

Efeito do nitrogênio e do potássio na severidade da antracnose foliar em duas cultivares de milho

Diego de Oliveira Carvalho¹, Edson Ampélio Pozza², -. Carlos Roberto Casela³ e Rodrigo Veras da Costa³

¹EMBRAPA Milho e Sorgo, Rod. MG 424, Km 65, CEP 35701-970, Sete Lagoas-MG.. diego@cnpms.embrapa.br, ²Universidade Federal de Lavras. eapozza@ufla.br, ³EMBRAPA Milho e Sorgo, casela@cnpms.embrapa.br e veras@cnpms.embrapa.br

Palavras-chave: Nutrição mineral, resistência, suscetibilidade, milho, área foliar lesionada.

A cultura do milho assume grande importância sócio-econômica, não somente pela grande área plantada, mas também por todo o complexo industrial agregado ao seu cultivo. O incremento do plantio de safrinha, aliado à adoção do sistema de plantio direto, sem obedecer à um planejamento de rotação de culturas, contribuiu para aumentar a incidência de muitas doenças antes relatadas como de importância secundária para a cultura (Pinto et al.; 2006).

Dentre as principais doenças, destaca-se a antracnose (*Colletotrichum graminicola*). Esta doença pode manifestar-se em qualquer parte da planta, como raiz, semente e, principalmente, colmo e folhas (Dale, 1963), e pode reduzir o rendimento de grãos em até 40%, dependendo do híbrido utilizado, do estádio fenológico da cultura e do ambiente onde está inserido o cultivo (Callaway et al.; 1992). Por ser um fungo necrotrófico, capaz de sobreviver em restos de cultura, *C. graminicola* ganhou importância entre os patógenos que infectam a cultura do milho, sobretudo nas áreas com sistema de plantio direto (Pinto et al.; 2006).

Até o presente momento nenhum produto químico foi registrado para o controle da doença. Nesse contexto, o manejo integrado de doenças (MID) ganhou destaque ao preconizar o uso de estratégias de controle mais eficientes e seguras do ponto de vista ambiental. O estado nutricional das plantas pode determinar sua maior ou menor predisposição às doenças. Normalmente, quando a nutrição é equilibrada, há maior capacidade de defesa das plantas. De acordo com Marschner (1995), a nutrição mineral pode, inclusive, influenciar o grau de resistência da planta, por atuar em modificações morfológicas ou histológicas, bem como na composição química dos tecidos, que se traduzem em resposta à infecção de patógenos. Esse efeito pode refletir também diretamente sobre o patógeno, afetando sua sobrevivência, reprodução e desenvolvimento.

Há poucas informações sobre a relação do estado nutricional das plantas e a sua suscetibilidade às doenças. Apesar das evidências do efeito do nitrogênio (N) e do potássio (K) no progresso de várias doenças em diversas culturas, são escassos os trabalhos a respeito da influência desses nutrientes sobre a antracnose foliar do milho.

Com o objetivo de verificar o efeito da adubação nitrogenada e potássica na severidade da antracnose foliar do milho foram montados dois experimentos, com vasos, em casa de vegetação, na Embrapa Milho e Sorgo, em Sete Lagoas-MG. No primeiro experimento, objetivou-se avaliar a severidade da antracnose foliar em plantas de milho da cultivar DAS 2B710 (moderadamente resistente à antracnose foliar) e, no segundo, em plantas de milho da cultivar BRS 1010 (suscetível). Em ambos, os vasos continham 5 kg de latossolo vermelho de

textura argilosa. A acidez do solo foi corrigida com calcário dolomítico (2 g/kg de solo). Todos os vasos receberam fósforo e magnésio na forma de superfosfato simples (4 kg/1000 kg de solo) e sulfato de magnésio (310 g/1000 kg de solo), respectivamente. Os micronutrientes B, Cu, Mn, Mo e Zn foram fornecidos por meio de solução salina contendo ácido bórico (4,6 g/1000 kg), sulfato de cobre (6 g/1000 kg), sulfato de manganês (10 g/1000 kg), molibdato de amônio (0,3 g/1000 kg) e sulfato de zinco (22 g/1000 kg) na data de plantio. Empregaram-se 25 tratamentos, delineados em blocos ao acaso, com quatro repetições e quatro plantas por parcela, em esquema fatorial com cinco doses de N (75; 150; 300; 600 e 1.200 mg.dm⁻³) e cinco doses de K (63; 125; 250; 500 e 1.000 mg.dm⁻³). Para fornecer os nutrientes N e K em cada tratamento, as aplicações foram parceladas em 4 (quatro) vezes, em intervalos regulares de 10 dias, a partir da data de plantio.

Aos 21 dias após o plantio, marcou-se com tinta a porção central do limbo da 1ª, 2ª e 3ª folhas, contadas a partir da folha mais jovem naquela ocasião e pulverizou-se a parte aérea com suspensão de 10⁶ conídios de *Colletotrichum graminicola*/mL de solução. Para propiciar condições favoráveis à infecção, as plantas inoculadas foram dispostas em câmara úmida e escura, por 16 horas, durante a noite, por 3 dias consecutivos. Após este período, as plantas foram dispostas em bancadas dentro da casa de vegetação, onde permaneceram por todo o período de avaliação. As avaliações foram realizadas diariamente, a partir dos 26 dias decorridos desde o plantio. Para avaliar a severidade da antracnose foliar do milho, utilizou-se uma escala de notas com valores de 1 a 5, modificada de Nicholson & Warren (1976), contendo a porcentagem de área foliar lesionada (AFL), conforme descrito na tabela 1.

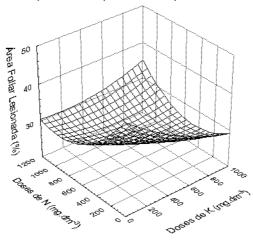
Tabela 1. Escala de notas, proposta por Nicholson & Warren (1976), modificada.

Notas de severidade	Tipo de infecção	Área foliar lesionada (%)
1,0	Ausência de doença.	0%
1,1 a 2,0	Infecção leve, presença de pequeno número de lesões alongadas sem esporulação.	0,5 a 5,0%
2,1 a 3,0	Infecção leve a moderada, presença de lesões alongadas sem esporulação ou de reação de hipersensibilidade.	6,5 a 20%
3,1 a 4,0	Infecção severa com grande número de lesões esporulantes e com alguma coalescência.	22 a 40%
4,1 a 5,0	Infecção muito severa, com lesões abundantes e coalescidas.	42 a 60%

Com base no tipo de lesão e na estimativa da área foliar lesionada, as notas 1, 2 e 3 foram consideradas como indicativo de reação de resistência e as notas 4 e 5 , de reação de suscetibilidade. Foram realizadas avaliações diárias durante um período de 7 dias – aos 7, 9 e 11 dias após a inoculação, até a estabilização dos sintomas típicos. As notas de severidade da última avaliação, aos 11 dias após a inoculação, foram convertidas em valores percentuais de área foliar lesionada.

Na tabela 2, encontram-se os resultados do quadrado médio da análise de variância, onde se verificou diferença significativa ao nível de 1% de probabilidade pelo teste de F, para a variável AFL, em ambas as cultivares de milho testadas. A interação entre as doses de N

e de K ficou evidente em ambas as cultivares, embora não tenha sido constatada influência da adubação nitrogenada e potássica sobre o progresso da doença na cultivar sucetível (BRS 1010).


Tabela 2. Resumo das análises de variância (quadrados médios) da área foliar lesionada (AFL) nas cultivares DAS 2B710 e BRS 1010, em função das doses de N e de K no solo.

FV	GL	AFL (%) – DAS 2B710	AFL (%) – BRS 1010	
Bloco	3	1103,92**	5,173 ^{NS}	
Doses de N	4	249,91 ^{NS}	$1,960^{NS}$	
Doses de K	4	$253,98^{NS}$	$25,760^{NS}$	
Doses N x Doses K	16	284,20**	41,110**	
CV (%)		32,84	5,95	

Não significativo.

Na cultivar moderadamente resistente (DAS 2B710), a menor porcentagem de AFL (18,83%) foi observada com 75 mg.dm⁻³ de N e 1000 mg.dm⁻³ de K e a maior (42,05%), nas doses de 75 mg.dm⁻³ de N e 63 mg.dm⁻³ de K, conforme figura 1.

 $AFL = 46,820 - 0,066^{\circ}N - 3,5x10^{\cdot 3}\kappa K + 5,246x10^{\cdot 5}\kappa N^{2} - 2,885x10^{\cdot 5}\kappa K^{2} + 4,704x10^{\cdot 5}\kappa NK - 9x10^{\cdot 8}\kappa N^{2}K + 8x10^{\cdot 8}NK^{2}; \ R^{2} = 0,62^{\circ}K^{2} + 4,704x10^{\cdot 5}\kappa NK - 9x10^{\cdot 8}\kappa N^{2}K + 8x10^{\cdot 8}NK^{2}K^{2} + 8x10^{\cdot 8}NK^{2} + 8x10^{\cdot 8$

Figura 1. Área foliar lesionada na parte aérea da cultivar DAS 2B710, em função de doses de N e de K no solo.

De acordo com os dados obtidos para a cultivar moderadamente resistente (DAS 2B710), ficou bem evidente a importância da relação N:K. Foi demonstrada a influência significativa da interação entre os dois nutrientes na resistência à antracnose foliar, não sendo possível analisar o efeito do nitrogênio e do potássio, isoladamente. Segundo Bedendo (1995), tanto macro como micronutrientes, em doses não equilibradas, influenciam o vigor e a reação de defesa das plantas e podem contribuir para a mudança na suscetibilidade do hospedeiro às doenças.

Com relação à cultivar suscetível (BRS 1010), embora tenha havido diferença significativa no teste de F para a interação NxK, os testes de T para a estimativa dos parâmetros

^{**} Significativo, pelo teste de F, a 1% de probabilidade.

não indicaram diferenças significativas, tanto para o modelo linear quanto para o modelo quadrático, refletindo a pouca variação que ocorreu neste genótipo, em função da nutrição mineral com nitrogênio e potássio. A menor AFL (48%) foi observada no tratamento que recebeu 75 mg.dm⁻³ de N e 1000 mg.dm⁻³de K e o maior (60%), nas doses de 75 mg.dm⁻³ de N e 63 mg.dm⁻³ de K.

Segundo Marschner (1995), a influência da nutrição mineral sobre a resistência das plantas às doenças é relativamente pequena em cultivares altamente suscetíveis ou altamente resistentes, mas bastante significativa em cultivares moderadamente suscetíveis ou moderadamente resistentes. Os resultados obtidos confirmam as diferenças expressivas na resistência à antracnose foliar nas cultivares DAS 2B710 (moderadamente resistente) e BRS 1010 (altamente suscetível). Ao contrário da cultivar DAS 2B710, independentemente das doses de N e de K utilizadas, a severidade da antracnose em plantas de BRS 1010, a partir da segunda avaliação, foi sempre muito elevada, ou seja, a adubação com N e com K não interferiu, de forma significativa, na resposta dessa cultivar à doença.

Além disso, a severidade da antracnose foliar nesse material foi sempre superior àquela observada em DAS 2B710, atingindo valores próximos ou iguais ao máximo na escala de notas. Em média, a AFL de DAS 2B710 foi 41% menor que aquela observada em BRS 1010, com valores extremos que variaram entre 25% e 61%, conforme descrito nas tabelas 3 e 4.

Tabela 3. Médias dos valores de porcentagem de área foliar lesionada (AFL) nas cultivares DAS 2B710 e BRS 1010.

Variáveis	DAS 2B710	BRS 1010
AFL*	32,11 ^a	54,44 ^b

Médias seguidas de letras diferentes diferem estatisticamente, pelo teste de Tukey (5%).

Tabela 4. Porcentagem de área foliar lesionada por antracnose foliar (*Colletotrichum graminicola*) nas cultivares DAS 2B710 e BRS 1010, em função de diferentes doses de N e de K no solo.

Tratamentos		Área Foliar Lesionada (%)		
Doses de N	Doses de K	DAS 2B710	BRS 1010	DAS/BRS
75	63	42,05	60,00	0,70
75	125	41,75	58,50	0,71
75	250	40,62	54,50	0,75
75	500	36,21	50,00	0,72
75	1000	18,83	48,00	0,39
150	63	38,14	51,50	0,74
150	125	38,03	56,50	0,67
150	250	37,43	56,00	0,67
150	500	34,66	53,00	0,65
150	1000	22,78	55,50	0,41
300	63	31,89	55,50	0,57
300	125	31,99	54,00	0,59
300	250	32,08	52,50	0,61
300	500	31,79	54,50	0,58
300	1000	29,41	54,00	0,54
600	63	25,73	54,50	0,47

"... continua..."

^{*} Valores médios em (%).

"Tabela 4.. Cont."

Tratamentos		Área Foliar Lesionada (%)		
Doses de N	Doses de K	DAS 2B710	BRS 1010	DAS/BRS
600	125	25,47	58,00	0,44
600	250	25,41	56,00	0,45
600	500	27,08	55,00	0,49
600	1000	37,60	51,00	0,74
1200	63	38,66	55,00	0,70
1200	125	34,69	49,50	0,70
1200	250	28,25	56,50	0,50
1200	500	21,68	56,00	0,39
1200	1000	33,71	55,50	0,61

Dessa forma, conclui-se que o uso da adubação equilibrada em N e K, como medida de manejo da antracnose foliar do milho, é dependente do genótipo com o qual se está trabalhando.

Referências bibliográficas

- BEDENDO, I. P. Ambiente e doença. In: BERGAMIN FILHO, A.; KIMATI, H.; AMORIM, L. (Ed). **Manual de fitopatologia**. 2.ed. São Paulo: Ed. Agronômica Ceres, 1995. p. 331-341.
- CALLAWAY, M. B.; SMITH, M. E.; COFFMAN, W. R. Effect of anthracnose stalk rot on grain yield and related traits of maize adapted to the northeastern. **Canadian Journal Plant Science**, United States, v. 72, n. 4, p. 1031-1036, 1992.
- DALE, J. L. Corn anthracnose. **Plant Disease Reporter**, v. 47, p. 245-249, 1963.
- MARSCHNER, H. **Mineral nutrition of higher plants**. 2.ed. New York: Academic, 1995. 889p.
- NICHOLSON, R. L.; WARREN, H. L. Criteria for evaluation of resistance to maize anthracnose. **Phytopathology**, v. 66, n. 1, p. 86-90, 1976.
- PINTO, N. J. A.; SANTOS, M. A. dos; WRUCK, D. S. M. Principais doenças da cultura do milho. **Informe Agropecuário**, v. 27, n. 233, p. 82-94, 2006.