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[1] The evolution of magnetospheric indices on temporal scales shorter than that of
substorms is characterized by bursty, intermittent events that may arise from turbulence
intrinsic to the magnetosphere or that may reflect solar wind-magnetosphere coupling.
This leads to a generic problem of distinguishing between the features of the system and
those of the driver. We quantify scaling properties of short-term (up to few hours)
fluctuations in the geomagnetic indices AL and AU during solar minimum and
maximum, along with the parameter � that is a measure of the solar wind driver. We find
that self-similar statistics provide a good approximation for the observed scaling
properties of fluctuations in the geomagnetic indices, regardless of the solar activity level,
and in the � parameter at solar maximum. This self-similarity persists for fluctuations on
timescales at least up to about 1–2 hours. The scaling exponent of AU index
fluctuations show dependence on the solar cycle, and the trend follows that found in the
scaling of fluctuations in �. The values of their corresponding scaling exponents,
however, are always distinct. Fluctuations in the AL index are insensitive to the solar
cycle, as well as being distinct from those in the � parameter. This approximate self-similar
scaling leads to a Fokker-Planck model which, we show, captures the probability
density function of fluctuations and provides a stochastic dynamical equation (Langevin
equation) for time series of the geomagnetic indices.

Citation: Hnat, B., S. C. Chapman, and G. Rowlands (2005), Scaling and a Fokker-Planck model for fluctuations in geomagnetic

indices and comparison with solar wind � as seen by Wind and ACE, J. Geophys. Res., 110, A08206, doi:10.1029/2004JA010824.

1. Introduction

[2] The Earth’s magnetosphere can be considered as
nonlinear, dissipative system which is driven by the time
varying solar wind. Accumulated energy is ultimately
dissipated, at least in part, through a system of currents
generated in the auroral zones of the ionosphere. These
currents produce small changes in the terrestrial magnetic
field which can be used to monitor magnetospheric activity.
The complex behavior of the magnetosphere, as suggested
by many observations [see, e.g., Horton et al., 1999; Lewis,
1991; Sitnov et al., 2000; Takalo et al., 2000; Vassiliadis et
al., 2000; Vörös et al., 2002], could then be attributed either
to intrinsic magnetospheric processes, the complex nature
of its coupling with the solar wind and the ionosphere or
both.
[3] Recent observations suggest that the multiscale nature

of this coupling is a fundamental aspect of magnetospheric
dynamics [see, e.g., Chang, 1992; Chapman and Watkins,
2001; Klimas et al., 1996; Ukhorskiy et al., 2003;
Vassiliadis et al., 2003; Weigel et al., 2003]. Evidence is

provided by a variety of observations which exhibit statis-
tical properties previously identified as hallmarks of multi-
scale systems. For example, bursty transport events have
been reported in the magnetotail [Angelopoulos et al., 1992]
and their auroral signatures suggest self-similar statistics
[Lui et al., 2000; Uritsky et al., 2001, 2002b, 2003; Kozelov
et al., 2004]. The fluctuations in the ground based measure-
ments of the magnetic field are non-Gaussian and also
exhibit scaling [Consolini et al., 1996; Kovács et al.,
2001; Vörös et al., 1998]. In the context of time series
analysis, geomagnetic indices are of particular interest as
they provide a global measure of magnetospheric output and
are evenly sampled over a long time interval. These indices
also show non-Gaussian statistics of fluctuations and anom-
alous scaling over the short timescales of up to few hours
[Consolini and De Michelis, 1998; Takalo et al., 1993; Hnat
et al., 2003a; Stepanova et al., 2003; Tsurutani et al., 1990].
The extent to which observed statistical features of the
geomagnetic indices arise directly from those of the solar
wind driver or the auroral currents is of fundamental
interest. This is an example of the generic problem of
distinguishing between features intrinsic to a driven system
and those in the driver, when both show scaling. Some
recent studies has focused on direct comparison of scaling
properties of the driver with these found in the geomagnetic
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indices [Freeman et al., 2000; Uritsky et al., 2001; Hnat et
al., 2003a] to establish whether, to the lowest order, they are
directly related.
[4] The difficulty with interpreting these observations

arises from the fact that statistical features described above
can be recovered from many existing models. Self-
organized criticality (SOC) and turbulence have both been
extensively used [Angelopoulos et al., 1999; Consolini and
De Michelis, 1998; Klimas et al., 2004a, 2004b; Kozelov
and Kozelova, 2003; Uritsky and Pudovkin, 1998; Uritsky et
al., 2002a] in the past. Practically, one needs to obtain
experimental constrains with which different models with
similar characteristics can be tested. In this paper we present
one possible approach to characterizing the time series in
the context of scaling that does not rely on a specific model
of multiscale systems [Sornette, 2000; Hnat et al., 2003a].
The aim is to obtain statistical scaling properties directly
from the data.
[5] Here, we will examine the statistical properties of

Akasofu’s � [Perreault and Akasofu, 1978] parameter,
which represents the energy input from the solar wind into
the magnetosphere, and that of magnetospheric response as
seen by the geomagnetic indices. Previously, scaling has
been quantified over a 10 year data set for the indices and a
comparison between d� and the indices included, but was
not restricted to, the solar minimum (1984–1987) [Hnat et
al., 2003a]. Here, we will perform this comparison over
intervals of solar minimum and maximum separately. The
statistical description of the experimental data will be
extended to 10 standard deviations of the fluctuations.
[6] To facilitate the comparison of all considered quanti-

ties we will first explore to what extend their fluctuations
exhibit approximate self-similar scaling for temporal scales
of 1–2 hours. The quality of this self-similar approximation
combined with values of the scaling exponents obtained at
the solar minimum and maximum can be used to charac-
terize each quantity. We will see that values of scaling
exponents on these temporal scales for the geomagnetic
indices are different from these found in the solar wind �
regardless of the phase of the solar cycle. Remarkably, the
scaling exponent of the AL index is unchanged between
solar minimum and maximum whereas the AU scaling
exponent changes with the solar cycle. In this respect, the
AU index seems to follow the trend found in the driver, �
i.e., the value of scaling exponent increases with increasing
solar activity. We then construct a Fokker-Planck model for
fluctuations in the geomagnetic indices and the � at solar
maximum as these exhibit the most satisfactory self-similar
scaling. This allows us to obtain analytically a functional
form of the fluctuation probability density function (PDF)
which we can then check against the data. A stochastic
dynamical model can then be formulated by considering the
most general form of the Langevin equation and deriving
functional forms of the coefficients that are consistent with
the Fokker-Planck equation [see, e.g., Hnat et al., 2003b].

2. Data and Methods

2.1. Data Sets

[7] To facilitate this analysis we used multiple data sets
that spanned over different phases of the solar cycle. Two
year intervals of data were selected centered on solar

minimum and solar maximum. The solar wind data were
obtained from WIND and ACE spacecraft observations.
These were collected in the vicinity of the L1 point
approximately 1 AU (Astronomical Units) from the Sun.
The periods of coverage, final sampling frequencies and
number of samples are given in the Table 1. The geomag-
netic indices and the corresponding spacecraft data sets are
not contiguous. The calibrated geomagnetic data set, from
which intervals of interest has been selected, spans from
January 1978 to December 1988 inclusive, while the
spacecraft data are available starting from 1995 for WIND
and 1998 for ACE. This available data coverage does not
permit examination of successive solar cycles. We thus need
to assume that the statistical properties of fluctuations are
invariant from one solar cycle to the next. In the case of the
spacecraft data, these include slow and fast solar wind
streams.
[8] The solar wind velocity measurements, provided by

the SWE instrument on board of WIND and ACE space-
craft, have varying temporal resolutions. In the case of
WIND this resolution is in the range of 75–98 s while for
the ACE spacecraft it changes between 60 and 120 s. The
magnetometer data sets, on the other hand, have fixed
temporal resolution of 46 s for WIND MFI instrument
and 16 s in the case of the ACE magnetometer. The SWE
data sets have been then resampled using linear interpola-
tion to give uniform resolution of 92 s for WIND (twice the
magnetometer resolution) and 64 s for the ACE spacecraft
(four times magnetometer resolution). No other post pro-
cessing, such as detrending or smoothing, was applied to
data. The � parameter is defined [Perreault and Akasofu,
1978] in SI units (Watts) as � = v(B2/m0) l0

2 sin4(Q/2), where
l0 � 7RE and Q = arctan(jByj/Bz), and was calculated from
WIND and ACE spacecraft key parameter databases.
[9] All techniques discussed here are based on differenc-

ing of the original time series over a range of temporal
scales t. This method is often used in turbulence studies to
compare the properties of fluctuations on different spatio-
temporal scales [see, e.g., Frisch, 1995]. For a given time
series x(t) a set of differences dx(t, t) = x(t + t) � x(t) will
then capture fluctuations on temporal scale t. Here, we will
examine the statistical properties of the PDF of fluctuations
dx(t, t). The t parameter will be given in power law form
such as t = dtAU (1.2)n s, where dtAU is a sampling time of
the AU time series (here, 1 min) and n � 1 is an integer.
This choice of t gives a uniform distance between points
when plotted on the logarithmic scale while the small base
of the power law (1.2) assures that the adequate number of
temporal scales are explored. We stress that the differencing
is performed only if both x(t + t) and x(t) exist and are
separated by time interval t.

2.2. Statistical Methods

[10] Generalized structure functions (GSF) Sm are widely
used to characterize non-Gaussian processes [Frisch, 1995;
Hnat et al., 2003a]. These functions can be defined for
fluctuations dx(t, t) as Sm(t) � hjdxjmi, where m can be any
real number, not necessarily positive. If Sm exhibits scaling
with respect to the time lag t, for a sufficiently large range
t < tmax, we also have within that range Sm / tz(m). In
this case a log-log plot of Sm versus t should reveal a straight
line, extending up to tmax, for each m and the gradients
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correspond to values of z(m). Generally, z(m) can be a
nonlinear function of order m, however if z(m) = am (a
constant) then the time series is self-similar (or more
precisely, self-affine) with single scaling exponent a. This
special case leads immediately to a Fokker-Planck descrip-
tion [Hnat et al., 2003b]. The difficulty with computing GSF
for higher orders, say, m > 4 arises from the slow conver-
gence of this method and its sensitivity to large statistical
errors in extremal events in the tails of the distribution. These
effects can, as we shall see, lead to large errors in the
estimation of z(m) (see also Horbury and Balogh [1997]
for the discussion of error estimation for structure functions).
One possible approach is to eliminate these extreme events
from the fluctuation time series dx(t, t) in a way that is
consistent with the growth of the self-similar fluctuations’
range on each temporal scale. This process is referred to as
conditioning. Previously, a similar technique based on the
wavelet filters has been used to separate the intermittent
parts of the signal from the homogeneous noise in the AE
index data [Kovács et al., 2001]. We will condition our GSFs
by imposing a threshold A on the fluctuation size [Hnat et
al., 2003a]. The threshold will be based on the standard
deviation of the differenced time series for a given t, A(t) =
10s(t). Under conditioning, the GSF can be expressed in
term of the fluctuation PDF as:

hjdxjmi ¼
Z A

�A

jdxjmP dx; tð Þd dxð Þ: ð1Þ

This procedure is then consistent with scaling z(m) = ma if
it is present in the data, but for threshold A sufficiently large
it does not enforce it on the data.
[11] The PDF rescaling technique is a generic and model-

independent method of testing for statistical self-similarity
in the data set. If the data is self-similar, then a single
argument representation of the fluctuation PDF, Ps(dxs), can
be found in the form:

P dx; tð Þ ¼ t�aPs dxt�að Þ; ð2Þ

where a is the rescaling exponent. This form of the PDF is
also valid only up to a maximum temporal scale tmax.
Substituting the rescaled quantities Ps and dxs = dxt�a into
the GSF definition given by (1) we obtain:

hjdxjmi ¼ tma
Z As

�As

jdxsjmP dxsð Þd dxsð Þ / tz mð Þ; ð3Þ

where t < tmax and the integral now has no explicit
dependence on temporal scale t. The last proportionality in
equation (3) assumes that the conditioning process does not
change the scaling properties of events of size less than A.
The function z(m) should not depend on the particular

value of A selected for the conditioning. We have verified
this by comparing scaling results for the range of values of
the threshold A = [8,12]s(t). Equation (3) immediately
relates the PDF rescaling to self-similar scaling of the GSF
with z(m) = ma.
[12] The scaling properties of GSF coincide with those

found for the moments of the data, computed without the
absolute value operator, as long as relation (2) is valid for
the PDF of differences and provided that the moments do
not vanish. As we shall see, the fluctuation PDFs of AU, AL
and � are rather well described by a model (derived via the
Fokker-Planck approach) that is symmetric. Thus, to within
the statistical error of the data set, the scaling with t given
by (3) captures the behavior of the even-order moments,
whereas the odd moments are small.
[13] In this approach PDFs are generated using nonover-

lapping intervals of the original data. Figure 1 illustrates the
difference between nonoverlapping and overlapping inter-
vals. Let us consider a time series xk = x(tk) with sampling
time dt so that tk = t0 + kdt and k = 1, 2, . . ., N.
The differences computed with nonoverlapping intervals
are then given by dxj = x(t0 + jt) � x[t0 + (j � 1)t]. Writing
time lag t as t = mdt we obtain d xj = x(t0 + jmdt) � x[t0 +
( j � 1)mdt], or in shorter notation dxj = xjm � x( j-1)m,
where j = 1, 2, . . ., [(N � 1)/m] + 1. On the other hand,
for overlapping intervals we obtain dxj = xj+m � xj where
j = 1, 2, . . ., N � m. This method assures that fluctuations
are not temporally correlated; an important assumption for a
Fokker-Planck model we will consider later. These two
methods are thus complementary as one provides a scaling
exponent while the other gives an underlying probability
distribution of fluctuations.

3. Results and Discussion

3.1. GSF Analysis

[14] We will first present scaling properties of the GSFs
for the indices and the � parameter during solar minimum
and solar maximum. To illustrate the effect of conditioning,
we first show, in the inset of Figure 2, a log-log plot of
structure functions Sm obtained for fluctuations in the raw
time series of the AU index at solar maximum for orders 1 �
m � 6. We see that, for orders m > 3 there is no clear
evidence of scaling; the points do not lie on straight lines.
Similar lack of scaling was also found for fluctuations in the
AL index and the � parameter. The main panel of Figure 2

Table 1. Data Sets Description

Quantity Solar Cycle dt, s Dates N, mln Source

AL, AU minimum 60 01/85 to 12/86 1.05 WDC STP
AL, AU maximum 60 01/79 to 12/80 1.05 WDC STP
� minimum 92 08/95 to 07/97 0.63 WIND
� maximum 64 01/00 to 12/01 0.68 ACE

Figure 1. The use of (upper graph) nonoverlapping and
(lower graph) overlapping intervals in generating difference
time series.
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shows exponents z(m) obtained by performing linear fits to
logarithms of moments log[Sm(log(t))]. We see that the
curves z(m) are not monotonic functions of m, excluding the
possibility of multifractal scaling. We now condition this
data set as discussed above, to check if true scaling
properties are not obscured by poor statistics of extreme
and very rare events. We monitored the impact of condi-
tioning with A = 10s(t) on the original difference time
series by counting the number of excluded events. In all
cases no more than 1% of the given data set was eliminated.
[15] Figures 3–5 show a log-log plot of structure func-

tions Sm for the d�, d (AU) and d (AL) indices at solar
maximum and for order m from 1 to 6. The main indication
of successfully recovered scaling after the conditioning
process is the quality of the linear fit to log[Sm(t)] versus
log(t). We clearly recover a family of straight lines with

slopes z(m), up to order m = 6 for fluctuations in AU and AL
indices and in �. This scaling extends for 1.5 decades up
to temporal scales of tmax �1–2 hours in good agreement
with these reported earlier [Takalo et al., 1993; Tsurutani et
al., 1990; Hnat et al., 2003a]. This corresponds to the
characteristic timescale of substorms. Figure 6 shows that
fluctuations in all quantities, at solar maximum, exhibit
approximate self-similar scaling to within statistical errors.
The error bars represent Gaussian estimates based on a least
square fit of the straight line to the power law structure
functions. As such they are underestimated as the processes
we discuss are non-Gaussian. The size of these error bars
combined with the convex shape of the function z(m) for the
AL index also allows a weakly multifractal interpretation of
the scaling. We stress, however, that the error bars in
Figure 6 do not include many other uncertainties (not
statistical) that are difficult to estimate. For example, the
WIND spacecraft magnetometer data have absolute accu-
racy of about 0.1nT and the indices data have integer values

Figure 2. Exponents of unconditioned generalized struc-
ture functions as a function of order m for fluctuations in the
�(�), AU(6), and AL(4) index during solar maximum. The
inset shows structure functions Sm of orders m = 1–6 for
d(AU).

Figure 3. Structure functions Sm of orders m = 1–6 for
fluctuations in the � parameter at solar maximum.

Figure 4. Same as Figure 3 for the AU index.

Figure 5. Same as Figure 3 for the AL index.
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(also in units of nT). Such discreteness in the time series
may lead to erroneous estimates of low-order moments
while the finite size of the data could alter true scaling of
the high-order moments. Independent of any given choice
of a model for the functional form of z(m) we can perform a
direct comparison between the z(m) measured for the
different quantities at solar minimum and maximum. In
order to develop a Fokker-Planck approach we will then
make a further step and assume that a reasonable approx-
imation is given by z(m) = ma, that is, self-similar scaling.
[16] Figures 7–9 show structure functions Sm for all

quantities at solar minimum and with order m varying again
from 1 to 6. We see that moments of fluctuations for the
geomagnetic indices show satisfactory scaling up to tem-
poral scales of 1–2 hours. In the case of � at solar minimum
there is a departure from a single set of scaling exponents
z(m) for the smallest timescales t < 12 min. To facilitate a
comparison with conditions at solar maximum and with the
indices we will fit straight lines to obtain z(m) for t =

[12,90] min bearing in mind that this does not capture the
behavior of fluctuations on the smallest timescales. This
change in scaling properties for � may reflect differences
between solar wind evolution at solar minimum and max-
imum related to physical properties of slow and fast wind
components [Pagel and Balogh, 2002]. Figure 10 is con-
structed identically to Figure 6 and shows scaling exponents
z(m) for solar minimum.
[17] To make a comparison between behavior at maxi-

mum and minimum we plot, in Figure 11, exponents z(m) at
solar minimum and maximum overplotted for AL, AU and �
respectively. Examining these figures we conclude that the
scaling properties of the AL index fluctuations are remark-
ably insensitive to the change in solar activity. The values of
z(m) and the corresponding scaling exponents are the same,
to within the statistical error for solar minimum and max-
imum. On the other hand the scaling exponents of fluctua-
tions in both � and the AU index vary with the solar cycle.
The scaling of d (AU) is distinct from these of d (AL) and d�
but follows the trend of d�. A possible interpretation of these

Figure 6. Exponents of conditioned generalized structure
functions as a function of order m for fluctuations in the
�(�), AU(6), and AL(4) index during the solar maximum.

Figure 7. Structure functions Sm of orders m = 1–6 for
fluctuations in the � parameter at solar minimum.

Figure 8. Same as Figure 7 for the AU index.

Figure 9. Same as Figure 7 for the AL index.
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observations is that the AL index fluctuations more closely
reflect the internal dynamics of the magnetotail and are
insulated from solar cycle related changes in the solar wind.
In contrast, the AU index is more strongly coupled to solar
cycle associated changes in the solar wind driver. This is
consistent with our understanding of the global roles of
these indices [e.g., Baumjohann and Treumann, 1996]. The
fluctuations in AU, however, have values of scaling expo-
nents different from that observed for the driver � at solar
minimum and maximum, which may suggest that (1) � does
not completely capture all relevant information about the
driver, (2) the indices do not fully capture the magneto-
spheric response or (3) the difference reflects the nonlinear
nature of the solar wind-magnetosphere coupling.
[18] If we compare the scaling exponents of d (AU) and d�

during solar minimum and maximum we see that both
quantities follow a similar trend. Closer examination of
scaling exponents for fluctuations in the � and the AU index
reveals that the difference aAU � a� � 0.06 is almost
identical for solar minimum and solar maximum period, to
within the statistical error. This could indicate that the
‘‘conversion rate’’ of fluctuations in the driver to those in
the AU index is nearly constant and independent of the
strength of the driver.
[19] All scaling exponents a derived by fitting z(m) = ma

are given in the Table 2 together with the approximate

maximum temporal scale tmax for which self-similarity can
be identified in the differenced time series. These temporal
scales have been derived using R2 goodness of fit analysis
for moment with m = 2. We have also verified that GSF
analysis of combined time series over solar minimum
and maximum recovers results presented in our previous
work [Hnat et al., 2003a].

3.2. Probability Density Function (PDF) Rescaling

[20] We now present the results of the PDF rescaling
analysis which allows us to compare directly the PDFs of
the studied parameters at solar minimum and maximum.
Owing to the rather poor scaling of the higher moments for
the � fluctuations at solar minimum we will not apply this
rescaling to their PDFs. We simply state that our previous
work suggested that PDFs of fluctuations in the geomag-
netic indices and that of the � fluctuations differed signif-
icantly when considered time interval spanned more then a
solar minimum [Hnat et al., 2003a].
[21] Figures 12 and 13 show rescaled PDFs of fluctua-

tions in the AU, AL index respectively for solar minimum
(empty symbols) and solar maximum (filled symbols) while
Figure 14 shows these PDFs for the � parameter but only at
solar maximum. These PDFs correspond to the function
Ps(dxs) in equation (2). Each plot shows overplotted Ps(dxs)
at four temporal scales, t = 10, 16, 26 and 42 min. These
figures show data up to 10 standard deviation on any given
temporal scale, consistent with the conditioning procedure
described above. All rescaling exponents a used to con-
struct these plots, are taken directly from the GSF analysis.
We find that, when solar minimum and maximum data sets
are taken separately, these PDFs collapse on a single curve
after rescaling (2) is applied. The quality of the collapse for
the PDFs was checked using the Smirnov-Kolmogorov
[Press et al., 1988] test and the significance of the null
hypothesis (both curves drawn from the same distribution)
was always found to be above the 0.975 ± 0.05 level.
[22] The rescaling confirms what we have already found

by applying GSF analysis, in that a single exponent a is
sufficient to give close correspondence of the curves. As we
have shown in equation (3) this is consistent with approx-
imate self-similar scaling z(m) = ma from the GSF analysis.
Once rescaled, using the values of exponents obtained
separately for solar minimum and maximum, we see that
the curves are distinct and the difference is most clear for
the AU index shown in Figure 12.
[23] We also compared the functional form of these

curves by applying normalization to their respective stan-

Figure 10. Same as Figure 6 for data around solar
minimum.

Figure 11. Comparison of functions z(m) during solar minimum and maximum for fluctuations in the
AL index, AU index and the � parameter.
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dard deviation on a given temporal scale, ss(t). We found
that the normalized PDFs for maximum and minimum are
indistinguishable within the errors for AU and AL. Similar
results were reported for ground based measurements of the
magnetic field [Weigel and Baker, 2003] where authors also
found that the statistics of fluctuations, when normalized to
the standard deviation, is not sensitive to changing solar
wind conditions.

4. The Fokker-Planck Model

[24] The Fokker-Planck (F-P) equation provides an im-
portant link between statistical properties of the system and
the dynamical approach expressed by the Langevin equation
[van Kampen, 1992]. The F-P approach can be readily
applied if fluctuations are self-similar and statistically inde-
pendent (uncorrelated) [van Kampen, 1992]. The above
analysis suggests that self-similar scaling is a reasonable
approximation to the data. The independent nature of incre-
ments is enforced by considering nonoverlapping intervals
for differencing, as discussed in section 2.2.
[25] In the most general form the F-P equation can be

written as:

@P

@t
¼ rdx A dxð ÞP þ B dxð ÞrdxPð Þ; ð4Þ

where P � P(dx, t) is a PDF for the differenced quantity dx
that varies with time t and A(dx) and B(dx) are transport
coefficients which vary with dx. It can be shown that, under
the assumption of power law scaling A(dx) / dx1-1/a and
B(dx) / dx2-1/a, a class of self-similar solutions of (4) can be
found that also satisfies the rescaling relation (2) [Hnat et
al., 2003b]. These assumptions combined with the use of
rescaled variables dxs = dxta and Ps lead to the following
equation:

b0

a0
dxsð Þ dPs

d dxsð Þ þ Ps þ
a
a0

dxsð Þ
1
aPs ¼ C dxsð Þ

1
a�1; ð5Þ

where a0, b0, C are constants and a is the rescaling
exponent derived, for example, from GSF analysis. The
general solution of (5) is given by the sum of homogeneous
and inhomogeneous solutions [Chapman et al., 2005]:

Ps dxsð Þ ¼ a0

b0

C

jdxsja0=b0
exp �a2

b0
dxsð Þ1=a

� �

�
Z dxs

0

dx0s
� �a0=b0 exp a2

b0
dx0s
� �1=a� �

dx0s
� �2�1=a

� d dx0s
� �

þ k0H dxsð Þ; ð6Þ

where k0 is a constant and H(dxs) is the homogeneous
solution:

H dxsð Þ ¼ 1

jdxsja0=b0
exp �a2

b0
jdxsjð Þ1=a

� �
: ð7Þ

The simple model described above assumes that self-similar
scaling persists for all dx. This assumption is expected to
hold for a physical system for a large but finite range of dx.
In particular, it will break down as dxs ! 0 giving a
singularity in the solution Ps as dxs ! 0. This singularity is
integrable for 0 � a0/b0 � 1 and outside of this range can be
considered as an asymptotic solution.
[26] We have found that fluctuations in the geomagnetic

indices in solar minimum and maximum and these in � at
solar maximum exhibit self-similar statistics to a reasonable
approximation. We will now show that the functional form
of the PDF obtained from the F-P model (6) is a good
approximation for the observed rescaled distribution Ps(dxs)
of fluctuations shown in Figures 12–14. On Figures 12–14
we have overplotted solution (6), shown by thick dashed
line, with a taken to be that obtained from the GSF analysis.
Table 3 gives values of all parameters assumed for each of
the plotted solutions. Although the F-P solutions obtained
here are symmetric, they provide a good fit to the
fluctuation PDFs, to within errors, as we can see in
Figures 12–14. However, the PDF of fluctuations in geo-
magnetic indices do posses a weak asymmetry [Hnat et al.,
2003a] that leads to small departures of the predicted curves
from the observed ones.
[27] We note an obvious departure of our predicted curves

from the measured PDF for the smallest fluctuations, in all
considered cases. This is due to the functional form of (7)
where H(dxs) ! 1 when dxs ! 0 arising from the
assumption that the self-similar scaling extends to arbitrary
small fluctuations. To model this part of the curve, we

Table 2. Scaling Indices Derived From GSF Analysis

Quantity Solar Cycle a From GSF tmax, hours

dAU minimum �0.35 ± 0.01 1
dAU maximum �0.43 ± 0.01 1
dAL minimum �0.39 ± 0.02 2
dAL maximum �0.37 ± 0.03 2
d� minimum �0.26 ± 0.02 2
d� maximum �0.32 ± 0.02 2

Figure 12. Rescaled PDFs of the d(AU) during solar
minimum (open symbols) and maximum (filled symbols).
Symbols correspond to temporal scales t = 10, 16, 26,
and 42 min. The dashed line represents a solution of the
Fokker-Planck model (equation (6)) with parameters given
in Table 3. See color version of this figure at back of this
issue.
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would need to include the scaling, or lack of thereof,
introduced by the uncertainty in the measurements. We
would expect such processes to be dominant for the smallest
fluctuations. For example, if we assume that the smallest
fluctuations are dominated by Normally distributed noise,
then a diffusion model with a constant diffusion coefficient
D0 could, in principle, be used to tame this singular
behavior. This stochastic approach can be extended to
obtain the Langevin equation for the dynamics of the
fluctuations [Hnat et al., 2003b]. The Langevin equation
can be written in the most general form as:

d dxð Þ
dt

¼ b dxð Þ þ g dxð Þx tð Þ; ð8Þ

where the random variable x(t) is assumed to be d-correlated.
Equation 8 can be transform into purely additive noise
form:

dz

dt
¼ b zð Þ

g zð Þ þ x tð Þ; ð9Þ

where z =
Rdx
0

1/g(dx0) d(dx0). It has been shown [Hnat et al.,

2003b] that one can obtain a functional form of coefficients
b(dx) and g(dx) in terms of a0, b0 (from equation 5) and
the scaling exponent a. Such an equation provides a
dynamical model for time series with the required
statistical properties.

5. Summary

[28] The response of the Earth’s magnetosphere to the
solar cycle and, by implication, a changing character of
solar wind activity, illuminates the interplay between
intrinsic magnetospheric dynamics and solar wind-
magnetosphere coupling. Statistical studies provide a simple
and yet unifying way to quantify this behavior in the context
of models for intermittency. In this paper we considered
scaling properties of the solar wind driver, quantified by the
� parameter, and geomagnetic indices during solar minimum
and maximum. We emphasize that the conditioning proce-
dure applied to a differenced time series eliminates the most
extreme events from the data. In the case of � this procedure
excludes some features of the large coherent structures in
the solar wind, such as shocks or mirror mode structures. In
this sense the conclusions of our investigation apply
predominantly to the interaction between ambient solar
wind and the magnetosphere. Also, consistent with previous
studies we find scaling in the geomagnetic indices on
timescales shorter than 1–2 hours, that is shorter than the
characteristic substorm timescale. This choice of temporal
scales then naturally excludes substorm features from our
comparative study. We find that:
[29] 1. Fluctuations in the geomagnetic indices show

approximate statistical self-similarity for a range of tempo-
ral scales. Fluctuations in the � at solar minimum show
departure from scaling for t < 10 min. The self-similar
scaling emerges as a reasonable approximation for fluctua-
tions d� at solar maximum. Fluctuations in the geomagnetic
indices exhibit self-similar scalingon temporal scalesbetween
2 min to 1–2 hours. The fluctuations in � scales from
2 min to1.5 hours, but only at solar maximum.
[30] 2. Fluctuations in the AL index exhibit scaling

properties insensitive to the phase of the solar cycle.
[31] 3. The scaling exponent of d(AU) changes with the

solar cycle and the trend follows that of the � parameter.

Figure 13. Same as Figure 12 for the AL index
fluctuations. See color version of this figure at back of this
issue.

Figure 14. Same as Figure 12 for the � parameter
fluctuations at solar maximum. See color version of this
figure at back of this issue.

Table 3. Values of Parameters Used for F-P Model Solutions

Plotted in Figures 12–14

Quantity Solar Cycle b0 a0/b0 k0 C

dAU minimum 190 1.875 0.28 6 � 10�7

dAU maximum 16 1.875 0.20 1 � 10�5

dAL minimum 1200 1.85 0.36 5 � 10�6

dAL maximum 1200 1.85 0.32 7.5 � 10�6

d� maximum 2 � 1030 2.15 2.5 � 109 1 � 10�34
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[32] 4. The value of the scaling exponents of indices and
that of the � parameter differ from each other at both solar
minimum and maximum. This difference between scaling
exponents of d(AU) and the driver d� is approximately the
same at solar minimum and maximum.
[33] 5. A Fokker-Planck approach can be used to model

the fluctuation PDF for the geomagnetic indices in both
phases of the solar cycle and the � at solar maximum to a
good approximation.
[34] The approximate statistical self-similarity found for

the indices for solar minimum and maximum and the � at
solar maximum is consistent with complex multiscale
processes such as turbulence or self-organized criticality
(SOC). The distinct values found for scaling exponents
may reflect physical differences in the solar wind and the
magnetosphere but may also be due to the very different
way in which these quantities are derived. The fluctuations
in the AU index depend on the solar cycle but the scaling
exponent is distinct from that of � fluctuations. Interest-
ingly, the difference between scaling exponents of d(AU)
and the driver d� appears to be approximately constant.
These observations, when combined together, suggest that
the process involved in generating fluctuations in the AU
index is coupled to the solar wind driver, as seen in the
solar cycle dependence. In contrast to the AU index
fluctuations, these in the AL index are nearly insensitive
to the change in solar cycle implying that the AL index is
a measure of activity intrinsic to the magnetosphere. This
is consistent with the AU index more closely monitoring
activity on the dayside and AL reflecting activity in the
magnetotail.
[35] The self-similar scaling of fluctuations allows us to

model their statistics using a Fokker-Planck approach. We
obtained analytically a functional form of the fluctuation
PDF which approximates the measured PDF rather well. We
stress that such an approach links the statistical features
discussed here to dynamical modeling of the time series via
stochastic Langevin equations.
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Figure 12. Rescaled PDFs of the d(AU) during solar minimum (open symbols) and maximum (filled
symbols). Symbols correspond to temporal scales t = 10, 16, 26, and 42 min. The dashed line represents
a solution of the Fokker-Planck model (equation (6)) with parameters given in Table 3.

Figure 13. Same as Figure 12 for the AL index fluctuations.
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Figure 14. Same as Figure 12 for the � parameter fluctuations at solar maximum.
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