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Recovery of absolute phases for the fringe patterns of three selected wavelengths with 

improved anti-error capability 

In a recent published work we proposed a technique to recover the absolute phase maps of fringe 

patterns with two selected fringe wavelengths. To achieve higher anti-error capability, the proposed 

method requires employing the fringe patterns with longer wavelengths; however, longer wavelength 

may lead to the degradation of the signal-to-noise ratio (SNR) in the surface measurement. In this 

paper, we propose a new approach to unwrap the phase maps from their wrapped versions based on 

the use of fringes with three different wavelengths which is characterized by improved anti-error 

capability and SNR. Therefore, while the previous method works on the two phase maps obtained 

from six-step PSP (thus 12 fringe patterns are needed), the proposed technique performs very well on 

three phase maps from three steps PSP, requiring only 9 fringe patterns and hence more efficient. 

Moreover, the advantages of the two-wavelength method in simple implementation and flexibility in 

the use of fringe patterns are also reserved. Theoretical analysis and experiment results are presented 

to confirm the effectiveness of the proposed method. 

Keywords: phase shift; fringe analysis; phase unwrapping; projected fringes; surface measurement 

1. Introduction 

With the development of digital technology, fringe projection profilometry (FPP) has become one of the 

most promising technologies for non-contact 3D shape measurement (1-3). To recover absolute phase 

maps from the wrapped ones, phase unwrapping is a necessary and important step in the implementation 

of FPP. Due to the complex nature of object surface shape and various unwanted noises inherent to the 

projection and acquisition of fringe patterns, phase unwrapping is a challenging task. Many approaches 

have been studied and employed such as spatial (4-7) and temporal (8-13).  Spatial phase unwrapping 

approaches assume a continuity of scanned surfaces and likely fail in regions with depth discontinuities 

(step edges) (10).  Temporal methods use multiple fringe patterns, which recovers the absolute phase on 

pixel-by-pixel basis, hence not suffering from error propagation between pixels. In order to keep the 

efficiency of the temporal methods, it is always desirable to employ as less number of images as possible. 

Zhao, et al. (8) proposed to use the fringe patterns of two wavelengths, one of which has a very long 

wavelength to cover the whole projection area, and hence can be used as a reference to unwrap the other 

fringe pattern. Li, et al. (9) also employ a projection image containing a single fringe as a reference to 

calculate the fringe order of the high spatial frequency fringe patterns. As indicated in (11) long spatial 

wavelength fringe patterns is disadvantageous by low phase-sensitivity to the object surface shape, short 

spatial wavelength fringe patterns are always preferred in order to achieve accurate shape measurement. 

However, if the gap between the frequencies of the two fringe patterns is larger than a certain value, the 
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before-mentioned methods would fail due to the existence of noise and disturbance in the fringe patterns, 

and hence more intermediate fringe patterns should be employed (10). Recently, Servin, et al. (11) 

proposed a 2-step temporal phase unwrapping formula that uses so-called 2-sensitivity demodulated 

phases for measuring static surfaces. The first phase demodulation  1 ,x y  has at most 1-wavelength 

sensitivity and the second one  2 ,x y  is G-times (G>>1) more sensitive. However, the phase error 

defined in the paper is      , [ 2 , ] 1 , ]e x y x y G x y    which should be limited within  ,  .  This condition 

implies a phase error tolerance bound /(1 )G   for the method in (11), beyond which the method may not 

work properly.  In such cases, more fringe patterns should still be needed. Hence, minimization of the 

number of fringe patterns while improving the anti-error capability of phase unwrapping is a key problem 

for application of temporal approaches in practice. 

   Ding, et al. (14) proposed a method to unwrap absolute phase maps of fringe patterns with two selected 

frequencies. The two normalized spatial frequencies defined in (14) are the numbers of fringes on the 

images which denoted by 
1f  and

2f , which are assumed to be integers. The performance of the method is 

limited by phase error tolerance bound,
1 2( )f f   and requirement of frequencies coprime (15). For 

purpose of increasing phase error tolerance bound, a new approach of absolute phase recovery is presented 

which based on the use of fringe patterns with three selected spatial frequencies denoted by 
1f , 

2f and
3f , 

where the frequencies are also assumed to be integers (16).  

While the methods proposed in (14-16) provide efficient ways for phase unwrapping, they also suffer 

from a weakness, that is, the total number of pixels perpendicular to the fringe must be an integer multiple 

of the number of pixels within a fringe. Such a selection may not be convenient. Taking the experiment 

described in (16) as an example, the resolution of the projector is 1392 1038  pixels.  If the selected 

frequencies are 
1 2 3( , , ) (6,10,15)f f f   as in (16), the numbers of pixels per fringe period will be 232, 139.2 

and 92.8 respectively, which are not integers and thus are not implementable. Furthermore, only when
1f , 

2f and 
3f  do not have a common factor larger than 1, there exists a unique solution for the phase 

unwrapping problem as proved in (16). Such a selection may not be possible in some cases. For the cases 

of the horizontal resolution being 1024 pixels, which is common for many ordinary projectors, it is 

impossible to find three frequencies meeting the requirement. A possible solution to this problem is to 

tailor the whole image to a smaller size, which may lead to the degradation of resolution in the 3D 

measurement which we have analyzed in (17).  

In order to solve the above mentioned problem, in the recent published work (17) we proposed a technique 

to recover the absolute phase maps of two sets of fringe patterns with flexible selection of fringe 

wavelengths (denoted by 
1  and 

2 ). It should be noted that wavelength as defined in this paper is 

different from that defined in physics. The wavelength here represents the total number of pixels per 

fringe period. We have proved that when we get the wrapped phase maps by the six-step phase-shifting 

profilometry (PSP), the absolute phase maps can be recovered correctly. We also have proved that the 

method in (14) is a special case of the approach proposed in (17). That is, when 1  and 2 are co-prime, 
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and the number of fringes on the images are integers, the conclusion in (14) tallies with the conclusion in 

(17). The allowed range of phase error in (17) is larger than that in (14) and the same with which in (16) 

when 1  and 2  are not co-prime. Furthermore, the computation in (17) is much less.   

  However, we realized that the anti-error capability as measured by phase error tolerance bound of the 

proposed technique depends on the greatest common divisor (g.c.m.) of the two fringe wavelengths 

(denoted by k ), that is the bigger the k  is, the better the anti-error capability can get. Let 11 kg and 

22 kg where 1g and 2g  are positive integers which are co-prime, the upper bound of the allowable phase 

error is    1 2 1 2/ /k g g      , if better anti-error capability is desired, 
1 2g g should be decreased. But 

at the same time, the validity of the method relies on 
1 2 1 2/R k g g k   , where R  is the resolution of 

projector, which means once the projection is fixed, k should be increased as 1g and 2g  decreased, and this 

will resulted in a multiple growth of the selected wavelengths. Taking the experiment described in (17) as 

an example, the vertical resolution of the projector is 768  pixels, as the maximal phase error on the 

wrapped phase maps which get from six-step PSP is about /100 , two fringe wavelengths  1 2,   meeting 

the criteria is easy to select, such as  23,47 ,  52,100 . However, when the maximal phase error on the 

wrapped phase maps which get from three-step PSP increases to about /10 , the selected wavelengths of 

the fringes should be very long, such as  156,195 ,  159,265 .  As we know, for a phase-shifting technique, 

the longer the wavelength, the lower the phase sensitivity to the object shape. In other words, short 

wavelength should be used to achieve high SNR associated with the fringe patterns for accurate phase 

unwrapping. Therefore, it is worthwhile to study if there is a room for further improvement in the anti-

error capability.  

   In this paper, we try to extend the method proposed in (17) to the cases of fringe patterns with three 

different wavelengths. The three wavelengths
1  , 

2 and 
3  are still positive integers representing the total 

number of pixels in a fringe period.  We will demonstrate that the anti-error capability can be considerably 

improved without increasing the wavelengths of fringe patterns. In addition, the absolute phase maps can 

still be recovered correctly for the wrapped phase maps from the three-step PSP.  Therefore, with suitable 

selections of fringe wavelengths, only 9 fringe patterns are needed, which is more efficient than the 

method proposed in (17). 

 The paper is organized as follows. Section 2 presents the phase unwrapping algorithm with three sets of 

fringe patterns. In Section 3, we give the principle for fringe wavelengths selection. The phase error bound 

is derived in Section 4. In Section 5, experiments and results are presented to validate the proposed 

method. Finally we conclude the paper in Section 6. 

2. Absolute phase map recovery of fringe patterns with three difference wavelengths 

Consider that three sets of sinusoidal fringe patterns are projected onto the surface of an object, which are 

reflected and captured by a camera.  These fringe patterns of vertical resolution R pixels are with three 

different wavelengths, denoted by 
1  , 

2 and 
3  (in pixels) respectively.  The projected image can be 
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expressed as follows: 

                               , , , cos[ ( )] 1,2,3 , [0, )pi p p piI x y a x y b x y y i y R                                               (1) 

where  ,x y  are the coordinates of a pixel in the projector and camera  images, and 
2

( )pi

i

y y



   is the 

absolute phase of the projected image (or the carrier). The image reflected from the object and captured by 

the camera (denoted as camera image) can be expressed as  

                                        , , , cos[ ] 1,2,3 , [0, )ci c c ciI x y a x y b x y y i y R                                          (2) 

where ( ) ( ( ))ci piy y u y    , and  u y is spatial shift caused by the object surface shape described by 

triangular relationship among the positions of the projector, the camera and the target (12).  As ( )pi y is a 

liner function of y, we also have ( ) ( ) ( )ci pi iy y y    , where  
2

( )i

i

y u y



   . Hence, in order to 

reconstruct the 3D surface of the object, we need  i y , which can be obtained by ( ) ( )ci piy y  , thus 

requiring the absolute phase ( )ci y .  However, all existing methods can only yield ( )ci y , which are the 

wrapped version of the absolute phases with their values falling within [ , )  .  The absolute phases 

( )ci y are related to the wrapped ones by the following: 

                  2ci i ciy m y y                                                      (3) 

where  im y  are integers and are the fringe order index associated with pixel (x,y).   

As mentioned above, ( )ci y are a spatially shifted version of the phase of the carrier fringe patterns ( )pi y , 

and hence there is a unique corresponding mapping relationship between ( )ci y and ( )pi y which purely 

depends on ( )u y or the surface shape.  With all the three fringe patterns being projected on the same 

object, ( )u y should be the same in relating ( )ci y and ( )pi y , and the same relationship applies for the 

wrapped versions of ( )ci y and ( )pi y  as well.  As the temporal approach unwrap the phase on pixel-by-

pixel basis, the same method can be applied to both the carrier patterns as well as the patterns reflected 

from the target.  In other words, we do not need to consider if these wrapped phases are from the carrier 

only patterns or these reflected from the object surface.  In the following, we will simply work on ( )ci y .  

Without loss of generality, the ranges of  1c y ,  2c y and  3c y  are shifted by  , yielding the following :  

          1 2 30 , , 2c c cy y y          (4) 

From Eq. (3), we have: 

           

   

   

   

1 1 1

2 2 2

3 3 3

( ) 2

( ) 2

( ) 2

c c

c c

c c

y m y y

y m y y

y m y y

 

 

 

  

  

  

                                 (5) 

With the help of assuming a pattern with only one fringe covering the whole image with its absolute phase  
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0 ( )y within (0,2 ) , we have 
0( ) ( )ci

i

R
y y


    (for i=1,2,3).  Then we are able to obtain the following:  

            1 1 2 2 2 2 1 1[ ] / 2y y m y m y           (6) 

            1 1 3 3 3 3 1 1[ ] / 2y y m y m y           (7) 

            2 2 3 3 3 3 2 2[ ] / 2y y m y m y            (8) 

Note that the left hand sides of Eqs.(6)~(8) can be obtained by PSP, which must be integers as the right 

sides are integers. If there are one-to-one correspondences between the right sides and the three integers 

 1 cm y ,  2 cm y  and  3 cm y , Eqs. (6)~(8) reveal a way to determine these three integers based on the values 

of the left hand sides. Combining Eqs.(6)~(8) and the expressions (4) we have: 

      2 1 1 2 2 1/ 2y y           ,  i.e.,    2 2 2 1 1 1m y m y            (9) 

      3 1 1 3 3 1/ 2y y           ,  i.e.,    3 3 3 1 1 1m y m y            (10) 

                 3 2 2 3 3 2/ 2y y            ,  i.e.,    3 3 3 2 2 2m y m y           (11) 

At the same time, from Eqs. (5) and the expressions (4), we have: 

       1 10 /m y R        (12) 

       2 20 /m y R        (13) 

       3 30 /m y R        (14) 

With inequalities (9)~(14) above, an unique mapping from    1 1 2 2 / 2y y      ,    1 1 3 3 / 2y y      , 

   2 2 3 3 / 2y y        to  1m y ,  2m y  and  3m y  can be identified. 

Now let us to utilize an example to prove the effectiveness of this method, where we choose 
1 54  , 

2 72  , 
3 90  and 1024R  . By varying  1m y ,  2m y  and  3m y over the range defined by Eqs. (12)~(14), 

we are able to obtain    2 2 1 1m y m y  ,    3 3 1 1m y m y   and    3 3 2 2m y m y  .  Then we check the values 

against the range given by Eqs. (9)~(11) and these meeting the conditions can be listed in Table 1. 

From Eqs.(5), the whole range of py (i.e., [0, )R ) can be separated based on the value of  1m y ,  2m y  and 

 3m y as follows: 

     

      

   

1

1 1

1

1 1 1 1 1

1 1 1

0,                   0

1,                    2

                  

/ 1,     / 1 /

/ ,          /

p

p

p

p

y

y

m y

R R y R

R R y R



 

    

  

  


 


 


   
  

   (15) 

     

      

   

2

2 2

2

2 2 2 2 2

2 2 2

0,                   0

1,                    2

                  

/ 1,     / 1 /

/ ,          /

p

p

p

p

y

y

m y

R R y R

R R y R



 

    

  

  


 


 


   
  

  (16) 
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     

      

   

3

3 3

3

3 3 3 3 3

3 3 3

0,                   0

1,                    2

                  

/ 1,     / 1 /

/ ,          /

p

p

p

p

y

y

m y

R R y R

R R y R



 

    

  

  


 


 


   
  

   (17) 

Where  x  denotes the largest integer not greater than x . As the vertical resolution of projection image is 

1024R  ，from Eqs.(15)~(17) we can see that the first, second and the third columns of  Table 1 cover all 

the possible values of  1m y ,  2m y  and  3m y , and the last three columns meet the requirements of  the 

desired range, that is,    2 2 2 1 1 1m y m y         ,    3 3 3 1 1 1m y m y          and 

   3 3 3 2 2 2m y m y          without repetition. 

The above example shows that when the three wavelengths of fringe patterns have common factor, the 

phase maps can be unwrapped. In fact, no matter whether the three wavelengths of phase maps have or do 

not have common factors, phase unwrapping can always be done by the above mentioned approach. 

Through above analysis the absolute phase could be retrieved from the wrapped phase maps of fringe 

patterns with three selected fringe wavelengths by the following steps. 

(1) Select three fringe wavelengths  1 2 3, ,    using the criteria described in Section 3 to ensure the unique 

mapping from    2 2 1 1m y m y  ,    3 3 1 1m y m y  ,    3 3 2 2m y m y   to  1m y ,  2m y ,  3m y  and construct 

a lookup table like Table 1; 

(2) Project the three sets of fringe patterns onto the object and obtain the unwrapped phase maps  1 y , 

 2 y and  3 y ; 

(3) Calculate    1 1 2 2 / 2y y      ,    1 1 3 3 / 2y y      ,    2 2 3 3 / 2y y        and round them to the 

nearest integers. Find the row of the table constructed in step 1 whose value of    2 2 1 1m y m y  , 

   3 3 1 1m y m y  ,    3 3 2 2m y m y   is closest to the integers. Keep the records of  1m y ,  2m y  and  3m y  

in the same row; 

(4) Retrieve the absolute phase maps by Eqs.(5) using  1m y ,  2m y  and  3m y  acquired in step 3.  

The process of creating the lookup table does not need to take  y0  which increases monotonically from 

−π to π as the reference to analyze the interval distribution of the fringe orders like in (16), and hence does 

not need to do the interval partition at all.  As only the simple inequations need to be checked, so, the 

computation is much less in compared to the amount required in (16).  

3. Selection of the three fringe wavelengths 

From the analysis in appendix, there exists an unique mapping from       1 2 3, ,m y m y m y  to 

   1 1 2 2 / 2y y      ,    1 1 3 3 / 2y y      and    2 2 3 3 / 2y y        (i.e.,    2 2 1 1m y m y  , 



8 

 

   3 3 1 1m y m y  ,    3 3 2 2m y m y  ) when  2

1 2 3 1 2 3/R k k k k   , where R is the resolution of projector, and 

k is the g.c.m. of 
1 , 

2 and 
3 , 

1 1kg  , 
2 2kg  , 

3 3kg  , where
1k is the g.c.m. of 

1g and
2g , 

2k is the g.c.m. of 

1g and
3g , 

3k is the g.c.m. of 
2g and

3g . That is, the constraint of the selection of three fringe wavelengths is: 

      2

1 2 3 1 2 3/R k k k k       (18) 

4. Phase error bound 

When we round the values of    1 1 2 2 / 2y y      ,    1 1 3 3 / 2y y      and    2 2 3 3 / 2y y        to 

the nearest integers and find the row of the table constructed in step 1 with the values of    2 2 1 1m y m y  , 

   3 3 1 1m y m y  and    3 3 2 2m y m y   closest to the integers, three values are required to match, which 

should follow a proper order.  For example, if    1 1 2 2 / 2y y      (i.e., the value of fourth column) is the 

one to match first, and    1 1 3 3 / 2y y      (i.e., the value of fifth column) follows, the anti-error 

capability of the proposed technique first depends on the smallest gaps between any two possible value 

of    2 2 1 1m y m y  , and then    3 3 1 1m y m y  . The larger the gaps, the less likely the error will happen 

during the rounding operations.  

In (17), we have proved that the minimal gap of    2 2 1 1m y m y   must be equal or greater than k , where 

k  is the g.c.m. of 
1  and 

2 . Then, we can deduce that the smallest gap between the value of 

   2 2 1 1m y m y   is 
1k  which is the g.c.m of  

1  and 
2 , and the smallest gap between the value of 

   3 3 1 1m y m y   is 
2k  which is the g.c.m of 

1  and 
3 , the smallest gap between the value of 

   3 3 2 2m y m y   is 
3k  which is the g.c.m of 

2 and 
3 .  

Hence, for achieving higher anti-error capability, the first column to match should be the biggest one of 

1k , 
2k  and 

3k , and the last column to match should be the smallest one. From Table 1, it is easy to discover 

that if two columns have been matched, the third one surely matched. 

   Assuming phase errors in the phase maps  1 y ,  2 y and  3 y are  1 y ,  2 y and  3 y  

respectively, and       max 1 2 3max , ,y y y        , we have: 

    

     

     

     

1 1 2 2 1 2 max 1

1 1 3 3 1 3 max 2

2 2 3 3 2 3 max 3

/ 2 / 2 / 2

/ 2 / 2 / 2

/ 2 / 2 / 2

y y k

y y k

y y k

        

        

        

         


        


        

                           (19) 

Then we can find the upper bound of the allowable phase error, with which the absolute phase maps can 

be correctly recovered: 

      

 

 

 

max 1 1 2

max 2 1 3

max 3 2 3

0 /

0 /

0 /

k

k

k

   

   

   

   


   


   

                  (20) 

Note that, only two columns should be matched in this method, and so, the allowable phase error should 
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be change to: 

                     max 1 1 2 2 1 3 3 2 30 median[ / , / , / ]k k k                                 (21) 

In another word, if
1 2 3k k k  , we can choose the two columns whose minimal gap are

2k and
3k to match 

only, then the allowable phase error changes to  

max 2 1 3

max 3 2 3

0 / ( )

0 / ( )

k

k

   

   

   


   
，i.e., 

max 2 1 3 3 2 30 min( / ( ), / ( ))k k           .  

If 
max  is given, the three fringe wavelengths should be selected to meet two of the following three 

conditions at least. 

       

 

 

 

1 2 1 max

1 3 2 max

2 3 3 max

/

/

/

k

k

k

   

   

   

  


  


  

                                                         (22) 

For example, suppose the resolution of the projection image is 1024R  , if we want to unwrap the wrapped 

phase maps obtained from three-step PSP whose maximal phase error is about /10 , the fringe 

wavelengths could be chosen as  1 2 3, , (54,72,90)    whose phase error tolerance bound is 
max0 / 8    . 

If the method proposed in (17) is employed, a pair of  1 2,   which have large g.c.m should be selected, 

e.g.,  208,260  whose phase error tolerance bound is 
max0 / 9    . If the method proposed in (16) is 

used, the selected frequencies are  1 2 3, , (8,12,15)f f f   whose phase error tolerance bound is 

max0 / 9    as described in (16), and the corresponding wavelengths are  1 2 3, , (128,85.3,68.3)    . Hence 

for the same level of phase error tolerance, we can choose much shorter wavelength for the proposed 

method than that in (16) and (17).   Considering that the fringe patterns with long wavelengths suffer 

from low SNR in the phase maps, the method proposed is advantageous by high SNR in the phase maps 

and hence accurate 3D measurement.  

5. Experiments 

Experiments are carried out to test the proposed method with a system consisting of a LG HW300 

projector and Daheng HV1351 camera, with their resolutions being 768 1024 and 1024 1280 

respectively. The object to be measured is a toy model which is shown in Fig.1. Firstly, three sets of 

sinusoidal fringe patterns with fringe wavelengths of 54, 72 and 90 are projected onto the toy model, as 

shown in Fig. 2(a), 2(b) and 2(c). Note that the vertical resolution of projector is 1024, i.e., 1024R  . The 

wrapped phase maps obtained from three-step PSP are shown in Fig. 2(d), 2(e) and 2(f). Since the 

background does not contain useful information, a shadow noise detector/filter (18, 19) was employed 

which is shown in Fig. 3(a), such that the shadow-noised regions were discarded from further processing 

(19). The maximal phase error on the wrapped phase maps is about /10 , which is smaller 

than    1 1 2 2 1 3 3 2 3median( / , / , / ( )) / 8k k k             . Hence based on Eq.(21) the absolute phase maps 

can be successfully recovered. Fig. 3(b) is the unwrapped phase map of 54   which is characterized by 

monotonic variance over the areas of smooth shape change on the model, and hence results are considered 
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as correct. The anti-error capability is considerably increased in contrast to (17) and the SNR can be 

improved due to the use of the fringe patterns with short wavelengths.  

    Secondly, three sets of fringe patterns with different wavelengths of 25, 30 and 35 are projected onto 

the same toy model, as shown in Fig. 4(a), 4(b) and 4(c). Four-step PSP is used and thus leads to lower 

level of noise in the wrapped phase maps, as shown in Fig.4(d), 4(e) and 4(f). The shadow noise 

detector/filter is also employed in Fig. 5(a). The maximal phase error on the wrapped phase maps is about 

15/ , which is smaller than the error bound 13/ . Hence based on Eq.(21) the absolute phase maps can 

be successfully recovered. Fig.5(b) is the unwrapped phase map of 25  which is characterized by 

monotonic variance over the areas of smooth shape change on the model, and hence results are considered 

as correct. The anti-error capability and the SNR here are both improved incontrast to the performance of 

(17). In order to see the topographic details of the object clearly, we remove the carrier-plane from 

Fig.5(b) and get  Fig.5(c). The 3D view of the recovered object is shown in Fig.6. 

6. Conclusion 

 This paper proposes a new approach to recover the absolute phase maps based on wrapped ones of the 

fringe patterns with three selected wavelengths. Compared with our previous work in (17), the anti-error 

capability is increased for reliable phase unwrapping implementation and the SNR can be improved for 

the use of shorter wavelengths. With suitable selections of fringe wavelengths, the absolute phase maps 

can be correctly recovered using only 9 fringe patterns, which is more efficient than the method proposed 

in (17). Moreover, in comparison with the existing method in (16), the proposed method is advantageous 

by less computation required for constructing the checking tables and more flexibility in the design of 

fringe patterns.  The effectiveness of the proposed method has been verified by experimental results.  
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Appendix: Analysis on selection of the three fringe wavelengths 

The validity of this method relies on the existence of unique mapping from    2 2 1 1m y m y  , 

   3 3 1 1m y m y  ,    3 3 2 2m y m y   to  1m y ,  2m y ,  3m y . This requires that both sides of Eqs.(6)~(8) 

must not yield the same value for any two different pixel number index such as 
ay and 

by ( a b ).  In other 

words, the following must hold: 

                                

       

       

       

2 2 1 1 2 2 1 1

3 3 1 1 3 3 1 1

3 3 2 2 3 3 2 2

a a b b

a a b b

a a b b

m y m y m y m y

m y m y m y m y

m y m y m y m y

   

   

   

         


        


        

    for 
a by y   (23) 

From Table 1 we can see that if the first two equations hold, the last one surely holds. So, without loss of 

generality, Eqs.(23) can be simplified to Eqs.(24). Let us first discuss the simpler case where
1 , 

2 and 
3  

are coprime with each other.  

                                    
       

       

2 2 1 1 2 2 1 1

3 3 1 1 3 3 1 1

a a b b

a a b b

m y m y m y m y

m y m y m y m y

   

   

         


        

      for 
a by y               (24) 

The above can be proved by reductio ad absurdum. Suppose there exist 
ay and 

by ( a b ) making the two 

side of  Eqs.(24) equal, and three possible situations may make the two sets of       1 2 3, ,m y m y m y  

different: firstly, the three pairs of integers are all different with each other, i.e.,    1 1a bm y m y , 

   2 2a bm y m y  and    3 3a bm y m y ; secondly, there are two pairs of integers different, such 

as    1 1a bm y m y ,    2 2a bm y m y  and    3 3a bm y m y ; thirdly, only one pair of them is different, such as 

   1 1a bm y m y ,    2 2a bm y m y  and    3 3a bm y m y . 

Without losing generosity, we take the first case into account where    1 1a bm y m y ,    2 2a bm y m y , 

   3 3a bm y m y . When the two sides of (24) equal, we have: 

                                   
       

       

2 2 1 1 1 2

3 3 1 1 1 3

/ /

/ /

a b a b

a b a b

m y m y m y m y

m y m y m y m y

 

 

         


        

            (25) 

As 1 , 2 and 3  are coprime two by two, Eqs.(25) must be equivalent to the following: 

                                   
       

       

2 2 1 1 1 1 1 2

3 3 2 1 1 1 2 3

,

,

a b a b

a b a b

m y m y n m y m y n

m y m y n m y m y n

 

 

          


         

    (26) 

Where
1 2,n n are integers and

1 2, 0n n  . From Eqs.(26) we know:  
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1 2 2 3n n                                 (27) 

Because 
1 , 

2 and 
3 are coprime two by two, we have

1 3 2 2,n n n n   , where n is an integer and 0n  ,then: 

       1 1 3 2 2 2 3 1,a b a bm y m y n m y m y n            ，    3 3 2 1a bm y m y n     . Combining inequations (12)~(14), 

we have ：    1 1 1 1/ /a bR m y m y R       ,    2 2 2 2/ /a bR m y m y R        and  

   3 3 3 3/ /a bR m y m y R        which means 
1 2 3 1/ /R n R      , 

2 1 3 2/ /R n R       and 

3 2 1 3/ /R n R      . Hence, Eqs.(23) will hold when 
1 2 3 1 2 3R n        ,where n is the absolute value of 

n .  

For the other two cases, it is obvious that the same conclusions will get. 

When
1 , 

2 and 
3  are not coprime, there are two possible situations. Firstly, let k be the greatest common 

divisor (g.c.m.) of 
1 , 

2 and 
3 , we have 

1 1kg  ,
2 2kg  ,

3 3kg  where 
1g ,

2g and
3g are positive integers 

which are coprime with each other. Equations (24) can be reproduced as follow:  

       

       

2 2 1 1 2 2 1 1

3 3 1 1 3 3 1 1

a a b b

a a b b

kg m y kg m y kg m y kg m y

kg m y kg m y kg m y kg m y

         


        

 i.e., 
       

       

2 2 1 1 2 2 1 1

3 3 1 1 3 3 1 1

a a b b

a a b b

g m y g m y g m y g m y

g m y g m y g m y g m y

         


        

 (28) 

Obviously Eqs.(28) is the same as Eqs.(24), and hence can be proved using the same approach. That is 

Eqs.(28) will hold when
1 2 3R g g g  , where 2/R R k  , which is equivalent to 2

1 2 3 /R k   . 

Secondly, when the g.c.m. of 
1 , 

2 and 
3  are not exists,  but they have g.c.m. between any two of them. 

Let 
1k be the g.c.m. of 

1 and 
2 , 

1 1 1 2 1 2,k g k g   , where 
1g ,

2g are positive integers which are coprime; 

2k be the g.c.m. of 
1 and 

3 , 
1 2 1 3 2 2,k h k h   , where 

1h ,
2h are positive integers which are coprime; 

3k be 

the g.c.m. of 
2 and 

3 . Equations (25) can be reproduced as follow:  

       

       

1 2 2 1 1 1 1 2 2 1 1 1

2 2 3 2 1 1 2 2 3 2 1 1

a a b b

a a b b

k g m y k g m y k g m y k g m y

k h m y k h m y k h m y k h m y

         


        

 i.e., 
       

       

2 2 1 1 2 2 1 1

2 3 1 1 2 3 1 1

a a b b

a a b b

g m y g m y g m y g m y

h m y h m y h m y h m y

         


        

 (29) 

Eqs. (29) can be rewritten as: 

                                          
       

       

2 2 1 1 1 2

3 3 1 1 1 2

/ /

/ /

a b a b

a b a b

m y m y g m y m y g

m y m y h m y m y h

         


        

     (30) 

As 
1g ,

2g  are coprime and 
1h ,

2h are coprime too, Eqs.(30) must be equivalent to the following: 

                                          
       

       

2 2 1 1 1 1 1 2

3 3 2 1 1 1 2 2

,

,

a b a b

a b a b

m y m y n g m y m y n g

m y m y n h m y m y n h

          


         

     (31) 

Where
1 2,n n are integers and

1 2, 0n n  . From Eqs.(31) we know: 

                                                                       1 2 2 2n g n h                       (32) 

Note that 
3k be the g.c.m. of

2 and 
3 , and the g.c.m. of 

1 , 
2 and 

3  not exists, so, 
1 2 1 3 1 2 2 2 3 2,n g n k q n h n k q  , 

where 
1q ,

2q are positive integers which are coprime. Eq.(32) can be rewritten as follow: 

                                                                        
1 1 2 2n q n q                     (33) 

We have 1 2 2 1,n q n q  , then: 
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       1 1 1 2 2 2 2 3 2 2 3 1 2 3/ /a bm y m y n g q g h k g k k k        In the similar way, 

     2 2 1 1 1 3 1 2 3/a bm y m y n g k k k      ,      3 3 2 1 1 2 1 2 3/a bm y m y n h k k k      . Combining inequations 

(12)~(14), we have：    1 1 1 1/ /a bR m y m y R       ,    2 2 2 2/ /a bR m y m y R       and  

   3 3 3 3/ /R m y m y R       , which means  1 2 3 1 2 3 1/ / /R k k k R      ,  2 1 3 1 2 3 2/ / /R k k k R      and 

 3 1 2 1 2 3 3/ / /R k k k R      . Hence, Eqs.(23) will hold when  1 2 3 1 2 3/R k k k   . 

     From the analysis above, there exists an unique mapping from       1 2 3, ,m y m y m y  to 

   1 1 2 2 / 2y y      ,    1 1 3 3 / 2y y      and    2 2 3 3 / 2y y        (i.e.,    2 2 1 1m y m y  , 

   3 3 1 1m y m y  ,    3 3 2 2m y m y  ) when  2

1 2 3 1 2 3/R k k k k   , where R is the resolution of projector, and 

k is the g.c.m. of 
1 , 

2 and 
3 , 

1 1kg  ,
2 2kg  ,

3 3kg  , where
1k is the g.c.m. of 

1g and
2g , 

2k is the g.c.m. 

of 
1g and

3g , 
3k is the g.c.m. of 

2g and
3g .  
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Table 1. Mapping from    2 2 1 1m y m y  ,    3 3 1 1m y m y   and    3 3 2 2m y m y   to  1m y ,  2m y ,  3m y  

when
1 54  ,

2 72  ,
3 90  , 1024R   

 ym1  
 ym2  

 ym3  
    1122  ymym 

 
   3 3 1 1m y m y      3 3 2 2m y m y   

1 0 0 -54 -54 0 

5 3 3 -54 0 54 

9 6 5 -54 -36 18 

13 9 7 -54 -72 -18 

17 12 10 -54 -18 36 

2 1 1 -36 -18 18 

6 4 3 -36 -54 -18 

10 7 6 -36 0 36 

14 10 8 -36 -36 0 

18 13 10 -36 -72 -36 

18 13 11 -36 18 54 

3 2 1 -18 -72 -54 

3 2 2 -18 18 36 

7 5 4 -18 -18 0 

11 8 6 -18 -54 -36 

11 8 7 -18 36 54 

15 11 9 -18 0 18 

0 0 0 0 0 0 

4 3 2 0 -36 -36 

8 6 4 0 -72 -72 

8 6 5 0 18 18 

12 9 7 0 -18 -18 

16 12 9 0 -54 -54 

16 12 10 0 36 36 

1 1 0 18 -54 -72 

1 1 1 18 36 18 

5 4 3 18 0 -18 

9 7 5 18 -36 -54 

13 10 8 18 18 0 

17 13 10 18 -18 -36 

2 2 1 36 -18 -54 

6 5 4 36 36 0 

10 8 6 36 0 -36 

14 11 8 36 -36 -72 

18 14 11 36 18 -18 

 



 

 

Figure 1. The photograph of the toy model 

Figure 2. Experiment results when    1 2 3, , 54,72,90    . (a), (b) and (c) are the 

deformed fringe patterns; (d), (e) and (f) are the wrapped phase maps get by three-step 

PSP 

Figure 3. Experiment results when    1 2 3, , 54,72,90    . (a) is the designed shadow 

noise filter; (b) is the recovered absolute phase map of 54  . 

Figure 4. Experiment results when    1 2 3, , 25,30,35    . (a), (b) and (c) are the 

deformed fringe patterns; (d), (e) and (f) are the wrapped phase maps get by four-step 

PSP. 

Figure 5. Experiment results when    1 2 3, , 25,30,35    . (a) is the designed shadow 

noise filter; (b) is the recovered absolute phase map of 25 .(c) is the absolute phase 

map of 25 which has been removed the carrier-plane. 

Figure 6.  The 3D view of the recovered object. 
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