-A	0,00	0,00
NE 20229-B	0,00	0,00
NE 20233-A	0,00	0,00
NE 20234-V	0,00	0,00
NE 20236-Z	0,00	0,00
NE 20237-X	0,00	0,00
RL 5552	0,00	0,00
RL 5562	0,00	0,00
RL 5660(A)	0,00	0,00
RL 5668	0,00	0,00
RL 5695	0,00	0,00
RL 5003	0,00	0,00
RL 5422	0,00	0,00
RL 5660	0,00	0,00
RL 5799	0,00	0,00
NE 20247 C	0,00	0,00
RL 5684	0,33	0,53
NE 20190-X	0,84	0,18
NE 20219-X	0,90	0,12
RL 5793	1,47	0,00
NE 20194-X	1,55	0,00
NE 20195-C	1,55	0,00
NE 20204 C	1,95	0,87
RL 5771	2,24	0,14
NE 20238 X	2,41	1,66
NE 20243-B	2,86	1,68
NE 20217 Z	3,03	0,64
NE 20216 B	3,38	1,44
NE 20222-A	3,93	1,08
NE 20215-Y	4,32	1,50
NE 20202-A	4,35	1,66
NE 20201-A	4,40	2,00
NE 29227-C	4,59	2,12
NE 20196-B	4,62	0,80
RL 5665	5,47	1,84
Anahuac 75	0,00	0,00
IAC 5	-	-