Comportamento de variedades de milho na safra 2007/2008, em Dourados, MS.

Gessi Ceccon¹; Cleso Antônio Patto Pacheco²; Maykom Ferreira Inocêncio³; Aline de Oliveira Matoso⁴

¹Embrapa Agropecuária Oeste. BR 163, km 253, Caixa Postal 661, CEP: 79.804-970, Dourados, MS. gessi@embrapa.cpao.br ²Embrapa Milho e Sorgo, ^{3,4}Acadêmicos UFGD e bolsistas ²Fundação Agrisus, ³Cnpq/Pbic. ³maykomagronomia@yahoo.com.br ⁴matosoagronomia@gmail.com

Palavras-chaves: Zea mays, produtividade, genótipos

O milho (*Zae mays* L.) é um cereal de grande importância econômica por sua utilização na alimentação humana e animal (em torno de 70% da produção do grão) e também na constituição de diversos produtos derivados (DUARTE, 2000).

Devido ao grande número de genótipos de milho (*Zea mays* L.) e a alta variabilidade de suas características agronômicas, há necessidade de se conhecer as variedades melhor adaptadas às condições edafoclimáticas de cada região, com a finalidade de maximizar a produtividade da cultura (FARINELLI *et al.*, 2003 e BRITO et al., 2004), possibilitando um direcionamento para recomendação de genótipos melhor adaptados.

Por ser uma planta de clima tropical, o melhor crescimento e desenvolvimento da cultura é encontrado nas semeaduras de setembro a novembro, onde a temperatura e disponibilidade hídrica estão adequadas ao seu ciclo vegetativo (FANCELLI; DOURADO NETO, 2004), sendo que a fase mais influenciada da cultura está entre a emergência e o florescimento, onde são determinados os fatores de produção da cultura (MILHO..., 1997).

O experimento foi implantado no campo experimental da *Embrapa Agropecuária Oeste*, em Dourados, MS, em Latossolo Vermelho Distroférrico textura argilosa, em 19 de outubro de 2007, sendo constituído por 36 variedades, oriundas do Ensaio de Variedades Centro, preparado pela *Embrapa Milho e Sorgo*. O delineamento experimental foi em blocos ao acaso com duas repetições, em duas linhas espaçadas de 0,80 m e com 5 m de comprimento, com semeadura de uma semente por cova. A adubação constou de 200 kg ha⁻¹ da fórmula 07-20-20 na semeadura e uma aplicação de 20 kg ha⁻¹ de N na forma de sulfato de amônia, aos 30 dias após a emergência das plantas.

Foram determinados o período da emergência da floração masculina, a altura das plantas e inserção das espigas, diâmetro de colmos, rendimento de grãos e massa de mil grãos, nas duas linhas de cada parcela. Não foram observadas diferenças entre as variedades quanto à incidência de doenças de folha, espiga e colmo, nem quanto ao acamamento ou quebramento de plantas. Os resultados foram submetidos à análise de variância e as médias comparadas pelo teste de Scott-Knott a 5% de probabilidade.

A análise de variância apresentou efeito significativo entre variedades para os parâmetros avaliados, exceto para o diâmetro do colmo, que apresentou média de 2,66 cm (Tabela 1). A variedade AL Bandeirante apresentou menor período da emergência à floração, sendo estatisticamente semelhante a outras 20 variedades, enquanto que o AL Alvorada apresentou o maior período. No entanto, a diferença entre o mais precoce e o mais tardio foi de apenas seis dias, fator esse, que em condições de campo pode não significar comportamento diferenciado entre as variedades para efeito de desempenho.

O rendimento de grãos variou entre 5.853 kg ha⁻¹, na variedade Bio 2 até 2.787 kg ha⁻¹ na variedade CMS 105, com de média 4.178 kg ha⁻¹, mostrando os diferentes potenciais produtivos das variedades para cultivo na safra verão, na região de Dourados.

A variedade UFV 86 apresentou a menor altura de plantas, enquanto que a variedades SHS 500EX, apresentou a maior altura de plantas (2,23m).

A maior massa de 1000 grãos, foi encontrada na variedade BR-511 Sertanejo (415g) seguida por MC 60 (395g), AL Piratininga(390g) e PC 0402(385g). Observa-se na Tabela 1, que as maiores valores não representam as maiores produtividades.

Os resultados obtidos no trabalho mostraram que as variedades avaliadas possuem um bom potencial produtivo com adaptação para a região, podendo direcionar a escolha e a recomendação de variedades para atender as condições de solo e clima de Dourados, MS. Um grupo de 15 variedades apresentou maior rendimento de grãos, com destaque para as variedades CMS 111 e BRS 4103, por apresentarem também menor ciclo e menor altura de plantas.

Tabela 1. Dias da emergência à floração (DEF), altura de plantas (AP), altura da inserção da espiga (IE), diâmetro médio do colmo (DMC), rendimento de grãos (RG) e peso de mil sementes (PMS) de variedades de milho, safra 2007/2008, Dourados, MS.

Genótipos	<u>DEF</u>	AP	IE	DMC	RG	PMS
	(dias)		<u>n</u>	cm	kg ha ⁻¹	g
Bio 2	72 a	2,09 a	1,25 a	2,95 a	5.853 a	340 b
SC 154 - Fortuna	68 b	2,04 a	1,25 a	2,56 a	5.456 a	360 b
AL Bandeirante	68 b	2,17 a	1,31 a	2,71 a	4.951 a	380 a
SHS 500EX	74 a	2,23 a	1,36 a	2,73 a	4.943 a	335 b
Fundacep 35	70 b	2,09 a	1,25 a	2,65 a	4.919 a	345 b
BRS 4103	70 b	1,80 b	1,03 b	2,80 a	4.908 a	355 b
CEPAF 2	68 b	2,08 a	1,28 a	2,59 a	4.878 a	365 a
CPATC 4	77 a	2,10 a	1,17 a	3,02 a	4.814 a	375 a
AL Piratininga	72 a	2,14 a	1,31 a	2,74 a	4.756 a	390 a
UFV 8	70 b	1,93 b	1,12 b	2,68 a	4.678 a	330 b
UFV 7	70 b	2,06 a	1,11 b	2,76 a	4.578 a	355 b
CMS 111	68 b	1,96 b	1,26 a	2,42 a	4.562 a	380 a
MC 60	68 b	2,06 a	1,27 a	2,70 a	4.426 a	395 a
IPR 114	72 a	1,90 b	1,08 b	2,74 a	4.425 a	355 b
AL 30/40	70 b	2,13 a	1,21 a	2,77 a	4.331 a	360 b
AL Alvorada	74 a	1,95 b	1,13 b	2,64 a	4.224 b	365 a
MC 20	72 a	2,00 b	1,26 a	2,90 a	4.214 b	360 b
PC 0402	72 a	1,98 b	1,18 a	2,61 a	4.096 b	385 a
CMS 101	68 b	1,94 b	1,04 b	2,55 a	4.093 b	350 b
BRS 2020	70 b	1,83 b	0,95 b	2,55 a	4.053 b	375 a
SHS 3031	68 b	1,97 b	1,17 a	2,61 a	4.012 b	325 b
CMS 108	74 a	1,86 b	1,00 b	2,42 a	3.971 b	335 b
CMS 106	77 a	2,16 a	1,25 a	2,57 a	3.895 b	370 a
BRS Planalto	68 b	2,05 a	1,19 a	2,26 a	3.854 b	355 b
CMS Caimbé	70 b	2,02 a	1,15 a	2,62 a	3.834 b	355 b
Fundacep 34	70 b	2,12 a	1,23 a	2,85 a	3.807 b	360 b
Missões	68 b	2,02 a	1,27 a	2,37 a	3.804 b	330 b
AL Ipiranga	72 a	1,98 b	1,16 a	2,56 a	3.766 b	350 b
CMS 109	68 b	1,87 b	1,05 b	2,86 a	3.653 b	375 a
UFV 6	70 b	1,79 b	1,07 b	2,54 a	3.577 b	325 b
Fundacep 49	72 a	2,13 a	1,23 a	2,59 a	3.575 b	375 a
BR 5011-Sertanejo	72 a	1,90 b	1,06 b	2,46 a	3.443 b	415 a
BRS Eldorado	72 a	2,21 a	1,38 a	2,85 a	3.347 b	380 a
BRS Sol da manhã	68 b	2,02 a	1,18 a	2,92 a	3.105 b	330 b
BR 473	70 b	1,92 b	1,20 a	2,47 a	2.829 b	335 b
CMS 105	68 b	1,83 b	0,90 b	2,81 a	2.787 b	340 b
Média Média	70,6	2,01	1,18	2,66	4.178	359
CV(%)	3,0	4,8	7,1	7,6	13	4,5

Médias seguidas da mesma letra na mesma coluna, pertencem ao mesmo grupo pelo teste de Scott-Knott a 5% de probabilidade.

Referências Bibliográficas

BRITO, A. H.; VON PINHO, R. G.; MENDES, M. C.; LIMA, T. G.; BORGES, I. D. Avaliação de cultivares de milho de ciclo normal na safra 2002/2003 em Lavras-MG. In: CONGRESSO NACIONAL DE MILHO E SORGO, 25.; SIMPÓSIO BRASILEIRO SOBRE A LAGARTA DO CARTUCHO, *SPODOPTERA FRUGIPERDA*, 2004, Cuiabá. **Anais**... Cuiabá: ABMS, 2004. p. 205.

DUARTE, J. de O. Introdução e importância econômica do milho. In: CRUZ, J. C.; VERSIANI, R. P.; FERREIRA, M. T. R. (Ed.). **Cultivo do milho.** Sete Lagoas: Embrapa Milho e Sorgo, 2000. (Embrapa Milho e Sorgo. Sistema de produção, 1). Disponível em: http://sistemasdeproducao.cnptia.embrapa.br/FontesHTML/Milho/CultivodoMilho/importancia.htm. Acesso em: 26 maio 2008.

FANCELLI, A. L.; DOURADO NETO, D. **Produção de milho.** 2. ed. Guaíba: Agropecuária, 2004. 360 p.

FARINELLI, R.; PENARIOL, F. G.; BORDIN, L.; COICEV, L.; FORNASIERI FILHO, D. Desempenho agronômico de cultivares de milho nos períodos de safra e safrinha. **Bragantia**, Campinas, v. 62, n. 2, p. 235-241, maio/ago. 2003.

MILHO: informações técnicas. Dourados: Embrapa-CPAO, 1997. 222 p. (Embrapa-CPAO. Circular técnica, 5).