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1 Statistical model for a single trial

1 Statistical model for a single trial

We commence by considering the analysis of a single trial. Let y denote the n× 1 vector
of (phenotypic) data, where n is the number of plots in the trial. We assume that md

genotypes were grown in the trial but that we only have marker data (on r markers) for
m < md genotypes. Pedigree information is available on mp > md genotypes. Using the
results in Appendix I and II we can write the model for the data vector as

y = Xτ +Zgug +Zpup + e (1)

where τ is a vector of fixed effects with associated design matrix X; ug is the m × 1
vector of random genetic effects corresponding to those genotypes with marker data, and
has associated n×m design matrix Zg; up is a vector of non-genetic or peripheral random
effects with associated design matrix Zp and e is the n× 1 vector of residuals. The fixed
effects are partitioned as τ = (τ0

>, τg
>)> where τg is the (md − m) × 1 vector of fixed

effects corresponding to the genotypes without marker data and we let Xg denote the
associated n × (md − m) design matrix. Thus X = [X0 Xg] where X0 is the design
matrix associated with the (non-genetic) fixed effects τ0.

We assume that the vectors of random effects and residuals are mutually independent,
and distributed as multivariate Gaussian, with zero means. The variance matrix for up
is given by Gp and for the residuals is R. blah blah blah

We then consider a simple model for ug given by

ug = ua + ue (2)

where the two terms represent the additive and non-additive (or residual) genetic effects.
Then we propose that the additive genetic effects be modelled as a linear function of the
marker covariates so write

ua = Mα+ uε (3)

= um + uε

where M is the m× r matrix of marker covariate data; α is the associated r × 1 vector
of random marker effects (regression coefficents) and uε is the m× 1 vector of lack of fit
effects for the marker regressions. The vector um = Mα represents the additive genetic
effects due to the markers.

Thus the model in equation (1) can be written as

y = Xτ +ZgMα+Zguε +Zgue +Zpup + e (4)

= Xτ +Zgum +Zguε +Zgue +Zpup + e (5)
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2 Statistical model for a multi-environment trial

We assume that the variance matrices of random genetic effects are given by

var (α) = σ2
mD

var (um) = σ2
mMDM> = σ2

mK

var (uε) = σ2
εA

var (ue) = σ2
eIm

where A is the m × m block of the numerator relationship matrix that relates to the
genotypes with marker data; D is an r × r matrix, often assumed to be the identity
matrix Ir, and σ2

m, σ
2
ε and σ2

e are the variances for marker effects, marker lack of fit
effects and residual genetic effects, respectively. The matrix K = MDM> is the m×m
genomic relationship matrix.

The variance matrix for the (total) genetic effects, denoted Gg, is therefore given by

Gg = var (ug) = σ2
mK + σ2

εA+ σ2
eIm (6)

We write Gg = Gg(σ
2
m, σ

2
ε , σ

2
e) to highlight that in the maximal genetic model in which

both pedigree and marker information is included, it is a function of three unknown
parameters.

2 Statistical model for a multi-environment trial

Here we extend the models for the analysis of a single trial to a series of trials, known as
a multi-environment trial (MET). We now let y denote the n×1 combined vector of data
across all trials in the MET. blah blah blah

We assume that the variance matrices of random genetic effects are given by

var (α) = Σm ⊗D
var (uε) = Σε ⊗A
var (ue) = Σe ⊗ Im

where the matrices D and A are as defined previously. The matrices Σm, Σε and Σe are
t × t symmetric positive (semi)-definite matrices ane will be referred to as the between
environment marker, marker lack of fit and residual genetic variance matrices. Finally,
the variance matrix, Gg for the total genetic effects is given by

var (ug) = Σm ⊗K + Σε ⊗A+ Σe ⊗ Im (7)

We write var (ug) = Gg = Gg(Σm,Σε,Σe) to highlight that in the maximal genetic
model in which both pedigree and marker information is included, it is a function of three
matrices of unknown parameters. We have found that the Factor Analytic form provides
a useful form for the component matrices. In this case we write

Σs = ΛsΛs
> + Ψs (8)

for s ∈ (m, ε, e).
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3 Appendix I

3 Appendix I

We consider the case where there are md genotypes with phenotypic data, but there is
pedigree information available on mp > md genotypes. Without loss of generality, we
consider the analysis for a single site and we exclude the random peripheral (non-genetic)
effects so write the linear mixed model for the n× 1 data vector y as

y = Xτ +Zgug + e (9)

where τ is a vector of fixed effects with associated design matrix X; ug is the mp × 1
vector of genetic effects with associated n ×mp design matrix Zg and e is the vector of
residuals.

We write the genetic effects as ug = (ug
>
1,ug

>
2)

> where ug1 and ug2 represent the genetic
effects for genotypes without and with phenotypic data, respectively. The design matrix
is therefore given by Zg =

[
0 Zg2

]
where 0 is an n × (mp −md) matrix of zeros. The

genetic variance matrix and its inverse are partitioned conformably as

var (ug) = G =

[
G11 G12

G21 G22

]
with G−1 =

[
G11 G12

G21 G22

]
(10)

The MME for the model in equation (9) are given by X>R−1X 0 X>R−1Zg2
0 G11 G12

Zg
>
2R

−1X G21 Zg
>
2R

−1Zg2 +G22

 τ̂
ũg1
ũg2

 =

 X>R−1y
0

Zg
>
2R

−1y

 (11)

From the second equation in (11) we have that

ũg1 = −(G11)−1G12ũg2 (12)

and substituting this into the third equation in (11) yields the reduced set of MME given
by [

X>R−1X X>R−1Zg2
Zg

>
2R

−1X Zg
>
2R

−1Zg2 +G22
−1

] [
τ̂
ũg2

]
=

[
X>R−1y
Zg

>
2R

−1y

]
(13)

Therefore, instead of working with the linear mixed model of equation (9), in which the
vector of genetic effects, ug, is of length mp and corresponds to all genotypes in the
pedigree, we could use the model commensurate with the MME in equation (13), namely

y = Xτ +Zg2ug2 + e (14)

In this model the vector of genetic effects, ug2, is of length md and corresponds only to
those genotypes grown in the trial, that is, those genotypes with phenotypic data.

Then we would obtain the E-BLUPs of the genetic effects for genotypes with data via
solution of the MME in equation (13) and the genetic effects for genotypes without data
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4 Appendix II

using equation (12). Note that we propose the form of the model in equation (14) for
ease of illustration of the concepts presented in this paper. When the variance matrix
G involves the numerator relationship matrix, and when, as is typically the case, the
majority of genotypes with data are non-parental genotypes, then it is computationally
more efficient to use the model as in equation (9) with MME as in equation (11). This
is due to the fact that the block of the inverse of the numerator relationship matrix that
relates to non-parental genotypes is diagonal (see Cullis et al., 2014).

4 Appendix II

We consider the case where there are md genotypes with phenotypic data, but we are only
interested in m < md of these genotypes. For example, parental genotypes may have been
grown in the field trial but may not be of interest, or, we may not have marker data for
all of the genotypes grown in the trial. In order to preserve the spatial structure of the
trial, we choose not to remove any phenotypic data but instead exclude effects from the
genetic model. Without loss of generality, we consider the analysis for a single site and
we exclude the random peripheral (non-genetic) effects so write the linear mixed model
for the n× 1 data vector y as

y = Xτ +Zgug + e (15)

where τ is a vector of fixed effects with associated design matrix X; ug is the md × 1
vector of genetic effects with associated n ×md design matrix Zg and e is the vector of
residuals.

We write the fixed effects as τ = (τ0
>, τg

>)> where τg is the (md − m) × 1 vector of
fixed effects corresponding to the genotypes to be excluded and we let Xg denote the
associated n × (md − m) design matrix. Thus X = [X0 Xg] where X0 is the design
matrix associated with the (non-genetic) fixed effects τ0.

In an analogous manner we write the genetic effects as ug = (ug
>
1,ug

>
2)

> where ug1 is
the (md −m)× 1 vector of genetic effects corresponding to the genotypes to be excluded
and ug2 is the m × 1 vector of genetic effects of interest. The design matrix is therefore
given by Zg =

[
Xg Zg2

]
. The genetic variance matrix and its inverse are partitioned

conformably as

var (ug) = G =

[
G11 G12

G21 G22

]
with G−1 =

[
G11 G12

G21 G22

]
(16)
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5 Appendix III

The MME for the model in equation (15) are given by
X0

>R−1X0 X0
>R−1Zg2 X0

>R−1Xg X0
>R−1Xg

Zg
>
2R

−1X0 Zg
>
2R

−1Zg2 +G22 Zg
>
2R

−1Xg +G21 Zg
>
2R

−1Xg

Xg
>R−1X0 Xg

>R−1Zg2 +G12 Xg
>R−1Xg +G11 Xg

>R−1Xg

Xg
>R−1X0 Xg

>R−1Zg2 Xg
>R−1Xg Xg

>R−1Xg



τ̂ 0

ũg2
ũg1
τ̂ g

 =


X0

>R−1y
Zg

>
2R

−1y
Xg

>R−1y
Xg

>R−1y

 (17)

Absorbing the equation for τ̂ g gives X0
>SX0 X0

>SZg2 0
Zg

>
2SX0 Zg

>
2SZg2 +G22 G21

0 G12 G11

 τ̂ 0

ũg2
ũg1

 =

 X0
>Sy

Zg
>
2Sy
0

 (18)

where S = R−1 − R−1Xg

(
Xg

>R−1Xg

)−1
Xg

>R−1. Thus, in a similar manner to Ap-
pendix I, the third equation in (18) gives

ũg1 = −(G11)−1G12ũg2 (19)

and substituting this into the second equation in (17) yields the reduced set of MME,
after absorbing τ̂ g, given by[

X0
>SX0 X0

>SZg2
Zg

>
2SX0 Zg

>
2SZg2 +G22

−1

] [
τ̂ 0

ũg2

]
=

[
X0

>Sy
Zg

>
2Sy

]
(20)

Therefore, instead of working with the linear mixed model of equation (15), in which the
vector of random genetic effects, ug, is of length md and corresponds to all genotypes
grown in the trial, that is, all genotypes with phenotypic data, we could use the model
commensurate with the MME in equation (20), namely

y = Xτ +Zg2ug2 + e (21)

In this model the vector of random genetic effects, ug2, is of length m and corresponds
only to those genotypes of interest, for example, those with marker data. Additionally,
the model includes fixed effects, τg, corresponding to the genotypes to be excluded.

5 Appendix III

We consider the case where the number of markers is much larger than the number of
genotypes with marker data. It is therefore computaionally efficient to fit the linear mixed
model using the form given in equation (5) rather than equation (4). If we require E-
BLUPs and associated PEVs for the marker effects α it is convenient to expand equation
(5) to include both um and α. We therefore write the model as

y = Xτ +Zg
∗um

∗ + e∗ (22)
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5 Appendix III

where Zg
∗ = [Zg 0] and 0 is an n × r matrix of zeros; um

∗ = (um
>, α>)> and e∗ =

Zguε+Zgue+Zpup+e with associated variance matrix R∗ = σ2
εZgAZg

> +σ2
eZgZg

> +
ZpGpZp

> +R.

The variance matrix for um
∗ is given by

var

(
um
α

)
= G =

[
G11 G12

G21 G22

]
= σ2

m

[
K MD

DM> D

]
(23)

The inverse is partitioned conformably as

G−1 =

[
G11 G12

G21 G22

]
(24)

The MME for the model in equation (22) are given by X>R∗−1X X>R∗−1Zg 0
Zg

>R∗−1X Zg
>R∗−1Zg +G11 G12

0 G21 G22

 τ̂
ũm
α̃

 =

 X>R∗−1y
Zg

>R∗−1y
0

 (25)

Absorbing the equation for τ̂ gives[
Zg

>S∗Zg +G11 G12

G21 G22

] [
ũm
α̃

]
=

[
Zg

>S∗y
0

]
(26)

where S∗ = R∗−1 −R∗−1X
(
X>R∗−1X

)−1
X>R∗−1. Thus, in a similar manner to Ap-

pendix I, the second equation in (26) gives

α̃ = −(G22)−1G21ũm

= (G22)−1G22G21G
−1
11 ũm

= DM>K−1ũm (27)

Also note that, substituting this into the first equation in (26) gives the reduced set of
MME given by (

Zg
>S∗Zg + (σ2

mK)−1
)
ũm = Zg

>S∗y (28)

which is identical to the equation for ũm that would be achieved using the standard
(non-expanded) form of the model in equation (5). Thus we can obtain E-BLUPs of α
by fitting the model as in equation (5) to obtain ũm, then using equation (27).

In terms of PEVs, we let C denote the coefficient matrix of the MME in equation (26),
and partition as for G. The PEV for α̃ is then given by C22 where this is the partition of
the inverse of C corresponding to α̃. Similarly, the PEV for ũm is given by C11. Using
standard results for the inverse of partitioned matrices, we have that

var (α̃−α) = C−1
22 +C−1

22C21C
11C12C

−1
22

= (G22)−1 +G21G
−1
11C

11G−1
11G12

= σ2
m

(
D −DM>K−1MD

)
+

DM>K−1var (ũm − um)K−1MD (29)

6
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where var (ũm − um) = (Zg
>S∗Zg + (σ2

mK)−1)
−1

is the PEV for ũm as would be ob-
tained using the standard (non-expanded) form of the model in equation (5). Thus we
can obtain the PEV for α̃ by fitting the model as in equation (5) to obtain the PEV of
ũm, then using equation (29).
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