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Direct-write printing of stem cells within biomaterials presents an opportunity to engineer 

tissue for in vitro modelling and regenerative medicine. Here we report a first example of 

constructing neural tissue by printing human neural stem cells (hNSCs) that are differentiated 

in situ to functional neurons and supporting neuroglia. The supporting biomaterial 

incorporates a novel clinically relevant polysaccharide-based bioink comprising alginate (Al), 

carboxymethyl-chitosan (CMC) and agarose (Ag). The printed bioink rapidly gels by stable 

crosslinking to form a porous 3D scaffold encapsulating stem cells for in situ expansion and 

differentiation. Differentiated neurons are spontaneously active, show a bicuculline-induced 

increased calcium response, and are predominantly gamma-aminobutyric acid (GABA) 

expressing.  The 3D tissues will facilitate investigation of human neural development, 

function and disease, and may be adaptable for engineering other 3D tissues from different 

stem cell types. 

 

 

1. Introduction 

3D bioprinting to generate functional tissues has been made possible by recent advances in 

printing technology, materials science and stem cell science. Also known as additive 
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biofabrication, 3D bioprinting has provided a paradigm shift in in vitro tissue engineering, as 

a potential remedy to limited supply of functional tissues for modelling development and 

disease, and transplantation therapy
[1]

. Bioprinting enables specification of extracellular 

features and cell organisation for increased control of 3D tissue fabrication. Compared to 

traditional 2D methods of cell culture in monolayers, 3D printed cultures better recapitulate 

the natural cell environment and cell-cell interaction for more authentic, reliable and clinically 

relevant tissue generation. Key features of a printed construct include porosity for diffusion of 

oxygen and nutrients, and correct mechanochemistry of component biomaterials to promote 

cell adhesion, survival, networking and function
[2]

.   

Strategies for additive tissue fabrication include printing of biomaterial scaffolds that 

are seeded with cells following printing
[3]

, or concomitant (co-) printing of biomaterials and 

cells resulting in encapsulated cell constructs
[3-9]

. The strategy of co-printing offers many 

advantages including immediate integration of cells with printed biomaterials, more rapid 

production of a construct, and more authentic simulation of the in vivo tissue environment 

whereby cells are completely surrounded by and in direct contact with extracellular 

components and other cells. These features serve to provide a simpler, more automated and 

defined approach to biomaterial-cell interfacing for reproducible, robust and germane 

construct development.   

Here we report a well-defined and reproducible method for making a novel 3D neural 

mini-tissue construct (nMTC) by microextrusion bioprinting frontal cortical hNSCs with a 

supporting bioink followed by in situ differentiation to functional neurons and supporting 

neuroglia. The bioink comprises polysaccharides Al, CMC and Ag, which form a gel by 

chemical crosslinking following extrusion with hNSC encapsulation. Al and Ag provide 

structural support for the construct, with Al enabling gelation in the presence of cations after 

printing and Ag conferring suitable bioink viscosity during printing prior to gelation. CMC is 

a water soluble derivative of chitosan and conducive to cell survival within the construct. 
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hNSCs can be maintained as self-renewing cells following printing, continuing to proliferate 

in situ for approximately 10 days. Differentiation of hNSCs principally results in GABAergic 

neurons, together with glial cells expressing astrocyte and oligodendrocyte lineage markers. 

Importantly, neurons are spontaneously active and show a bicuculline-induced increased 

calcium response, indicative of the presence of receptors for GABA and therefore GABA 

responsive neurons, and consistent with the occurrence of aforementioned GABAergic 

neurons. Finally, the method will enable interrogation of neural development, function and 

disease and may be adaptable for generating other neuronal and non-neuronal MTCs in vitro. 

Moreover, the MTCs have the potential to be used to develop larger macro-tissue constructs 

by either “rational design”, “autonomous assembly” or both
[1]

.       

 

2. Results and Discussion 

2.1. Bioprinting hNSC-Laden Al-CMC-Ag Gel Constructs 

To generate hNSC-laden gel constructs we developed a printable bioink of 5% weight per 

volume (w/v) Al, 5% w/v CMC and 1.5% w/v Ag (Figure 1A-C; Video S1, Supporting 

Information). Inks comprising lower (0.5% w/v) or higher (2.5% w/v) Ag concentrations were 

associated with lower and higher viscosities respectively resulting in poorly defined scaffold 

structures (Figure 1D).  Printability of the optimal bioink was supported by its uniform 

consistency, with minimal fluctuations in extrusion force (around 8.5 N) required for printing 

and indicative of homogeneity within the solution (Figure 1E).  Homogeneity was also 

reflected by uniform hNSC distribution and viability throughout the construct immediately 

following printing (Figure 1C). As expected, lower viscosity water control showed a 

similarly constant but lower magnitude (around 2 N) extrusion force profile (Figure 1E).   

Ink gelation following ionic-crosslinking resulted in an initial compression modulus 

(EComp) of around 7.5 kilopascals (kPa), with an indentation modulus (EInd) of around 4.75 
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kPa. While subsequent temporal analysis of EInd indicated decreasing stiffness of the gel, the 

rate of change diminished towards stabilising at around 0.8 kPa by day 10 (Figure 1F).  

Gel porosity was examined in the absence of cells by low vacuum scanning electron 

microscopy (SEM), with freeze-fracturing for internal analysis. Surface scanning of gels 

comprising different concentrations of CMC indicated variable porosity, with 5% and 3.5% 

w/v CMC associated with a highly and sparsely porous surface respectively, and 2% or less 

w/v CMC gels associated with negligible to no pores (Figure 2A). SEM of the gel interior 

revealed an assembly of polyhedral pores throughout regardless of CMC content, although a 

range of pore diameters were observed (Figure 2B).  Therefore, gels with 5% and 3.5 % w/v 

CMC comprised a network of larger and smaller sized pores, with the smaller pores often 

connecting the larger pores. In contrast, gels with 2% or less w/v CMC principally comprised 

larger pores, with relatively few small pores.   

Intrinsic gel permeability was studied by measuring the uptake of bovine serum 

albumin (BSA) by 5% and 3.5% w/v CMC gels and applying a non-steady state diffusion 

model
[10]

.  For both gels, BSA uptake reached equilibrium by 8 h (Figure 2C), also shown by 

finite element modelling (COMSOL; Figure 2D). The diffusion coefficients were 6.56 x 10
-7 

and 5.56 x 10
-7

 for 5% and 3.5% w/v CMC gels respectively. Further studies of 5% w/v CMC 

gels using confocal microscopy image-based analysis confirmed the rate of uptake and 

diffusion of BSA throughout the gel (Figure 2E; Video S2 and Figure S1, Supporting 

Information). 

  

2.2. Characterisation of Encapsulated hNSCs 

Initial studies of hNSC survival and proliferation within the printed gel construct showed 

CMC content of the gel influenced hNSC viability, with preferred 5% w/v associated with 

greater cell loading (indicated by area measures of individual cells and cell aggregates) 
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compared to lower concentrations (F (3, 580) = 22.77, P < 0.0001). Furthermore, there was a 

significant difference in the effect of CMC content with increasing days of culture (F (11, 

580) = 13.82, P < 0.0001). Following 9 days culture of 5% w/v CMC-gel constructs, 

Bonferroni post hoc analysis revealed cell support to be significantly greater than gel 

constructs with lower CMC content at any time during culture (P < 0.0001; Figure 3A,B), 

while support by gel constructs with 5% and 3.5% w/v CMC content at day 5 culture was 

greater than Al-Ag alone (ie. no CMC) at day 9 of culture (P < 0.01 and P < 0.05 

respectively; Figure 3A,B). Although cell loading of 5% w/v CMC gel increased for the 

duration of culture (indicative of hNSC proliferation), loading decreased from the time of 

printing for gels with no or 2% w/v CMC, while 3.5% w/v CMC gel supported an initial 

increase up to day 5 with subsequent reduced cell loading apparent by day 9 post-printing 

(Figure 3A,B). Area measurements of viable cells and aggregates in the gels comprised a 

wide range of values (manifest as large standard deviations, Levene’s Test (Absolute 

deviations), F (11, 580) = 7.59, P < 0.0001), indicative of a large range of hNSC aggregate 

sizes (Figure 3B). Importantly, the population variances were not significantly different 

according to Levene’s Test (Squared deviations; P = 0.68 (F (11, 580) = 0.75)), satisfying 

homogeneity of variance testing for statistical analysis by ANOVA.       

Further growth profiling of viable and dead cells over time within optimal 5% w/v 

CMC gel demonstrated relatively high (around 25%) cell death immediately after printing 

(day 0), with the proportion of dead hNSCs subsequently decreasing (F (7, 30) = 14.10, P < 

0.0001) to being statistically significant on day 4 post-printing (P < 0.001), continuing to 

around 8% by day 6 (Figure 3C). Live cell analysis supported cell proliferation (F (9, 20) = 

146.62, P < 0.0001), reaching significantly different on day 5 compared to day 1 after printing 

(P < 0.0001), before peaking at day 11 (Figure 3D). Confocal microscopy revealed persistent 

homogenous live cell distribution throughout the constructs, with hNSCs visible as single 



 

6 

 

cells on day 1 following printing, and aggregates of cells increasingly apparent thereafter (day 

3 – day 11) (Figure 3E; Figure S2, Supporting Information).  

Immunophenotyping at 3 weeks post-printing demonstrated hNSCs expressed 

undifferentiated cell markers SOX2 (Figure 4A,C), vimentin (Figure 4A,D) and nestin 

(Figure 4B), as well as the nuclear proliferation marker KI67 (Figure 4B). Negligible levels 

of the differentiation and neuronal-specific cytoskeleton protein TUJ1 (Figure 4C), astrocyte 

marker glial fibrillary acidic protein (GFAP) and oligodendrocyte lineage transcription factor 

2 (OLIGO2) were expressed (Figure 4D).   

 

2.3. Characterisation of In Situ Differentiated hNSCs   

Based on hNSC growth profiling we opted to explore in situ differentiation by inducing 

hNSCs to functional neurons and neuroglia 10 days post-printing. Immunophenotyping 2 

weeks after initiating differentiation revealed neurons that expressed TUJ1 (Figure 5A; Video 

S3, Supporting Information), GABAergic markers GABA and glutamic acid decarboxylase 

(GAD) (Figure 5B), with concomitant low SOX2 expression (Figure 5A). OLIGO2 and 

GFAP expression were mutually exclusive (Figure 5C), and presynaptic vesicle glycoprotein 

synaptophysin was apparent as small puncta often adjacent to cell bodies (Figure 5D). In 

addition, immunolabelling of TUJ1 3 weeks after differentiation confirmed persistent cell 

viability within constructs, with neuronal cell clusters interconnected by neurites (Figure 5E). 

Gene expression analysis by reverse-transcription quantitative PCR (RT-qPCR) 

corroborated immunophenotyping by showing upregulation of pan-neuronal and neuroglial 

markers along with neuronal sub-type specific markers under differentiation conditions 

(Figure 5F).  RT-qPCR also included comparison between 3D and conventional planar hNSC 

culture and differentiation, with 3D differentiation predominantly associated with higher 

transcript levels for neuronal and neuroglial markers compared to 2D differentiation (Figure 
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5F). Specifically, in situ 3D differentiation induced a higher expression of TUJ1 (F (3, 4) = 

1380.21), GFAP (F (3, 4) = 55171.42), OLIGO2 (F (3, 4) = 1667.92) and synaptophysin (F (3, 

4) = 315.75) mRNA compared to undifferentiated 3D hNSC constructs, and conventional 2D 

culture and differentiation (Figure 5F).  Interestingly, GFAP expression was markedly 

increased. Also, 3D gel-based differentiation accelerated upregulation of GABAergic 

neuronal marker GABA (F (3, 4) = 1239.48), and to a lesser extent other GABAergic markers 

NKX2.1 (F (3, 4) = 69.52) and MYST (F (3, 4) = 2172.40), as well as transcripts relevant to 

other neuronal subtypes included, vesicular glutamate transporter (VGLT; F (3, 4) = 769.13), 

serotonin transporter (SRT; F (3, 4) = 315.75) and serotonin neuronal maker PET1 (F (3, 4) = 

11.66) (Figure 5F).          

We next investigated functional maturation of in situ differentiated hNSCs by 

measuring spontaneous and bicuculline-induced calcium response of neurons.  Neurons 

displayed spontaneous calcium spikes (Figure 6A; Video S4, Supporting Information), and 

recurrent bursting activity was induced through disinhibition of cells by application of 

bicuculline, a GABA(A) receptor antagonist (Figure 6B; Video S5, Supporting Information).    

A final assessment of neurons within the 3D construct was made by SEM, revealing 

cells with rounded soma and extensive neurite outgrowth (Figure 6C).  

                                                                                                

3. Conclusion 

3D extrusion bioprinting offers a versatile platform for fabricating human cell-based tissue 

constructs from novel clinically-relevant biomaterial-cell combinations. To date, several 

examples of cell printing have been described and include human dermal fibroblasts and 

umbilical vein endothelial cells (HUVECs)
[3]

, hepatocarcinoma cells (HepG2)
[4]

, adipose stem 

cells
[5, 6]

, and mesenchymal stromal cells
[6]

. Non-human cell printing has included murine 
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embryonic stem cells for in situ embryoid body formation
[7]

, and primary murine cortical 

neurons and myoblasts
[8, 9]

.  

Here we describe the first example of direct-write printing of hNSC-laden bioink to 

engineer a novel functional 3D nMTC. Co-printing of cells with the bioink provides an 

efficient, defined and simple approach to biomaterial-cell interfacing, with post-printing 

gelation resulting in cell encapsulation for in situ hNSC expansion and differentiation. The 3D 

tissues generated are amenable to characterisation for studying neural development and 

function, including understanding how microenvironmental features affect cell and tissue 

phenotypes, and have the potential to be adapted to other stem cell types for generating 

neuronal and non-neuronal tissues in vitro.  Importantly, the bioink comprises widely 

available, inexpensive and well characterised components Al, CMC and Ag that have been 

optimally combined to form a printable, clinically-compatible gel. The consistency of the 

bioink solution underpins its reliability for printing constructs anew and constructs that are 

homogenous for uniform cell supportability. This is reflected by demonstrated homogenous 

hNSC distribution and viability throughout the construct following printing. Studies of 

modulus after gelation quantitate the mechanical stiffness and therefore construct integrity 

necessary for post-printing maintenance and handling, and cell support.  The stiffness of our 

gel is in the range of human brain tissue, with previous reports of in vivo stiffness ranging 

from 0.5 - 14 kPa
[11-14]

. While temporal studies of indentation modulus suggest an initial rapid 

decrease in stiffness, the diminishing rate of reduction combined with hNSC survival, 

proliferation and differentiation support enduring biocompatibility with lower gel moduli.   

The mechanical properties of a gel, including the modulus and porosity of the matrix 

environment, affect cell behaviour such as proliferation and differentiation
[15]

. Although Al 

was initially chosen as the basis of the gel due to its recognised stability as a 3D structure, low 

toxicity, and cytocompatible gelation, CMC sustained hNSC survival ostensibly by 

influencing gel porosity and permeability, while Ag provided requisite bioink viscosity for 
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optimal Ag-CMC printing. Other known properties conceivably beneficial to our approach 

include high moisture retention of CMC, and antimicrobial and low inflammatory responses 

of both Al and CMC, all features conducive to cell support and survival
[16, 17]

. Moreover, as a 

derivative of chitosan, CMC is deemed to have low to absent toxicity,  no mutagenic effects, 

affects cellular expression of growth factors, and promotes cell adhesion, migration and 

proliferation
[2, 18]

.  

Characterisation of cells within our system support hNSC self-renewal for several 

weeks following printing and therefore the ability to scale-up hNSC number in situ prior to 

differentiation.  Importantly, hNSCs can be induced to functional neurons and supporting 

neuroglia, with gene expression analysis by RT-qPCR indicating differentiation of stem cells 

in the 3D constructs may be advantageous compared to conventional 2D platforms for 

accelerated neuronal, neuroglial and synapse formation. Interestingly, the highly expressed 

glial marker GFAP is consistent with its key role in central nervous system (CNS) processes 

including astrocyte-neuron interactions as well as cell-cell communication, with the latter 

extending to astrocyte mediated synapse formation and function
[19-21]

.  The system may also 

bias neuronal differentiation to GABAergic lineage, making it attractive for inhibitory 

neuronal and tissue modelling. Notwithstanding, the occurrence of other neuronal subtypes 

including glutamatergic and serotonergic, indicate the potential for more expansive modelling, 

with the possibility of enriching subtype neuronal expression through, for example, cytokine 

supplementation
[22]

.   

 Finally, calcium imaging of functioning neurons within the 3D construct together with 

SEM imaging of neurons and neurites with complex 3D morphologies demonstrate platform 

utility for modelling human neural cell form and activity, and fabricating functional 3D 

human neural tissue.  As such, the platform is amenable to translational drug-screening in 

vitro, studying human neurodevelopment and disease, and possibly neural tissue engineering 

for CNS tissue replacement.     
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4. Experimental Section 

hNSC Culture and Differentiation: Working stocks of hNSCs (Millipore: SCC007) were 

maintained by standard 2D culture, seeding at a density of 2-3 x 10
6
 cells into low-attachment 

6-well plates (Corning) containing NeuroCult™ NS-A Basal Medium (Human; Stem Cell 

Technologies) supplemented with heparin (2 µg/ml; Sigma), epidermal growth factor (EGF, 

20 ng/ml; Peprotech) and basic fibroblast growth factor (bFGF, 20 ng/ml; Peprotech). hNSCs 

were passaged for subculture every 5-7 days by digesting in TrypLE (1-2 ml; Gibco BRL) for 

3 min at 37°C.  Digested cultures were triturated to single cells, and plated at a density of 

5x10
4
 cells/ml using low-attachment 6-well plates (Corning).  

hNSCs were differentiated by digesting cultures as above and plating 5x10
4
 cells/cm

2
 

onto 6-well plates (Greiner Bio-One) coated with laminin (20 μg/ml; Life Technologies) 

containing  2 parts DMEM F-12 : 1 part Neurobasal supplemented with 2% StemPro (Life 

Technologies), 0.5% N2 (Gibco) and brain-derived neurotrophic factor (BDNF; 50 ng/ml; 

Peprotech) up to 7 days. A half-volume medium change was performed every 2-3 days.  

For 3D hNSC culture and differentiation, the same media employed for 2D culture and 

differentiation were used, however, washing of printed constructs was performed immediately 

after printing and gelation (see Bioprinting below).  Washing was performed by rinsing 

constructs for 1 min three times in 37
o
C culture medium followed by two 10 min washes and 

1 h incubation in media before ongoing culture with penicillin (100 U/ml) and streptomycin 

(100 µg/ml; Life Technologies) under 5% CO2 at 37°C.  

Cells used in this study are approved for use by the University of Wollongong’s 

Human Research Ethics Committee (HE14/049), and regularly tested and maintained 

mycoplasma free.  
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Bioink Preparation: Different concentrations of agarose (Ag; 

Biochemicalsc.Com.Au) solution (including 0.5, 1.5 or 2.5% w/v) were prepared in 

phosphate-buffered saline (PBS; pH7.4) by heating in a microwave oven, with agitation every 

5 sec. Alginate (Al; MW ∼50,000 Da, M/G ratio of 1.67, viscosity of 100–300 cP for 2 w/w 

solution, 25°C; Sigma-Aldrich Pty Ltd) was added to give 5% w/v and stirred at 60 °C for 30 

min. Finally, carboxymethyl-chitosan (CMC; Shanghai Dibai Chemical Pty Ltd) was added to 

give 2, 3.5 or 5% w/v and stirred at 60 °C for a 1 h. The final solutions were subsequently 

cooled to RT, ready for combining with hNSCs and direct-write printing.  

Bioprinting: Samples were extrusion printed into a cubic construct (10mm x 10mm x 

10mm) using a 3D-Bioplotter® System (EnvisionTEC GmbH; Video S1, Supporting 

Information). hNSC-laden bioink samples comprised 5x10
6
 cells suspended in bioink (0.5 ml). 

Samples were loaded into a 55CC barrel (Nordson Australia Pty Ltd), centrifuged at 1000rpm, 

15
 o
C for 1 min to remove air bubbles, placed in the printing magazine, and fitted with a 200 

µm printing nozzle (Nordson Australia Pty Ltd). Blender™ open source software was 

employed to design the scaffold and translated into numerical code for printing onto 

autoclaved glass slides at 15 
o
C. The applied pressure for optimal bioink was 1.5-2.0 bar. 

Following printing, scaffolds were immersed in 2% w/v calcium chloride for 10 min for 

crosslinking
[23]

.  

Bioink Consistency Measurement: Bioink consistency was measured using 

previously described method
[9, 24]

. Briefly, variations in extrusion force were measured during 

sample deposition in real-time. Samples were loaded into a syringe with the plunger coupled 

to the upper clamp of an EZ-S mechanical tester (Shimadzu). Measurements were performed 

in compression mode using a 10 N load cell, with a constant strain applied at 0.2 mm s
-1

, and 

recording the force over time. Distilled water was used as a control.   

Gel Modulus Measurement: Modulus was determined using both compression and 

indentation tests as previously described
[9]

. Briefly, compression testing was performed using 
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an EZ-S mechanical tester fitted with a 10 N load cell, with samples tested at a strain rate of 2 

mm min
-1

. The compression modulus (EComp) was calculated from the stress-stain curve, with 

three different samples used for testing and the average values reported.  Indentation modulus 

(EInd) was also evaluated using an EZ-S mechanical tester but a flat stainless steel indenter (1 

mm in diameter) with a 2 N load cell was used to indent the samples at a rate of 0.1 mm/min. 

Again, three different samples were tested at a minimum of four different locations per 

sample.   

Diffusion Studies: Diffusion of solute into the gels was measured similarly to 

previously described method
[8, 10]

. Three cylindrical hydrogels (n=3) of 2 cm x 0.35 cm 

diameter were immersed in PBS containing fluorescently labeled bovine serum albumin 

(FITC-BSA, 250 µg/ml, Sigma) and maintained at constant temperature of 37 ºC in a shaking 

water bath. Protein uptake was determined by sampling the solution and measuring the loss of 

protein over time until it reached equilibrium using a micro-plate reader (Fluostar Omega, 

BMG Labtech). Concentrations of BSA were calculated from a standard curve. Diffusion 

coefficients of FITC-BSA in the gels were calculated using a nonlinear regression method and 

modelled using the finite element method (COMSOL 4.2)
[10, 25, 26]

.  

Scanning Electron Microscopy (SEM): For surface porosity studies, samples were 

submersed in hNSC culture media for 24 hr, freeze dried overnight using a Christ Alpha 2-4 

LD Freeze Dryer, then coated with gold (20 nm) using an Edwards sputter coater, and kept 

desiccated until analysed.   SEM was performed using a JSM-7500FA LV Scanning Electron 

Microscope. For studies of internal porosity with and without cells, samples were fixed with 

3.7% paraformaldehyde (PFA, Fluka) for 30 min, immersed in liquid nitrogen for 60 seconds, 

and then freeze-fractured using a cold razor blade. The fractured samples were immediately 

observed on the JSM-6490 LV Scanning Electron Microscope.  

Live/Dead hNSC Analysis: Calcein AM (5 μg/ml, Life Technologies) and propidium 

iodides (PI, 5 μg/ml, Life technologies) were used to identify live and dead cells respectively, 
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according to the manufacturer’s instructions. Briefly, hNSC-laden constructs were incubated 

with Calcein AM at 37 
o
C for 10 min, followed by a media change, incubation with PI for 1 

min, and a further media change. A confocal microscope (Leica TSC SP5 II) was used for 

image acquisition, with images from a minimum of five optical planes per construct merged 

(to capture the maximal projection of whole cell aggregates) for analysis using Fiji (Image J) 

software. Three independent samples were evaluated for each gel composition. Depth coding 

of cells shown in Supplementary Fig. 2 was performed using the 3D Projection Tool in Leica 

Application Suite X (LAS X) software (Leica). 

hNSC Proliferation Analysis. PrestoBlue™ cell viability reagent was used for hNSC 

proliferation studies, according to the manufacturer’s instructions. Briefly, at each time point 

measured, three hNSC-laden constructs were incubated with the reagent in culture medium 

for 1 hr at 37 
o
C. Following incubation, for each sample, supernatant (100 µl) was transferred 

to a well of a 96-well plate and screened by a microplate reader (POLARstar Omega) to read 

fluorescence intensity. After processing, constructs were rinsed in culture medium and 

returned to culture, with the process repeated for each time point until the study was 

completed.   

Immunocytochemistry: Samples were fixed with 3.7 % PFA solution in PBS at RT 

for 30 min, rinsed in PBS, and then blocked and permeabilized overnight at 37 
o
C with 5% 

(v/v) donkey serum in PBS containing 0.3% (v/v) Triton X-100 (Sigma). Samples were 

subsequently incubated with fluorescence conjugated antibodies GFAP (mouse, 1:100; Cell 

signalling), SOX2 (rabbit, 1:100; Cell signalling), vimentin (rabbit, 1:200; Cell signalling), 

OLIGO2 (mouse, 1:100; Millipore), KI67 (mouse, 1:200; Invitrogen), TUJ1 (mouse, 1:100; 

Abcam) and nestin (mouse, 1:100; Invitrogen), or unconjugated primary antibodies 

synaptophysin (rabbit, 1:200; Millipore), GABA (rabbit, 1:200; Sigma) and GAD (rabbit, 

1:500; Millipore) at 4°C overnight.  On the second day, samples were rinsed with 0.1% Triton 

X-100 in PBS three times, and samples with unconjugated primary antibody were incubated 
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with Alexa Fluor tagged secondary antibody (1:1000; Invitrogen) for 1 hr at 37 °C. Nuclei 

were visualised with 4',6-diamidino-2-phenylindole (DAPI, 10 μg/ml) at RT for 10 min and 

antifade reagent (Invitrogen) was employed to preserve fluorescence signal. Samples were 

mounted onto glass coverslips using Aquamount (ThermoScientific) and imaged on a 

confocal microscope  (Leica TSC SP5 II). Images were collected and analysed using Leica 

Application Suite AF (LAS AF) software (Leica).  

Real Time Quantitative PCR (RT-qPCR): Gel-encapsulated cells were extracted for 

subsequent RNA isolation by treatment with disodium ethylenediamine tetraacetate (EDTA; 

0.05 M) for 10 min to dissolve the gel
[27]

.  After treatment, samples were centrifuged at 600 g 

for 5 min to collect the cells. Total RNA was then isolated using Trizol reagent (Invitrogen) 

and the quantity and purity of  RNA was assessed using a NanoDrop™ 2000c 

Spectrophotometer (Thermo Scientific). RNA was transcribed to cDNA with random primers 

and RT-qPCR was performed using a Gotaq 2-step RT-qPCR Kit (Promega) on a Bio-Rad 

CFX real time instrument. The data were analyzed using the delta-delta Ct method. For 

primer sequences, see Table S1, Supporting Information. 

Calcium Imaging: For calcium imaging, samples were loaded with Fluo-4 (23917; 2 

µM; Life Technologies) in fresh culture medium, incubated for 30 min at 37 
o
C, and washed 

with Tyrode’s solution (5 mM KCl, 129mM NaCl, 2mM CaCl2, 1mM MgCl2, 30mM D-

Glucose and 25 mM HEPES, Ph 7.4)
[28]

. Samples were mounted on coverslips and imaging 

was performed at RT on a confocal microscope (Leica TSC SP5 II). LAS AF Lite software 

(Leica) was used to collect and quantify time-lapse excitation ratio images. GABA(A) 

receptor antagonist bicuculline (50 µM; Sigma) was added into Tyrode’s solution for 3 min to 

induce intracellular calcium. Depth coding of cells was performed using the 3D Projection 

Tool in LAS AF software (Leica). 

Statistical Analyses: Statistical analyses were performed in OriginPro 2015 (Version 

b9.2.272) using one-way analysis of variance (ANOVA) with Bonferroni multiple 
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comparison post hoc test or two-way ANOVA with Bonferroni post hoc test. Homogeneity of 

variance tests were performed to confirm statistical assumptions were met for ANOVA.  

Statistical significance was set at P < 0.05.  
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Figure 1. Generation of 3D nMTCs with optimal hNSC-laden Al-CMC-Ag bioink. A) 

Schematic illustrating the major stages of the method for direct-write printing hNSCs with 

bioink for 3D culture and differentiation. B) Printed gel scaffold comprising optimal 5% w/v 

Al, 5% w/v CMC and 1.5% w/v Ag. C) Live (Calcein AM) and dead (propidium iodide; PI) 

hNSC staining within optimal printed gel scaffold. D) Poorly defined scaffold structures 

comprising 0.5% and 2.5% w/v Ag. E) Consistency/homogeneity of optimal bioink (green 

line) demonstrated by extrusion force required for printing. Water control (blue line) 

employed for comparison. F) Indentation modulus (EInd; blue bars) of optimal gel over time 

(mean ± S.D.; n = 3) and % modulus (green dots) remaining at a specified time point relative 

to the initial modulus at day 0 (EInd0).      
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Figure 2. Characterization of porosity and permeability of gels. A) SEM showing surface 

porosity of gels with different concentrations of CMC. B) SEM showing internal porosity of 

gels with different concentrations of CMC. C) Uptake by diffusion of FITC-BSA from 

immersion solution into 5% and 3.5% w/v CMC gels. Diffusion of BSA from solution into 

submerged gels is indicated by decreasing measures of fluorescence in solution (data for a 

specific time point normalized against data for initial time point; Ct/C0). D) Finite element 

model of BSA diffusion into 5% and 3.5% w/v CMC gels (COMSOL Multiphysics 5.0: 2D 

axisymmetric; 2 domains: gel (small/inset rectangle) and solution (large/enclosing rectangle)). 

E) Assessment by confocal microscopy of FITC-BSA diffusion through optimal 5% w/v 

CMC gel. Photomicrographs and quantitative data show increasing fluorescence intensity at a 

single optical plane and distal from the point of delivery (see also Figure S1 and Video S2, 

Supporting Information), supporting diffusion throughout the gel.            
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Figure 3. Survival and proliferation of printed hNSCs. A) Live (Calcein AM) and dead 

(propidium iodide; PI) hNSC staining at specific time points following direct-printing in gels 

with different concentrations of CMC. hNSCs are visible as single cells and aggregates of 

cells. B) Comparative assessment of viable hNSC content of constructs depicted in (A) 

including single cells and aggregates of cells by measuring the area of Calcein AM staining 

within constructs. Mean ± S.D.; n = 3. Two-way ANOVA with Bonferroni multiple 

comparison post hoc test. *P < 0.05 (3.5% w/v CMC day 5, vs Al-Ag day 9); **P < 0.01 (5% 
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w/v CMC day 5, vs Al-Ag day 9); ***P < 0.0001 (5% w/v CMC day 9 vs all comparisons). 

C) Time course of dead hNSC content of optimal 5% w/v CMC gel from day 0 to day 7 after 

printing (mean ± S.D.; n = 3). One-way ANOVA with Bonferroni post hoc test. * P < 0.001 

(day 4 vs day 0). D) Time course of live (PrestoBlue™ cell viability indicator) hNSC content 

of optimal 5% w/v CMC gel from day 1 to day 19 after printing (mean ± S.D.; n = 3). One-

way ANOVA with Bonferroni post hoc test. * P < 0.0001 (day 5 vs day 1). E) Printed hNSCs 

within the optimal gel construct showing grid/scaffold structure at specific time points. 

hNSCs are initially visible as single cells immediately following printing (day 1), with 

aggregates of cells increasingly apparent over time (day 3 – day 11). See also Figure S2, 

Supporting Information. 
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Figure 4. Immunophenotyping of hNSCs encapsulated within an optimal gel construct 3 

weeks after printing. A) hNSCs stained with DAPI colocalized with SOX2, and expressed 

vimentin. B) Cells also expressed nuclear proliferation marker KI67 and hNSC marker nestin.  

C) hNSCs expressed negligible levels of differentiated neuron marker TUJ1. D) hNSCs 

expressed negligible levels of differentiated astrocyte and oligodendroglial lineage markers 

GFAP and OLIGO2 respectively.   
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Figure 5. Immunophenotyping and gene expression of differentiated hNSCs encapsulated 

within an optimal gel construct. A) Cells (24 days post-printing, including 14 days 

differentiation) stained with DAPI and expressed neuronal marker TUJ1 with negligible levels 

of hNSC marker SOX2 (see also Supplementary Video 3). B) Neurons expressing 

GABAergic neuron markers GABA and GAD. C) Gliogenesis within neural constructs 

supported by astrocyte and oligodendroglial lineage markers GFAP and OLIGO2 respectively. 

D) Synaptogenesis within neural constructs illustrated by presynaptic protein synaptophysin. 

E) Cells (31 days post-printing, including 21 days differentiation) stained with DAPI and 

expressed TUJ1, with cell clusters interconnected by neurites. The lower right panel shows 

depth coding of cells along the Z-axis (0 – 59 µm). F) Comparative gene expression between 

conventional 2D and printed 3D hNSC culture (3 weeks) and differentiation (5 days initial 

hNSC culture followed by 16 days of differentiation). Relative gene expression represents 

data normalized to β-actin and expressed relative to 2D hNSCs.  Mean ± S.D.; n = 3. One-

way ANOVA with Bonferroni post hoc test. *P < 0.05; **P < 0.01; ***P < 0.001.  
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Figure 6. Functional maturation of in situ differentiated hNSCs in an optimal gel construct. 

A) Time course of live calcium imaging of neurons within a 3D construct, with the lower left 

panel showing depth coding of cells along the Z-axis (0 – 169 µm; i.e. different colors 

represent different planes along the Z-axis), and average measurements of spontaneous 

activity for cells 1-3 of photomicrographs demonstrated by the corresponding plot. 

Arrowheads indicate active cells (see also Video S4, Supporting Information). B) Time course 

of live calcium imaging of neurons within a 3D construct, with the middle right panel 

showing depth coding of cells along the Z-axis (0 – 107 µm), and average measurements of 

bicuculline-induced calcium response for cells 1-2 of photomicrographs demonstrated by the 

corresponding plot. Arrowheads indicate active cells (see also Video S5, Supporting 

Information). C) SEM image showing a neuron inside a porous 3D construct, with an 

arrowhead and arrow indicating a rounded cell soma and extending neurite respectively. 
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