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Abstract – The objective of this work was to determine the genetic variability available for triticale (X Triticosecale

Wittmack) crop improvement in Brazil. Forty-two wheat genomic microsatellites were used to estimate the molecular
diversity of 54 genotypes, which constitute the base of one of the major triticale breeding programs in the
country. Average heterozygosity was 0.06 and average and effective number of alleles per locus were 2.13 and
1.61, respectively, with average allelic frequency of 0.34. The set of genomic wheat microsatellites used clustered
the genotypes into seven groups, even when the germplasm was originated primarily from only two triticale
breeding programs, a fact reflected on the average polymorphic information content value estimated for the
germplasm (0.36). The 71.42% transferability achieved for the tested microsatellites indicates the possibility of
exploiting these transferable markers in further triticale genetic and breeding studies, even those mapped on the
D genome of wheat, when analyzing hexaploid triticales.

Index terms: X Triticosecale, polymorphism information content, transferability, heterozygosity, number of  alleles,
frequency of alleles.

Diversidade genética de triticales brasileiros avaliada com microssatélites
genômicos de trigo

Resumo – O objetivo deste trabalho foi determinar a variabilidade disponível para o melhoramento de triticale
(X Triticosecale Wittmack) no Brasil. Quarenta e dois microssatélites de trigo foram empregados para estimar a
diversidade molecular de 54 genótipos, que constituem a base de um dos principais programas de melhoramento
da espécie no país. A heterozigosidade média foi 0,06, e os números médio e efetivo de alelos por lócus foram de
2,13 e 1,61, respectivamente, com freqüência alélica média de 0,34. O conjunto de microssatélites de trigo possibilitou
reunir os genótipos em sete grupos, mesmo que o germoplasma utilizado seja originado de apenas duas instituições
de pesquisa, o que refletiu em baixo índice de polimorfismo médio (0,36). A taxa de transferência dos marcadores
testados (71,42%) indica a possibilidade de uso desses microssatélites de trigo, até mesmo os mapeados no
genoma D da espécie, na análise de triticales hexaplóides em futuros trabalhos de genética e melhoramento de
triticale.

Termos para indexação: X Triticosecale, índice de polimorfismo, transferabilidade, heterozigosidade, número
efetivo de alelos, freqüência alélica.

Introduction

Triticale (X Triticosecale Wittmack) is a synthetic
self-pollinated crop derived from wheat (Triticum sp.,
AABB or AABBDD) and rye (Secale cereale L., RR),
crossed to bring together in a single species the
technological quality and yield potential of wheat with
the rye stress resistance and rusticity. Octoploid triticales,
comprising 56 chromosomes, are derived by crossing
hexaploid wheats (T. aestivum L., AABBDD) and rye,

while hexaploid triticales, with 42 chromosomes, are
mostly complete cariotypes, partially or totally deprived
from the D genome of wheat, resulting from the cross
between Triticum durum L. (AABB), for instance, and
rye (Ammar et al., 2004; Oetler, 2005).

The combination of wheat and rye genomes allows
triticale to show characteristics of good adaptability to
poor or harsh environments, such as acid or waterlogged
soils, metal toxicity, salinity, high elevation and adverse
climatic conditions, besides greater tolerance (more than
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wheat) to common wheat diseases (Horlein & Valentine,
1995). X Triticosecale constitutes also a valuable genetic
resource for transferring genes of interest from rye into
wheat, particularly those related to biotic and abiotic
stresses (Vaillancourt et al., 2007).

Molecular markers such as microsatellites or SSRs
(Simple Sequence Repeats) constitute an important tool
for studies on genetic diversity, population structure,
genetic mapping and crop breeding due to their
abundance, codominance, level of polymorphism,
reliability and easiness to assay (Röder et al., 1995, 1998).
Additionally, these markers are not influenced by the
environment or by genotype x environment interactions,
contrary to what is verified for morphological and
phenological characteristics. Biochemical and molecular
markers most commonly used include the polymorphism
of storage proteins, alozymes and DNA markers such
as SSRs, RAPD (Random Amplified Polymorphic DNA),
AFLP (Amplified Fragment Length Polymorphism), and
others.

Microsatellites of wheat or rye have been efficiently
employed in analysis of the genome of triticale (Kuleung
et al., 2004, 2006; Tams et al., 2004) and the estimates
revealed on the genetic diversity of triticales from distinct
continents indicate that the genetic base of this cereal
must be extended (Darvey, 1986, Nascimento Junior
et al., 2004). Analyzing the genome of five triticales from
Russia, Mexico and the United States, using 176
microsatellites from wheat (148) and rye (28), Kuleung
et al. (2004) identified polymorphism in 31% of the used
markers. Tams et al. (2004) determined polymorphism
information content (PIC) of 0.54, indicative of moderate
variability, in the evaluation of 128 triticale cultivars from
five continents using three to five microsatellites per
chromosome. The same value was also found by Kuleung
et al. (2006), when 80 hexaploid triticales were analysed,
employing 43 wheat and 14 rye microsatellites.

Until this moment, studies to estimate the genetic
diversity of Brazilian triticale germplasm have not been
carried out, neither on genotypes already recommended
for cultivation nor on those still in the process of
development and evaluation.

The objective of this work was to estimate the
molecular diversity of triticale genotypes that constitute
the base of one of the main triticale breeding programs
in Brazil using wheat genomic microsatellites.

Material and Methods

Fifty-four triticale genotypes that formed the crossing

block of the Embrapa’s triticale breeding program at

Embrapa Trigo, in Passo Fundo, Rio Grande do Sul (RS),

Brazil, in 2005 (Table 1), were evaluated. Thirty-one

genotypes were originated from the triticale breeding

program conducted at the International Maize and Wheat

Improvement Center (Cimmyt), in Mexico. Among these,

24 (77.42%) were developed at Embrapa’s triticale

breeding program; two (6.45%) at Fundação Centro de

Experimentação e Pesquisa Fecotrigo (Fundacep

Fecotrigo), in Cruz Alta, RS; two (6.45%) were

introduced and released for commercial use in Brazil by

the Instituto Agronômico (IAC), in Campinas, São Paulo;

and three (9.68%) were developed at Instituto

Agronômico do Paraná (Iapar) triticale improvement

program, in Londrina, Paraná – one of them being

released for commercial use in Brazil in conjunction with

the Cooperativa Central de Pesquisa Agrícola

(Coodetec), the former research department of the

Sindicato e Organização das Cooperativas do Estado

do Paraná (Ocepar), in Cascavel, Paraná. The other 23

analyzed accessions were Brazilian triticales derived from

crosses between Brazilian wheat and rye genotypes, or

among Brazilian triticales, with or without the

participation of Cimmyt germplasm.

Genomic DNA was isolated from seeds (Rogers &

Bendich, 1988) or seedlings (Kleinhofs et al., 1993)

according to the CTAB (cetyltrimethylammonium

bromide) method. A total of 42 genomic wheat

microsatellites markers (Röder et al., 1998), one for each

wheat chromosome arm, was used. This same set of

markers (Table 2) was used by Stachel et al. (2000) to

determine the genetic differentiation caused by selection

for adaptation in wheat. Polymerase chain reaction (PCR),

adjusted for 25 µL final volume, consisted of 1x enzyme

buffer, 2 mM MgCl2, 0.2 mM each dNTP, 5 µM to 10 µM

primers, 1 unit Taq polymerase and 75 ng of genomic

DNA. The PCR amplification was performed in a MJ

Research PTC-100 (Programmable Thermal Controller,

MJ Research INC), as follows: initial denaturation at 94°C

for 3 min, followed by 35 to 45 cycles of 1 min at 94°C,
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Table 1. Parental genotypes used at Embrapa’s triticale (X Triticosecale Wittmack) improvement program.

(1)Genotypes originated from Mexico were developed at the International Maize and Wheat Research Center (Cimmyt) triticale breeding program.
(2)Ocepar: Cooperativa Central de Pesquisa Agrícola (Coodetec), the former research department of Sindicato e Organização das Cooperativas do
Estado do Paraná (Ocepar), in Cascavel, PR; IAC: Instituto Agronômico, in Campinas, SP; Iapar: Instituto Agronômico do Paraná, in Londrina,
PR; Fundacep: Fundação Centro de Experimentação e Pesquisa da Fecotrigo, in Cruz Alta, RS; Embrapa: Empresa Brasileira de Pesquisa Agropecuária,
Centro Nacional de Pesquisa do Trigo, in Passo Fundo, RS.

1 min at 45–60°C, 1 min at 72°C and final extension for 3

to 10 min at 72°C. The annealing temperature for each

primer (Table 2) was determined according to Röder et al.

(1998) and Stachel et al. (2000). Amplified DNA
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fragments were fractionated on 3% agarose gel stained

in ethidium bromide and photographed.
DNA segments at polymorphic loci in all 54 genotypes

were scored as presence (1) or absence (0) of an allele
and the results analyzed with NTSYSpc, version 2.02
(Rohlf, 1989). The scores for each allele were used to
construct a binary matrix, which was then transformed
to genetic similarity matrix using Jaccard similarity
coefficient. The genetic similarity matrix of all genotypes
was analyzed using unweighted pair group method with
arithmetic average (UPGMA) algorithm and the results
were used to construct a dendrogram. Null alleles were
omitted in calculation, and were treated as missing data.

The average gene diversity expected for each
considered marker locus in this group of genotypes was

estimated according to Anderson (1993):

          where p is the frequency of the allele j for

marker i.

Additionally, the genetic diversity was described based
on the number of variants determined for the germplasm,

considering: 1) the proportion of polymorphic loci (P)
given by P = npj/ntotal, in which npj is the number of

polymorphic loci and ntotal the total number of loci;
2) average expected heterozigosity (He), i.e., the
probability of any pair of alleles in a single locus, randomly

chosen in the population, be distinct from each other,
given by He = Sj

LHj/L, where Hj is the heterozigosity

per locus and L the total number of loci. Considering a
locus j with i alleles, the genetic diversity in this locus is

Table 2. Wheat (Triticum aestivum L.) genomic microsatellites (SSR) used to amplify triticale (X Triticosecale Wittmack) genomic
DNA via polymerase chain reaction.

(1)Wheat chromosome: 1 to 7; genome: A, B or D; and chromosome arm: long (L) or short (S). (2)These primers did not amplify triticale DNA.
(3)First cycle at 55ºC, decreasing 1ºC per cycle until 45ºC.
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given by Hj = 1 - Spi
2, also called PIC; 3) average

observed heterozigosity (Ho), considering the proportion
of heterozygote loci in all analyzed individuals; 4) the
abundance of allelic variants (A); 5) the effective number
of alleles (Ae) given by Ae = 1/(1 - Hj) = 1/Spi

2, where
pi is the frequency of the i-th allele in a marker locus;
and 6) the average number of alleles per locus, i.e., the
sum of all observed alleles in all used markers, divided
by the total number of markers, a piece of information
complementary to the polymorphism information:

            , where, K is the number of loci and ni is the

number of alleles determined per locus.

Results and Discussion

Out of the 42 wheat genomic microsatellites tested in
the parental genotypes from the Embrapa’s triticale
breeding program, 30 (71.42%) amplified in the genome
of triticale, suggesting good transferability of these wheat
markers to triticale (Table 2). Among these, 21 (70%)
were polymorphic, i.e., the frequency of the most
common allele was equal or superior to 0.95. About 18%
of A - B wheat genome-specific microsatellite primers
did not amplify in triticale (Table 2), and some of the
obtained fragments may not contain SSR sequences, as
suggested by Leonova et al. (2005). Kuleung et al.
(2004) found 57% and 39% transferability for 148 wheat
microsatellites and 28 rye microsatellites, respectively,
revealing low marker transferability.

The rate of transferred markers from wheat D genome
was 50%, surpassing the expected values, since the
analyzed triticales are hexaploids, lacking, in general, this
genome. Similarly, Tams et al. (2004) and Leonova et al.
(2005) obtained amplification of triticale DNA fragments
using D genome-specific microsatellite primers.

PCR amplification with microsatellites mapped in all
wheat D genome chromosomes, but 1D and 2D, may
be associated with the presence of wheat-rye
(Lukaszewski & Gustafson, 1983) or wheat-wheat
translocation (Hohmann et al., 1999; Leonova et al.
2005). However, studies have shown that alterations on
the expression of certain genes in triticale compared to
the parental wheat lines would result from the effect of
rye chromosomes due to the change of triticale genomic
composition, rather than being associated with the
presence of wheat-rye translocation (Leonova et al.,
2005). Both possibilities must be investigated in this group

of triticales to detect the presence of translocations or
recombination, employing molecular cytogenetic tools such
as in situ hybridization and C-banding (Zhang et al., 2007b).

Besides, the presence of storage proteins subunits
encoded by genes on the D genome must be determined
in these lines, to confirm the presence of the D genome
on the genomic constitution of the germplasm. Most
triticale cultivars are derived from crossing triticale
parents or from crossing wheat with triticale (Kuleung
et al., 2004). Under the circumstances, the introgression
of genes of interest encoded on the chromosome 1D
can be widely exploited in breeding programs in order to
improve important traits of hexaploid triticales
(AABBRR), such as end-use quality.

Most genomic SSRs have neither a gene function nor
a close linkage to coding regions and limited
transferability among related species. An alternative for
the development of triticale specific markers is the
analysis and characterization of microsatellites in
expressed sequence tags (EST) collections. Today, more
than 1,050,000 ESTs for common wheat and 9,200 for
rye are available in the public domain (National Center
for Biotechonology Information, 2007) and are used to
develop molecular markers such as EST-derived
microsatellites. The use of this marker system would
allow to detect variation in the expressed portion of the
genome, which may increase the efficiency of marker-
assisted selection in crop breeding (Gupta et al., 2003;
Zhang et al., 2005, 2007a; Tang et al., 2006).

Considering the set of wheat microsatellites that
amplified PCR products in the analyzed triticale
genotypes, the proportion of polymorphic loci (P) revealed
was 0.70 and the average PIC value estimated was 0.36,
similar to values determined for inbred rye (Bolibok et al.,
2005) and also wheat (Zhang et al., 2006, 2007a). The
expected genetic diversity for this set of markers ranged
between 0.24 for WMS408 and 0.88 for WMS389
(Table 3). However, it must be taken into account that
these accessions come from only two breeding sources,
Embrapa Trigo (43%) in Brazil and Cimmyt (57%) in

Mexico (Table 1). The PIC values (0.54) revealed for

triticale by Kuleung et al. (2006) and Tams et al. (2004)

were obtained for 80 and 128 genotypes, respectively,

representing a broad spectrum of historic and modern
triticale germplasm from 17 countries, five continents
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and at least 27 breeding programs. At the same time,
the PIC of 0.71 determined by Prasad et al. (2000)
for wheat was calculated for 55 accessions from
29 countries, the PIC of 0.68 determined by Hai et al.
(2007) for wheat included accessions from four distinct
continents and the PIC of 0.51 registered by Landjeva
et al. (2006) represented the wheat germplasm created
in Bulgary over a period of almost 80 years.

In this work, 64 alleles were amplified with the
30 selected SSR markers, with the average of 2.13 alleles

per locus and the allelic variants abundance per locus

(A) ranging between one to four (Table 3). The effective

number of alleles (Ae) for the polymorphic markers

ranged between 1.14, for WMS389, and 4.08, for

WMS408, both mapped on the wheat B genome, and

with average value of 1.61. The number of alleles

expected for each of the markers from this set of

microsatellites, under the circumstances, should not be

lower than 1.61 when applied to a different group of

progenitors if it is to be maintained, at least, the same

level of diversity verified in this work. Otherwise, the

strategy of choice of progenitors should be revised.

Among the 54 accessions analyzed, 104 heterozygote

loci were detected (Table 4). Three accessions presented

only homozygote loci for all used SSRs and five

heterozygote loci were observed in one accession,

resulting in an average observed heterozygosity (Ho) of

0.06, as expected for a group of genotypes formed

exclusively by fixed lines.

The 54 accessions evaluated were divided into seven

main groups (Figure 1), using UPGMA dendrogram

based on Jaccard’s coefficient of similarity (average

similarity = 0.56). Since most of the analyzed germplasm

is derived from Mexican triticale, a high similarity among

them was expected. The PIC (0.36) and the average

number of alleles (2.13) indicate the expected low

polymorphism in the 54 genotypes and the obtained

average similarity value (0.56), indicative of moderate

variability, may change if a larger number of markers is

used to screen these genotypes, revealing a more actual

value. Tams et al. (2004, 2006) used wheat and rye

microsatellites to study genetic diversity of European

Table 3. Number and frequency of alleles, polymorphism
information content (PIC) values and effective number of
alleles (Ae) estimated for parental genotypes from Embrapa’s
triticale (X Triticosecale Wittmack) breeding program using
30 wheat (T. aestivum L.) genomic microsatellites (SSR).
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winter triticale and their results showed no distinct

clusters of lines from the same breeding source. On the

other hand, Kuleung et al. (2006) divided 80 hexaploid

triticale accessions available in the world collection into

five clusters (average similarity = 0.45).

Clusters obtained could not be clearly characterized

and besides the pedigree and the breeding source, other

data on the Embrapa’s germplasm were used to discuss

aspects of the resulting dendrogram. Group 1 was

subdivided into four subgroups, 1-a, 1-b, 1-c and 1-d

(Figure 1). Subgroup 1-a comprised four accessions

created at Cimmyt, all short in height, early in maturity

and susceptible to Fusarium graminearum, causal agent

of scab. About 50% of the lines included in subgroup

1-b share the germplasm of Tatu, a cultivar created at

Cimmyt and released for commercial use in Brazil. Within

subgroup 1-c, around 27% of the genotypes show shorter

height and earlier maturity and the same proportion of

accessions did not present high susceptibility to scab.

Subgroup 1-d is formed by a single cultivar,

CEP 28 – Guará, created at Cimmyt and released for

commercial use in Brazil. It is characterized by its

intermediate cycle and height as well as good behavior

against Drechslera tritici-repentis. The male parent

of CEP 28 – Guará integrates subgroup 1-b and is

present in the pedigree of 50% of the genotypes forming

this subgroup. In turn, CEP 28 – Guará’s female parent

is present in the pedigree of only two other accessions

among all 54 studied ones, both included in group 5,

PFT 0416 and PFT 0417, created at Cimmyt, showing

early maturity and short height.

Group 2 is represented by the only two accessions

comprising late cycle in this set of triticales, both showing

very good agronomic traits. All accessions included in

groups 3 to 4 are very susceptible to F. graminearum.

Group 3 was formed by a single genotype, PFT 0517, a

breeding line created and introduced from Cimmyt,

Mexico. PFT 0517 is the only genotype among all the

analyzed accessions that has the parental GAUR_3 and

BANT-1, and this might be the explanation for this

separated cluster. Group 5 is formed by the Brazilian

line PFT 0510 and two other sib lines, PFT 0416 and

PFT 0417, mentioned before.

Most accessions adapted to warm environments are

found in cluster 6, grouping accessions with good

agronomic type (80%), except for the Mexican lines

PFT 205 and PFT 0413 (intermediate). Finally, in

group 7, characterized by clustering genotypes of

intermediate maturity and height, two accessions can

be found, among all the analyzed triticales, that share

FD-693 in their pedigree, as well as IAC 2, the genotype

with the best performance against Magnaporthe grisea.
The use of rye microsatellites with wheat

microsatellites (genomic or derived from expressed

Table 4. Number of heterozygote loci (h) observed in triticale (X Triticosecale Wittmack) parental genotypes from Embrapa’s
improvement program analyzed with 30 wheat (T. aestivum L.) genomic microsatellites(1).

(1)Total heterozygote loci: 104
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Figure 1. Dendrogram of 54 triticale genotypes estimated by Jaccard’s coefficient based on 30 wheat genomic microsatellites.

sequences) must be considered in further studies with
this crop, distributing at least one pair of primers per
chromosome arm of all genomes. Regardless the
diversity revealed by rye SSR in triticale being lower in
comparison to wheat microsatellites (Kuleung et al.,
2004; Tams et al., 2004), this strategy allows the balanced
inclusion of all species genomes in triticale analysis. The

utilization of pooled data from both species, besides data

from more microsatellite markers or other marker class,

including expressed regions of the genome, would

provide a broader coverage of the triticale genome,

leading to more complete data about the species and its

diversity patterns.
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Conclusions

1. The 71.42% transferability of the chosen set of

wheat genomic microsatellites to triticale raises the
potential of exploiting these markers in Brazilian triticale
genetic and breeding studies.

2. The average number of alleles (2.13) and PIC
(0.36) indicate low variability in the set of genotypes
used in Embrapa’s triticale breeding program.
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