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Abstract

This thesis investigates the pricing of European-style options under the CGMY mod-

el, which can fit the empirically observed data in financial market better than the

B-S (Black-Scholes) model. Under this model, the price of options is governed by

a FPDE (fractional partial differential equation) with two spatial-fractional deriva-

tives defined in the Weyls sense. In comparison with the derivative of integer order,

the fractional-order derivative requires the function value over the entire domain

rather than its value at one particular point. This has added an additional degree of

difficulty when either the analytical solution or the numerical method is attempted.

Albeit difficult, we have managed to derive a closed-form analytical solution for Eu-

ropean options under the CGMY model. Based on the solution, we further discuss

its asymptotic behaviors and the put-call parity under the adopted CGMY mod-

el. Finally, we propose an efficient numerical evaluation technique for the current

formula so that it can be easily used in trading practice.

iii
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Chapter 1

Introduction and background

1.1 Option derivatives

In finance, an option is a contract which gives the buyer the right, but not the

obligation, to buy or sell an underlying asset or instrument at a specified price on

or before a specified date. Generally speaking, the buyer pays a premium to the

seller for this right. The price in the contract is known as the exercise price or the

strike price, and the specified date in the contract is defined as the expiration date,

exercise date or maturity date. An option which conveys the right to buy something

at a specific price is referred to as a call. Similarly, an option which conveys the

right to sell something at a specific price is referred to as a put [23].

According to the exercise time, options can be classified as European style or

American style. A European option can be exercised only at the expiration date,

while an American option can be exercised at any time before the expiration date

[23].

Options can also be divided into vanilla options and exotic options. A vanilla

option is a normal call or put option that has standardized terms and no special

or unusual features. On the other hand, an exotic option is an option whose payoff

function is more general and complicated than the vanilla call or put options. Typical

examples include the barrier options, Asian options, digital options and so on [23].

Option derivatives have been known for many centuries. However, the trading

1
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activities have increased significantly only since 1973 when the B-S (Black-Scholes)

model was established [28]. From then on, options were issued with standardized

terms and traded through a guaranteed clearing house at the CBOE (Chicago Board

Options Exchange). Today, many options are traded through clearing houses on

regulated options exchanges throughout the world [55].

1.2 Mathematical background

One of the major challenges in today’s financial industry is to determine the prices

of financial derivatives efficiently and accurately. Such evaluations require advanced

mathematical methods. In this section, we shall briefly review the mathematical

background that is employed as a basic tool for the studies in the current thesis.

1.2.1 Fractional derivatives

The fractional derivative was originated in a letter from Leibniz to L’Hôpital in

1695:“ Can the meaning of derivatives with integer orders be generalized to deriva-

tives with non-integer orders?” Later on, many mathematicians have contributed to

this topic [30, 46, 48], and thus the fractional derivative has been developed.

Recently, many models are formulated in terms of fractional derivatives, such

as control process, viscoelasticity, signal process, and anomalous diffusion. There

exists a vast literature on the use of different types of fractional derivatives. The

most popular ones include the Riemann-Liouville fractional derivative, the Caputo

fractional derivative and the Weyls fractional derivative. We shall briefly review

them in this subsection.

The Riemann-Liouville fractional derivative was introduced by Liouville in 1832

[40]. It is defined upon the Lagrange rule for differential operators. It is formally

defined in [30] as follows.
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Definition 1.2.1 The left-side Riemann-Liouville derivative is

aD
α
xf(x) =

1

Γ(n− α)

dn

dxn

∫ x

a

(x− t)n−α−1f(t)dt, n− 1 ≤ α < n,

where α ∈ R+ and n is the least integer greater than α, f(x) has derivatives of at

least m orders and m ≥ [α] = n− 1.

Definition 1.2.2 The right-side Riemann-Liouville derivative is

xD
α
b f(x) =

1

Γ(n− α)

dn

dxn

∫ b

x

(t− x)n−α−1f(t)dt, n− 1 ≤ α < n,

where α, n and f(x) are the same defined as Definition 1.2.1.

The Caputo fractional derivative was introduced by Caputo in [15]. In contrast to

the Riemann-Liouville fractional derivative, it is not necessary to define the frac-

tional order initial conditions when solving FPDEs (fractional partial differential

equations) involving the Caputo fractional derivative [15]. The Caputo fractional

derivative can also be defined from the left side and the right side. They are formally

defined in [5] as follows.

Definition 1.2.3 The left-side Caputo derivative is

aD
α
xf(x) =

1

Γ(n− α)

∫ x

a

(x− t)n−α−1d
nf(t)

dtn
dt, n− 1 ≤ α < n,

where α, n and f(x) are the same defined as Definition 1.2.1, f (k)(a) = 0, k =

0, 1, ..., n− 1.

Definition 1.2.4 The right-side Caputo derivative is

xD
α
b f(x) =

1

Γ(n− α)

∫ b

x

(t− x)n−α−1d
nf(t)

dtn
dt, n− 1 ≤ α < n,

where α, n and f(x) are the same defined as Definition 1.2.1, f (k)(a) = 0, k =

0, 1, ..., n− 1.



CHAPTER 1. INTRODUCTION AND BACKGROUND 4

We remark that in the above definitions, if α ≥ 0, they are fractional derivatives, if

α < 0, they become fractional integrals. It is remarked that if a, b take on −∞ and

+∞, respectively, the Weyls fractional derivatives can be obtained in [31] as follows.

Definition 1.2.5 The left-side Weyls derivative is

−∞D
α
xf(x) =

1

Γ(n− α)

∂n

∂xn

∫ x

−∞
f(y)(x− y)n−α−1dy, n− 1 ≤ α < n.

Definition 1.2.6 The right-side Weyls derivative is

xD
α
∞f(x) =

1

Γ(n− α)

∂n

∂xn

∫ ∞
x

f(y)(y − x)n−α−1dy, n− 1 ≤ α < n.

Here, Definition 1.2.5 is referred to as “forward Weyl’s fractional derivative”

whereas Definition 1.2.6 is referred to as “backward Weyl’s fractional derivative”

[31]. Correspondingly, there are two fractional integral definitions.

It should be remarked that there is a relationship between the forward fractional

integral and the forward fractional derivative, i.e.,

−∞D
u
xf(x) = Dm[−∞J

−v
x f(x)] = Dm 1

Γ(v)

∫ x

−∞
f(y)(x− y)v−1dy,

=
1

Γ(m− u)

dm

dxm

∫ x

−∞
(x− y)m−u−1f(y)dy,

where −∞J
−v
x f(x) is the forward fractional integral defined as

−∞J
−v
x f(x) =

1

Γ(v)

∫ x

−∞
f(y)(x− y)v−1dy,

and v = m− u > 0.

Similarly, we can obtain the relationship between the backward fractional inte-

gral and the backward fractional derivative.

Now, let Dα
t be any of the α-order fractional derivative mentioned above. Ac-

cording to [12], it is known that Dα
t has the following properties.
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1. Dα+β
t [f(t)] = Dα

t D
β
t [f(t)];

2. Linearity: Dα
t [af(t) + bg(t)] = aDα

t [f(t)] + bDα
t [g(t)], where a, b are

constants;

3. Leibniz rules: Dα
t [f(t)g(t)] = Σ∞n=0 (αn)Dn

t [g(t)]Dα−n
t [f(t)].

1.2.2 Fourier transform

The Fourier transform is a useful mathematical transformation employed to trans-

form signals between the time (or spatial) domain and the frequency domain. This

transform has many applications in physics and engineering [13].

Definition 1.2.7 The Fourier transform is defined by

z[f(x)] = z(ξ) =

∫ ∞
−∞

f(x)eixξdx,

where f(x) is analytic on (−∞,+∞), z[·] denotes the Fourier transform, and ξ is

the Fourier transform parameter.

Definition 1.2.8 The inverse Fourier transform is given by

f(x) = z−1[z(ξ)] =
1

2π

∫ ∞
−∞

z(ξ)e−ixξdξ.

The Fourier transform is an invertible, linear transform. It has the following impor-

tant properties [13].

1. Linearity property: z[af(x) + bg(x)] = az[f(x)] + bz[g(x)], and

z−1[af(x) + bg(x)] = az−1[f(x)] + bz−1[g(x)];

2. Shifting property: z[f(x − x0)] = eix0ξz[f(x)], and z[f(x + x0)] =

e−ix0ξz[f(x)];

3. Derivative property: z[f (k)(x)] = (−iξ)kz[f(x)], where f(x)→0 for

| x | →∞;

4. Exponential function property: z[eaxf(x)] = z(ξ − ia);
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5. Odd-even property: If f(x) is an (odd) even function, z(ξ) is an

(odd) even function as well.

One of the most important properties of the Fourier transform is the so-called

convolution theorem. Convolution is similar to the cross-correlation. It has appli-

cations in many areas including the probability, statistics, computer vision, image

and signal processing, electrical engineering, and differential equations [27].

Theorem 1 (Convolution Theorem) z[f1(x) ∗ f2(x)] = z[f1(x)] · z[f2(x)] and

z−1[z(f1(x)) · z(f2(x))] = f1(x) ∗ f2(x), where f1(x) ∗ f2(x) is the convolution

of the function of f1 and f2, i.e., f1(x) ∗ f2(x) = f(x) =

∫ ∞
−∞

f1(t)f2(x− t)dt.

According to this theorem, the following corollary on the joint pdf (probability

density function) can be proved.

Corollary 1.2.1 The pdf of the sum of two independent continuous random vari-

ables U and V is the convolution of their separate density functions, i.e.,

fU+V (x) =

∫ +∞

−∞
fU(y)fV (x− y)dy = (fU ∗ fV )(x),

where fU and fV are the pdfs of U and V , respectively.

Proof. Let fU,V (x, y) and FU,V (x, y) be the joint pdf and the joint cdf (cumulative

distribution function) of U and V , respectively. Therefore, for Z = U + V , we have

FZ(z) = P (Z ≤ z) = P (U + V ≤ z),

=

∫ +∞

−∞

∫ z−y

−∞
fU,V (x, y)dxdy,

where FZ(z) is the cdf of Z. Now, let u = x+ y, and we obtain

FZ(z) =

∫ +∞

−∞

∫ z

−∞
fU,V (u− y, y)dudy,

=

∫ z

−∞

∫ +∞

−∞
fU,V (u− y, y)dydu.
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Therefore, the pdf of z, i.e., fz(z) can be determined as

fZ(z) =
d(FZ(z))

dz
=
d(
∫ z
−∞

∫ +∞
−∞ fU,V (u− y, y)dydu)

dz
,

=

∫ +∞

−∞
fU,V (z − y, y)dy.

Since U and V are independent, we have

fZ(z) =

∫ +∞

−∞
fU,V (z − y, y)dy,

=

∫ +∞

−∞
fU(z − y)fV (y)dy,

= fU(x) ∗ fV (y).

This has completed the proof of this corollary.

On the other hand, it should be remarked that the fractional derivatives usually

have simpler behaviors in the Fourier space [31].

Corollary 1.2.2 The Fourier transforms of fractional integrals are given by

z [−∞J
α
x f(x)] = (−iξ)−αz(ξ), and z [xJ

α
∞f(x)] = (iξ)−αz(ξ), where f(x) is ana-

lytic on (−∞,∞), α < 0, ξ is the Fourier transform parameter, and z(ξ) is the

Fourier transform of f(x).

Proof. According to the definition of fractional integrals, it is known that

−∞J
α
x f(x) =

1

Γ(α)

∫ x

−∞
(x− ξ)α−1f(ξ)dξ,

which can be rewritten as

−∞J
α
x f(x) =

1

Γ(α)

∫ ∞
0

(y)α−1f(x− y)dy,

=
1

Γ(α)

∫ ∞
−∞

(y)α−1f(x− y)H(y)dy,
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with H(·) being the step function defined as

H(y) =

 1, y ≥ 0;

0, y < 0.

It is clear now, −∞J
α
x f(x) is the convolution of xα−1H(x)/Γ(α) and f(x). Therefore,

according to Theorem 1, we obtain

z [−∞J
α
x f(x)] = z

[
xα−1H(x)

Γ(α)

]
z [f(x)] .

On the other hand, applying the Fourier transform directly to
xα−1H(x)

Γ(α)
, we obtain

z
[
xα−1H(x)

Γ(α)

]
=| ξ |−α exp [(iαπ/2)sgn(ξ)] , (1.2.1)

where sgn(ξ) is the sign function defined as

sgn(ξ) =


1, ξ > 0;

0, ξ = 0;

−1, ξ < 0.

(1.2.2)

For the case of ξ > 0, according to Euler’s theory, we have

exp[(iαπ/2)sgn(ξ)] = exp(iαπ/2),

= [exp(−iπ/2)]−α,

= [cos(−π/2) + i sin(−π/2)]−α,

= (−i)−α,

which, combined with (1.2.1), yields

z
[
xα−1H(x)

Γ(α)

]
= (−iξ)−α. (1.2.3)
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For the case of ξ < 0, we have

exp[(iαπ/2)sgn(ξ)] = exp(−iαπ/2),

= [exp(iπ/2)]−α,

= [cos(π/2) + i sin(π/2)]−α,

= (i)−α,

which, combined with (1.2.1), yields,

z
[
xα−1H(x)

Γ(α)

]
= (−iξ)−α. (1.2.4)

For the case of ξ = 0, we have

z
[
xα−1H(x)

Γ(α)

]
= (−iξ)−α. (1.2.5)

From (1.2.3), (1.2.4)and (1.2.5), one can draw the conclusion that

z[−∞J
α
x f(x)] = (−iξ)−αz(ξ).

The proof of this corollary is thus completed.

Similarly, we can show that z [xJ
α
∞f(x)] = (iξ)−αz(ξ).

On the other hand, when the Fourier transform is applied to fractional deriva-

tives, we have the following corollary.

Corollary 1.2.3 The Fourier transforms of the Weyls fractional derivatives are

given by z[−∞D
α
xf(x)] = (−iξ)αz(ξ), and z[xD

α
∞f(x)] = (iξ)αz(ξ), where f(x) is

analytic on (−∞,∞), α > 0, ξ is the Fourier transform parameter, ξ 6= 0 and z(ξ)

is the Fourier transform of f(x).

Proof. From Definition 1.2.5, it is known that

−∞D
α
xf(x) =

1

Γ(n− α)

∂n

∂xn

∫ x

−∞
f(ξ)(x− ξ)n−α−1dξ.
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Now, let y = x− ξ, n− α = −p (−1 < p < 0). We have

−∞D
α
xf(x) = −∞D

n+p
x f(x),

=
1

Γ(−p)
∂n

∂xn

∫ 0

∞
f(x− y)(y)−p−1(−dy),

=
1

Γ(−p)
∂n

∂xn

∫ ∞
0

f(x− y)(y)−p−1dy.

Therefore, we obtain

−∞D
p
xf(x) =

1

Γ(−p)

∫ ∞
0

f(x− y)(y)−p−1dy,

=
1

Γ(−p)

∫ ∞
−∞

f(x− y)(y)−p−1H(y)dy, (1.2.6)

where H(·) is the Heviside function. From (1.2.6), it is clear that −∞D
p
xf(x) is the

convolution of x−p−1H(x)/Γ(−p) and f(x).

According to Theorem 1, we have

z[−∞D
p
xf(x)] = z

[
x−p−1H(x)

Γ(−p)

]
z[f(x)],

= | ξ |p exp[(−ipπ/2)sgn(ξ)]z(ξ), (1.2.7)

where sgn(ξ) is the sign function defined in (1.2.2). In fact, (1.2.7) can be further

simplified according to the following two different choices of ξ. Here, ξ 6= 0 because

there would be meaningless if ξ = 0 since p < 0.

For the case of ξ > 0, according to Euler’s theory, it is known that

exp[(−ipπ/2)sgn(ξ)] = (−i)p,

and thus, we have

z
[
x−p−1H(x)

Γ(−p)

]
= (−iξ)p.
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On the other hand, for ξ < 0, we have

exp[(−ipπ/2)sgn(ξ)] = exp(ipπ/2) = [exp(iπ/2)]p = [cos(π/2) + i sin(π/2)]p = (i)p.

Combining the results of the two cases, we have

z
[
x−p−1H(x)

Γ(−p)

]
= (−iξ)p,

and thus

z[−∞D
p
xf(x)] = (−iξ)pz(ξ).

It is clear at this stage that

z[−∞D
α
xf(x)] = z [Dn[−∞D

p
xf(x)]] ,

= (−iξ)n+pz(ξ),

= (−iξ)αz(ξ).

This has completed the proof of this corollary.

Similarly, we can show that z[xD
α
∞f(x)] = (iξ)αz(ξ). The details are omitted

here.

1.2.3 Laplace transform

The Laplace transform is a widely used integral transform technique with many

applications in the physics and engineering area. It is a linear operator of a function

f(t) with a real argument t(t ≥ 0) that transforms f(t) to a function F (s) with

complex argument s, i.e.,

F (s) = Ls {f(t)} =

∫ ∞
0

e−stf(t)dt.

The Laplace transform can be formally defined in [39] as follows.
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Definition 1.2.9 The Laplace transform of a function f(t) is given by

Ls {f(t)} =

∫ ∞
−∞

e−stf(t)dt,

where Ls {f(t)} is the Laplace transform of f(t), s is the Laplace transform param-

eter, and is a complex number.

The inverse Laplace transform is known as the “Bromwich integral”, which is defined

as follows.

Definition 1.2.10 The inverse Laplace transform of Ls {f(t)} is given by

f(t) = L−1
t {Ls {f(t)}} =

1

2πi
lim
T→∞

∫ γ+iT

γ−iT
estLs {f(t)} ds.

The Laplace transform has a number of properties that make it useful for analyzing

linear dynamical systems [39], i.e.,

1. Linearity property: Ls{af(t) + bg(t)} = aLs {f(t)}+ bLs {g(t)};

2. Frequency domain differentiation property: Ls{tnf(t)} = (−1)n (Ls {f(t)})(n);

3. General differentiation property: Ls{f (n)(t)} = snLs {f(t)}−
n∑
k=1

sk−1f (n−k)(0);

4. Time scaling property: Ls{f(at)} =
1

|a|
L s
a
{f(t)};

5. Convolution property: Ls{f(t) ∗ g(t)} = Ls {f(t)} · Ls {g(t)}, here

f(t) ∗ g(t) =

∫ t

0

f(τ)g(t− τ)dτ for f, g ∈ [0,+∞)→ R.

We remark that in the above properties, Ls {f(t)} and Ls {g(t)} are the Laplace

transform of f(t) and g(t), respectively.

1.2.4 Mellin transform

The Mellin transform is an integral transform that can be regarded as the multi-

plicative version of two-sided Laplace transform. This integral transform is closely

related to the theory of Dirichlet series, and is often used in the number theory and

the theory of asymptotic expansions [49]. The Mellin transform is formally defined

in [32] as follows.
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Definition 1.2.11 The Mellin transform of a function f(x) is given by

M{f(x)}s = ϕ(s) =

∫ ∞
0

xs−1f(x)dx,

where ϕ(s) is the Mellin transform of f(x), and s is the Mellin transform parameter.

Definition 1.2.12 The inverse Mellin transform of ϕ(s) is given by

M−1{ϕ(s)}x = f(x) =
1

2πi

∫ c+i∞

c−i∞
x−sϕ(s)ds.

The Mellin transform is also very useful in the applied mathematics area because of

the following properties [35].

1. Scaling property: M{f(at)}s =

∫ +∞

0

f(at)ts−1dt = a−s
∫ +∞

0

f(x)xs−1dx =

a−sϕ(s);

2. Multiplication by ta: M{taf(t)}s =

∫ +∞

0

f(t)t(s+a)−1dt = ϕ(s+ a);

3. Raising the independent variable to a real power: M{f(ta)}s =∫ +∞

0

f(ta)ts−1dt =

∫ +∞

0

f(x)x
s
a
− 1
a

(
1

a
x

1
a
−1dx

)
= a−1ϕ

(s
a

)
, where

a > 0;

4. Inverse of independent variable: M{t−1f(t−1)}s = ϕ(1− s);

5. Multiplication by ln t: M{ln tf(t)}s =
d

ds
ϕ(s);

6. Multiplication by a power of ln t: M{(ln t)kf(t)}s =
dk

dsk
ϕ(s).

1.2.5 The Lévy process

In probability theory, the Lévy process, named after the French mathematician Paul

Lévy, is a stochastic process with independent, stationary increments. It represents

the motion of a point whose successive displacements are random and independent,

and statistically identical over different time intervals of the same length [50]. A

Lévy process can thus be viewed as the continuous time analog of a random walk.

The most well known examples of Lévy processes are the Brownian motion and the

Poisson process [50]. The Lévy process is formally defined in [2] as follows.
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Definition 1.2.13 A stochastic process X = {Xt : t ≥ 0} is a Lévy process if it has

the following properties:

1. X0 = 0 , almost surely;

2. Independence of increments: For any 0 ≤ t1 < t2 < · · · < tn <

∞, Xt2 −Xt1 , Xt3 −Xt2 , . . . , Xtn −Xtn−1 are independent;

3. Stationary increments: For any s < t,Xt−Xs has the same distribu-

tion as Xt−s;

4. Continuity in probability: For any ε > 0 and t ≥ 0 it holds that

limh→0 P (|Xt+h −Xt| > ε) = 0.

We remark that if X is a Wiener process, the probability distribution of Xs −Xt is

normally distributed with mean 0 and variance s − t. If X is the Poisson process,

the probability distribution of Xs−Xt is a Poisson distribution with mean λ(s− t),

where λ > 0 is the “intensity” or “rate” of the process.

It should also be noticed that in any Lévy process with finite moments, the nth

moment µn(t) = E(Xn
t ) is a polynomial function of t, and it satisfies

µn(t+ s) =
n∑
k=0

(
n

k

)
µk(t)µn−k(s).

On the other hand, it should be pointed out that the distribution of a Lévy

process is characterized by its characteristic function, which can be determined by

the Lévy Khinchine formula [8]. In specific, if (Xt)t≥0 is a Lévy process, then its

characteristic function is given by

E
[
eiuXt

]
= exp

(
bitu− t1

2
σ2u2 + t

∫
R\{0}

(
eiux − 1− iuxI|x|<1

)
Π(dx)

)
,

where b ∈ R, σ2 ≥ 0, I is the indicator function and Π is a sigma-finite measure

called the Lévy measure of X, satisfying
∫
R\{0}min{x2, 1}Π(dx) < ∞. Π(dx) here

represents the rate of arrival (intensity) of the Poisson process with jump size x.

We further remark that the Lévy process usually includes three independent

components: a linear drift, a Brownian motion and a superposition of independent
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(centered) Poisson processes with different jump sizes. These three components can

all be determined by the Lévy?Khintchine triplet (b, σ2,Π) [20].

1.2.6 Special functions

Gamma function

The Gamma function was introduced into mathematics by Euler [1]. For complex

numbers with a positive real part, it is defined via a convergent improper integral

[24] as follows.

Definition 1.2.14 The Gamma function is defined as

Γ(z) =

∫ ∞
0

tz−1e−tdt,

where z = σ + iτ and σ > 0.

We remark that the Gamma function is known as the Euler integral of the second

kind. Using the integration by part technique, it can be shown that the Gamma

function satisfies the following identity, i.e.,

Γ(z + 1) = zΓ(z).

The Gamma function also satisfies the Euler reflection formula

Γ(1− z)Γ(z) =
π

sin (πz)
,

which implies

Γ(ε− n) = (−1)n−1 Γ(−ε)Γ(1 + ε)

Γ(n+ 1− ε)
,

and

Γ(z)Γ

(
z +

1

2

)
= 21−2z

√
πΓ(2z).

The detailed treatments of the Gamma function can be found in [24].
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H-function

The H-function is an important function, because it includes most of the special

functions occurring in applied mathematics and statistics as special cases. In 1961,

Fox defined the H-function in his paper [36] as follows.

Definition 1.2.15 The H-function H(·) is given by

H(cz) = Hm,n
p,q (cz) = Hm,n

p,q

[
cz

∣∣∣∣ (ai, Ai)i=1,...,p

(bj, Bj)j=1,...,q

]
,

=
1

2πi

∫
C

χ(s)(cz)−sds,

where C is a certain contour separating the poles of the two factors in the numerator

and χ(s) is the integral density defined by

χ(s) =

∏m
j=1 Γ(bj +Bjs)

∏n
i=1 Γ(1− ai − Ais)∏p

i=n+1 Γ(ai + Ais)
∏q

j=m+1 Γ(1− bj −Bjs)
,

z, c, ai and bj are real or complex numbers, all Ai and Bj are positive real numbers,

and m, n, p and q are integers satisfying 0 ≤ m ≤ q and 0 ≤ n ≤ p.

From the above definition, it can be noticed that the H-function is in fact the

inverse Meillin transform of χ(s).

The H-function has the following useful properties [42].

1. Reciprocal property:

Hm,n
p,q

[
1

z

∣∣∣∣ (ai, Ai)i=1,...,p

(bj, Bj)j=1,...,q

]
= Hn,m

q,p

[
z

∣∣∣∣ (1− bj, Bj)j=1,...,q

(1− ai, Ai)i=1,...,p

]
;

2. Power property:

Hm,n
p,q

[
zc
∣∣∣∣ (ai, Ai)i=1,...,p

(bj, Bj)j=1,...,q

]
=

1

c
Hm,n
p,q

[
z

∣∣∣∣ ai,
Ai
c

)i=1,...,p

(bj,
Bj
c

)j=1,...,q

]
,

where c > 0;

3.
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zcHm,n
p,q

[
zc
∣∣∣∣ (ai, Ai)i=1,...,p

(bj, Bj)j=1,...,q

]
= Hm,n

p,q

[
z

∣∣∣∣ (ai + Aic, Ai)i=1,...,p

(bj +Bjc, Bj)j=1,...,q

]
;

4. Reduction property:

Hm,n
p,q

[
z

∣∣∣∣ (ai, Ai)i=1,...,p

(bj, Bj)j=1,...,q−1 (ai, Ai)

]
= Hm,n−1

p−1,q−1

[
z

∣∣∣∣ ai, Ai)i=2,...,p

(bj, Bj)j=1,...,q−1

]
.

It should be remarked that the H-function will exhibit simpler behaviors after some

integral transforms are applied [11]. We have the following lemmas.

Lemma 1.2.1 If all real bj satisfy that
−bj
Bj

< 1 for j = 1, ...,m, then the Fourier

transform applied to Hm,n
p,q (cz) admits

z{Hm,n
p,q (cz)} =

∫ +∞

0

eitzHm,n
p,q (cz)dz,

=
1

c
Hn+1,m
q,p+1

[
− i

c
t

∣∣∣∣ (1− b1 −B1, B1) (1− bj −Bj, Bj)j=2,...,q

(0, 1) (1− ai − Ai, Ai)i=1,...,p

]
.

However, if all real bj satisfy
−bj
Bj

≥ 1 for j = 1, ...,m, then the Fourier transform

becomes

z{Hm,n
p,q (cz)} =

(−1)I

c
Hn+1,m+1
q+1,p+1

[
− i

c
t

∣∣∣∣ (I, 1) (1− bj −Bj, Bj)j=1,...,q

(I, 1) (1− ai − Ai, Ai)i=1,...,p (0, 1)

]
,

where I = max

{
0, b−bj

Bj

c
}

.

From Lemma 1.2.1, it is clear that the Fourier transform of the H-function is

another H-function.

Lemma 1.2.2 The Mellin transform of the H-function admits

M{Hm,n
p,q (cz)} =

∫ +∞

0

zs−1Hm,n
p,q (cz)dz,

=
1

cs

∏m
j=1 Γ(bj +Bjs)

∏n
i=1 Γ(1− aj − Ajs)∏p

i=n+1 Γ(ai + Ais)
∏q

j=m+1 Γ(1− bj −Bjs)
.
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Lemma 1.2.3 If all real bj satisfy
−bj
Bj

< 1 for j = 1, ...,m, then the Laplace

transform applied to Hm,n
p,q (cz) admits

L{Hm,n
p,q (cz)} =

∫ +∞

0

e−rzHm,n
p,q (cz)dz,

=
1

c
Hn+1,m
q,p+1

[
1

c
r

∣∣∣∣ (1− b1 −B1, B1) (1− bj −Bj, Bj)j=2,...,q

(0, 1) (1− ai − Ai, Ai)i=1,...,p

]
.

However, if all real bj satisfy
−bj
Bj

≥ 1 for j = 1, ...,m, the Laplace transform becomes

L{Hm,n
p,q (cz)} =

(−1)I

c
Hn+1,m+1
q+1,p+1

[
1

c
r

∣∣∣∣ (I, 1) (1− bj −Bj, Bj)j=1,...,q

(I, 1) (1− ai − Ai, Ai)i=1,...,p (0, 1)

]
,

where I is the same as defined in Lemma 1.2.1.

From Lemma 1.2.3, it is clear that the Laplace transform of the H-function is

another H-function.

1.3 The option pricing models

1.3.1 The Black-Scholes model

The B-S (Black-Scholes) model was established in 1973 by Black and Scholes [10].

They derived a PDE (partial differential equation), now called the B-S equation,

governing the price of option derivatives.

The B-S equation is given by

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0,

where V is the price of the option, S is the price of the stock, t is the current time,

and σ and r are the volatility and the annualized risk-free interest rate, respectively.

With appropriate boundary conditions, Black and Scholes also derived the closed-
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form analytical solution for European call options as

C(S, t) = N(d1)S −N(d2)Ke−r(T−t),

where

d1 =
1

σ
√
T − t

[
ln

(
S

K

)
+

(
r +

σ2

2

)
(T − t)

]
,

and

d2 = d1 − σ
√
T − t,

where C(S, t) is the price of a European call option, and K is the strike price.

By using the put-call parity, the price of the corresponding European put option

can be obtained as [38]

P (S, t) = Ke−r(T−t) − S + C(S, t),

= N(−d2)Ke−r(T−t) −N(−d1)S.

1.3.2 The FMLS model

The FMLS (finite moment log stable) model was introduced in [18]. This model can

not only capture the high-frequency empirical probability distribution of the S&P

500 data, but also fit simultaneously volatility smirks at different maturities [25].

Let V (x, t;α) be the price of European-style options, with x being the log un-

derlying price defined as x = lnS and α being the tail index. Cartea and del-

Castillo-Negrete [21] have shown that under the FMLS model, V (x, t;α) satisfies
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the following FPDE (fractional partial differential equation):


∂V

∂t
+ (r +

1

2
σα sec

απ

2
)
∂V

∂x
− 1

2
σα sec

απ

2
−∞D

α
xV − rV = 0,

V (x, T ;α) = Π(x),

where Π(x) is the payoff function, defined as max(ex−K, 0) and max(K− ex, 0) for

European calls and puts, respectively, with K being the strike price. −∞D
α
x (·) here

is the one-dimensional Weyls factional derivative defined as

−∞D
α
xf(x) =

1

Γ(n− α)

∂n

∂xn

∫ x

−∞

f(y)

(x− y)n−α−1
dy, n− 1 ≤ <(α) < n.

Recently, Chen et al. [25] derived the closed-form analytical solution for European

put options under the FMLS model as

Vp(x, τ ;α) = Ke−γτ
∫ +∞

d1

fα,0(|m|)dm− ex
∫ +∞

d1

e−τ−τ
1
αmfα,0(|m|)dm,

where d1 =
x− lnK − (1− γ)τ

τ
1
α

, and fα,0(|m|) is the Lévy stable density defined as

fα,0(|m|) =
1

α
H1,1

2,2

[
|m|
∣∣∣∣ (1− 1

α
, 1
α

) (1
2
, 1

2
)

(0, 1) (1
2
, 1

2
)

]
.

1.3.3 The CGMY model

The CGMY model was introduced by Carr et al. in [16]. The CGMY model is in

fact a continuous time model that has a unique advantage. This model can have

either finite or infinite activities according to the number of price jumps in any

time intervals. Besides, the CGMY model further allows the jump component to

have finite or infinite variation. In other words, the CGMY model could synthesize

the features of other continuous time models. Because of its unique advantages,

the CGMY model can be employed to study both the statistical process needed to

assess risk and allocate investments and the risk-neutral process used in pricing and
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hedging derivatives [16].

Under the risk neutral measure Q, the CGMY model assumes that the log

value of the underlying i.e., xt = lnSt follows a stochastic differential equation of a

geometric Lévy process

d(lnSt) = (r − v)dt+ dLt,

with solution

ST = Ste
(r−v)(T−t)+

∫ T
t dLu , (1.3.8)

where r is the risk-free rate, t is the current time, v is a convexity adjustment so

that EQ[ST ] = er(T−t)St , and dLt is the increment of a Lévy process under the EMM

(Equivalent Martingale Measure).

Let V (x, t) be the price of European-style options, with x being the log under-

lying price and t being the current time. Cartea and del-Castillo-Negrete [21] have

shown that under the CGMY model, V (x, t) satisfies the following FPDE system:



∂V

∂t
+ (r − v)

∂V

∂x
+ CΓ(−Y )eMx

xD
Y
∞
(
e−MxV

)
+CΓ(−Y )e−Gx−∞D

Y
x

(
eGxV

)
=
[
r + CΓ(−Y )

(
MY +GY

)]
V,

V (x, T ) = Π(x),

where v = CΓ(−Y )
[
(M − 1)Y −MY + (G+ 1)Y −GY

]
and Π(x) is the payof-

f function. −∞D
Y
x (·) and xD

Y
∞(·) here are the one-dimensional Weyls factional

derivatives defined in Subsection 1.2.1. The parameters C, G, M and Y will

be explained in detail in Section 2.2. Due to the complicity of this model, the pric-

ing of option derivatives under this model has not been extensively explored. A

closed-form analytical solution for European-style options is the main topic of the

current thesis.
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1.3.4 The KoBol model

The KoBol model is also a pure jump Lévy process. In comparison to the CGMY

model, this process additionally introduces a damping effect in the tails of the LS

(Lévy-α-stable) distribution to ensure finite moments and to gain mathematical

tractability [21].

The Lévy density of this model is given in [43] by

ωKoBol(x) =

 Dq|x|−1−αe−λ|x|, x < 0;

Dqx−1−αe−λx, x > 0,

where D > 0, λ > 0, p, q ∈ [−1, 1], p + q = 1, and 0 < α ≤ 2. It should be

remarked that the parameter λ controls the decay of the exponent, p and q control

the skewness, and D is a measure of the overall activity level. The FPDE system

governing the price of European-style options is also established in [21] as



∂V

∂t
+

(
r − v − λα(q − p)∂V

∂t

)
+

1

2
σα[peλxxD

α
∞(e−λxV )

+qe−λx−∞D
α
x (eλxV )] =

(
r + 1

2
σαλα

)
V,

V (x, T ) = Π(x),

where v =
1

2
σα[p(λ− 1)α + q(λ+ 1)α − λα − αλα−1(q − p)].

1.4 Various representations of European-style op-

tion price in the Fourier space

As mentioned earlier, the Fourier transform has been widely used in the financial

engineering area [13]. European-style options under various different models can be

expressed in terms of Fourier integrals [51]. In this section, we shall briefly review

some of these representations.
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1.4.1 Attari’s approach

In [3], Attari mentioned that the price of a European call at time zero with spot

price S0, strike price K and maturity T is given by

C(S0, K, T ) = S0Π1 − e−rTKΠ2,

where

Π1 = 1 +
ek

2π

∫ +∞

−∞

e−iukφT (u)

i(u+ i)
du,

Π2 =
1

2
+

1

2π

∫ +∞

−∞

e−iukφT (u)

iu
du,

k = ln
Ke−rT

S0

, S is a general Lévy process with risk neutral density qT (x), qT (x) is

the risk neutral density of x = lnS relative to the martingale measure Q, and φT (u)

is the characteristic function of qT (x) defined as φT (u) =

∫ ∞
−∞

eiuxqT (x)dx.

1.4.2 Bate’s formula

A similar approach to that of Attari (2004) is outlined in [7]. Here, the value of a

European call option is determined from

C(S0, K, T ) = S0 − e−rTK

(
1

2
+

1

2π

∫ +∞

−∞

e
−iu ln K

S0 φT (u)

iu(1− iu)
du

)
,

where S0, K and T are the same as defined in Subsection 1.4.1. Using the fact

that option prices are real valued, we obtain

C(S0, K, T ) = S0 − e−rTK

(
1

2
+

1

π

∫ +∞

0

e
−iu ln K

S0 φT (u)

iu(1− iu)
du

)
. (1.4.9)

In the literature, (1.4.9) is referred to as the Bate formula.
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1.4.3 The B-M formula

Bakshi and Madan [4] reduced the European option price valuation problem to the

estimation of the price of the ArrowDebreu securities under appropriately modified

equivalent probability measures. They pointed out that the price of a European call

at time zero with spot price S0, strike price K and maturity T is given by,

C(S0, K, T ) = e−rT
∫ +∞

k

exq(x)dx− e−rTK
∫ +∞

k

q(x)dx,

= SΠ1 − e−rTKΠ2,

where k = lnK, and Π1 and Π2 are defined as

Π1 =
1

2
+

1

π

∫ +∞

0

<
[
e−iukφT (u− i)
iuφT (−i)

]
du,

and

Π2 =
1

2
+

1

π

∫ +∞

0

<
[
e−iukφT (u)

iu

]
du.

Hereafter, we name the current formula as “The B-M formula”. This formula will

be further used in Chapter 4 for comparison purpose. Interested readers can refer

to [51] for further study.

Before leaving this section, it should be remarked that the option price expressed

in terms of Fourier integral is not truly “explicit”, although it is also of closed form.

A clear advantage of our formula that will be derived in later chapters against

these representations is that ours has no need to work out the expression of the

characteristic function in advance, which is however, an essential part of the latter.

1.5 Literature review

Although the B-S framework has led to a boom in the trading of option derivatives

around the world, it is known that several assumptions used in the B-S model are

unrealistic [53]. For example, the geometric Brownian motion used to model the
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underlying returns implies that the series of the first difference of the log prices are

uncorrelated [52]. Also, the assumption that the log-increments of the underlying

returns are Gaussian has underestimated the probability of underlying price moving

significantly over small time steps [18]. To overcome these drawbacks, some other

financial models with non-Gaussian log-increments were introduced over the last few

decades. One of the most important models being used is to assume that under an

equivalent martingale measure, the underlying price stays within a family of Lévy

processes [25]. For example, Barndorff-Nielsen introduced the NIG (normal inverse

Gaussian) model by modeling key stylized features of observational series from fi-

nance [6]. Then, Madan and Seneta introduced the VG (variance gamma) model to

analyze the underlying uncertainty driving stock market returns [41]. Besides, the

maximally skewed LS (Lévy stable) process introduced in [18] has been studied by

a number of researchers [25, 37], and the FMLS (finite moment log stable) model

is introduced. It is shown that this model can not only successfully capture the

high-frequency empirical probability distribution of the S&P 500 data, but also fit

simultaneously volatility smirks at different maturities [25]. Other different Lévy

processes used to extend the FMLS model include the CGMY model introduced in

[16] and the KoBol model introduced in [43]. It should be pointed out that the

CGMY model further generalizes the VG model. In specific, it could synthesize the

features of other continuous time models. Therefore, the CGMY model can be used

effectively to study both the statistical process and the risk-neutral process [16].

There are mainly two types of fractional derivatives documented in the quanti-

tative finance area, a time-fractional derivative and a spatial-fractional derivative. A

closed-form solution for European vanilla options under the modified B-S equation

with a time-fractional derivative was derived by Wyss [29]. However, he did not pro-

vide plausible financial reason why a time-fractional derivative should be adopted.

Then, a model involved information on the waiting-time between trades was pro-

posed by Cartea and Meyer-Brandis [22]. This model was further analyzed by Cartea

in [19], where he established the FPDE system with the Caputo fractional derivative
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involved. In terms of option pricing models with a spatial-fractional derivative, Carr

and Wu [18] formally described the FMLS model under the risk-neutral measure.

A substantial progress has then been made by Cartea and del-Castillo-Negrete [21].

They have successfully connected the pricing of options under the FMLS model,

the KoBol model and the CGMY model to the solving of different FPDE systems.

Recently, Chen et al. [25] derived a closed-form analytical solution for European put

options under the FMLS model. By “closed-form”, it is meant that one can write

the solution in terms of generally accepted mathematical functions and operations

[56]. In this thesis, we shall consider the pricing of European options under the

CGMY model purely analytically.

1.6 Structure of the thesis

This thesis is divided into five chapters. In the first chapter, we briefly review

some mathematical and financial background of the CGMY model. In Chapter

2, we revisit the CGMY model in detail. The implied volatility of the CGMY

model is also considered in this chapter. In Chapter 3, we derive the closed-form

analytical solution for European-style options by solving the corresponding FPDE

system using the Fourier transform technique. We also analyze the asymptotic

behaviors of the current solution. In Chapter 4, some numerical examples and

discussions are provided to illustrate the validity of the current solution and the

proposed implementation technique. We also conduct some quantitative analysis on

the impacts of different parameters. A brief conclusion is finally given in Chapter

5.



Chapter 2

CGMY model

To obtain a clear overview of the CGMY model, we shall discuss this model in a

reasonable detail in this chapter. This chapter is further divided into five sections,

according to five important issues to be addressed. In the first section, we compare

the CGMY model with the VG (Variance Gamma) model. In the second section,

we discuss various parameters appeared in the CGMY model, whereas in the third

section, we discuss the relationship between the Y value and the pdf (probabili-

ty density function) of the CGMY model. The implied volatility of the CGMY

model is then provided in Section 4. Finally, the characteristic exponent and the

characteristic function of the CGMY model are discussed.

2.1 The revisit of the VG model

The CGMY model is closely related to the VG model, which is also an infinite-

activity pure jump process. To better explain the CGMY model, we shall briefly

review the VG model in this section. Let G(t; 1, ν) be a Gamma process with unit

mean and variance ν. According to [16], it is known that the corresponding pdf is

given by

f(g) =
gt/ν−1 exp(−g/ν)

νt/νΓ(t/ν)
,

27



CHAPTER 2. CGMY MODEL 28

and the characteristic function is given by

ΦG(u, t) = E{exp[iuG(t)]} = (
1

1− iνu
)t/ν .

The VG process XV G(t;σ, ν, θ) is denoted by

XV G(t;σ, ν, θ) = θG(t; ν) + σW [G(t; ν)],

where σ, ν, and θ are real constants and W (·) is the standard Brownian motion.

According to [16], The characteristic function of the VG model can be calculated as

ΦV G(u, t) = E{exp[iuXV G(u, t)]} = (
1

1− iθνu+ σ2νu2/2
)t/ν ,

= (
1

1− iηpu
)t/ν(

1

1 + iηnu
)t/ν ,

where ηp =

√
θ2ν2

4
+
σ2ν

2
+
θν

2
and ηn =

√
θ2ν2

4
+
σ2ν

2
− θν

2
.

We can also use two independent Gamma processes, namely, Gp(t;µp, νp) and

Gn(t;µn, νn) to define the VG process [16]. We assume that the ratio of the variance

to the square of the mean is the same for both gamma processes, and is equal to ν.

We obtain ν =
ηp
µp

and ν =
ηn
µn

, νp = µ2
pν and νn = µ2

nν. Accordingly, the VG model

can also be written as

XV G(t;σ, ν, θ) = Gp(t;µp, νp)−Gn(t;µn, νn).

From the above representation, the Lévy density of the VG model can be obtained

as

ωV G(x) =


µ2
n

νn

e−
µn
νn
|x|

|x|
, x < 0;

µ2
p

νp

e
−µp
νp
|x|

|x|
, x > 0.

(2.1.1)

Please refer to [16] for more details.

We can now generalize the VG model to the CGMY model with four new pa-
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rameters C, G, M and Y . The CGMY process is also a pure jump Lévy process

with Lévy measure W (dx) = wCGMY (x)dx given by,

ωCGMY (x) =


C
e−G|x|

|x|1+Y
, x < 0;

C
e−M |x|

|x|1+Y
, x > 0,

(2.1.2)

where C > 0, G ≥ 0,M ≥ 0, and Y < 2.

From the two density functions (2.1.1) and (2.1.2), it can be observed that

the VG model is a special case of the CGMY model if Y = 0, C =
1

ν
, G =

1

ηn

and M =
1

ηp
. In fact, C, G, M and Y are four key parameters capturing the

characteristics of the CGMY model. We shall discuss them in detail in the next

section.

2.2 C, G, M, Y of the CGMY model

Figure 2.1: High kurtosis and low kurtosis have different effects on the proba-
bility density function

Madan et al. mentioned in [17] that the parameter C can be viewed as a

measure of the overall level of activity. In the special case of G = M , the CGMY

model becomes a symmetric process. The parameter C then controls the overall

kurtosis of the distribution. It can be observed from Fig 2.1 that the pdf of the

CGMY model would become flatter as the kurtosis becomes smaller.
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The parameters G and M control the rate of exponential decay on the right

and left of the Lévy density, respectively. When they are equal to each other, the

distribution of the CGMY model becomes symmetric, as mentioned earlier. In the

case of G 6= M , it leads to a skewed distribution. For example, if G < M , the left

tail of the distribution is heavier than the right one, whereas G > M , the right tail

is heavier than the left one [16].

On the other hand, as mentioned in [54], the parameter Y is used to characterize

the fine structure of the stochastic process. In specific, the parameter Y determines

whether the CGMY model has a complete monotone Lévy density, and whether the

process has finite or infinite activity, or variation.

According to different values of Y , the CGMY has the following different prop-

erties [16].

The CGMY model:

(a) does not have a complete monotone Lévy density, but has a finite

activity for Y < −1;

(b) has a complete monotone Lévy density with a finite activity for

−1 < Y < 0;

(c) has a complete monotone Lévy density with an infinite activity and

finite variation for 0 < Y < 1;

(d) has a complete monotone Lévy density with an infinite activity and

infinite variation for 1 < Y < 2;

(e) degenerates to the classical B-S model for Y → 2.

The explanations of CM (complete monotone Lévy densities), FV (finite variation)

and FA (finite activity) are left in Appendix B for interested readers.

2.3 The pdf of the CGMY model

As mentioned earlier, the CGMY process is in fact a Lévy process {X(t)}t≥0 such

that X(1) is CGMY distributed with parameters C, G, M > 0 and Y < 2.
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According to [14], a CGMY-distributed random variable will have the mean

value C(MY−1 − GY−1)Γ(1 − Y ), and variance value C(MY−2 + GY−2)Γ(2 − Y ).

Furthermore, its skewness and kurtosis are given by
C(MY−3 +GY−3)Γ(3− Y )

[C(MY−2 +GY−2)Γ(2− Y )]3/2

and 3 +
C(MY−4 +GY−4)Γ(4− Y )

[C(MY−2 +GY−2)Γ(2− Y )]2
, respectively.

Figure 2.2: The pdf of the CGMY model for different values of Y with G=M .

Displayed in Fig 2.2 is the pdf of the CGMY model for different values of Y

with G = M . This figure is a typical example shown in [26]. From the figure, it can

be observed that both tails of the density function are fatter and the center of the

distribution shifts to the left when Y becomes larger.

2.4 The implied volatility of the CGMY model

Now, we turn to investigate the implied volatility of the CGMY model. For compar-

ison purpose, we set G = M = 1. In this case, the CGMY distribution is symmetric.

Furthermore, the parameters in the CGMY model are chosen such that the CGMY

distribution has the same quartiles as the B-S distribution with a volatility σBS.

Specifically, XBS(t) = (µ− σ
2
BS

2
)t+σBSW (t), where σBS > 0 and µ ∈ R are param-

eters, W(t) is a standard Brownian motion. From the view of risk-neutral valuation,

the expected return µ on the option is equal to r. Therefore, the secondary moment
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of the B-S model can be obtained as

E[X2
BS(t)] = {E[XBS(t)]}2 + V [XBS(t)] = [(µ− σ2

BS

2
)t]2 + σ2

BSt.

On the other hand, we have known the mean and variance of XCGMY (t). The

secondary moment of the CGMY model can be written as

E[X2
CGMY (t)] = {E[XCGMY (t)]}2 + V [XCGMY (t)],

= [(r − v)t]2 + tC(MY−2 +GY−2)Γ(2− Y ),

where v = CΓ(−Y )[(M − 1)Y −MY + (G + 1)Y − GY ]. Next, substituting µ = r

and G = M = 1, we have the result C =
r2t+ σ2

BS

2Γ(2− Y )
with the secondary moments

E[X2
BS(t)] and E[X2

CGMY (t)] being equal to each other. The implied volatility curves
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(b) Implied volatility surfaces with Y = 1.8.

Figure 2.3: The implied volatility for the CGMY model. Model parameters are
K = 10, G = M = 1, r = 0.1, t = 0.55(year), C = 0.064

Γ(2−Y ) and σBS = 0.35.

as a function of the moneyness
K

S
at different levels of Y are shown in Fig 2.3(a).

The implied volatility surface of a particular value of Y , i.e., Y = 1.8 is further

shown in Fig 2.3(b). From this figure, one can clearly observe the volatility smile

for all maturities. However, the smile is weakened as the time to maturity becomes

larger. This agrees with the observation in [47].
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2.5 The characteristic exponent and the charac-

teristic function of the CGMY model

In this section, we shall discuss the characteristic exponent and characteristic func-

tion of the CGMY model in detail. According to the Lévy Khintchine formula [8],

the characteristic exponent of the Lévy process is given by

Ψt(u) =

(
bitu− t1

2
σ2u2 + t

∫
R\{0}

(
eiux − 1− iuxI|x|<1

)
Π(dx)

)
.

Based on the relationship between Φt(u) and Ψt(u), we have Φt(u) = exp(Ψt(u)),

where Φt(u) is the characteristic function of the CGMY model. The analytical

expressions of the characteristic exponent and the characteristic function of the

CGMY model can be obtained through the following lemma [34].

Lemma 2.5.1 The characteristic exponent of the CGMY model is given by

ΨCGMY (u, t) = tCΓ(−Y )[(M − iu)Y −MY + (G+ iu)Y −GY ],

and the characteristic function of the CGMY model is

ΦCGMY (u, t) = E
[
eiuXt

]
= exp{tCΓ(−Y )[(M − iu)Y −MY + (G+ iu)Y −GY ]}.

Proof. For convenience, we set σ = 0, b = 0 in the characteristic exponent of

the Lévy process. For σ 6= 0 and b 6= 0, it is too complicated to obtain a simpler

behavior of the characteristic exponent and function of the CGMY model, which

is omitted. We first determine Ψ1(u), where Ψ1(u) is the characteristic exponent

Ψt(u) at t = 1. We have

Ψ1(u) =

∫
R\{0}

(
eiux − 1− iuxI|x|<1

)
Π(dx),
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which can be simplified into

Ψ1(u) =

∫
R\{0}

(
eiux − 1

)
ωCGMY dx. (2.5.3)

Then, since ωCGMY has different expressions for x > 0 and x < 0, the integral in

(2.5.3) can be divided into the sum of two integrals

∫ +∞

0

(eiux − 1)ωCGMY dx and∫ 0

−∞
(eiux − 1)ωCGMY dx, where ωCGMY is the same as defined in Section 2.1.

For

∫ +∞

0

(eiux − 1)ωCGMY dx, we have

∫ +∞

0

(eiux − 1)ωCGMY dx =

∫ +∞

0

(eiux − 1)C
e−Mx

xY+1
dx,

= C

∫ +∞

0

x−Y−1 exp{[−(M − iu)x]− exp(−Mx)}dx,

= C(M − iu)Y Γ(−Y )− CMY Γ(−Y ),

= CΓ(−Y )[(M − iu)Y −MY ].

Similarly, the integral

∫ 0

−∞
(eiux − 1)ωCGMY dx can be simplified as

∫ 0

−∞
(eiux − 1)ωCGMY dx = CΓ(−Y )[(G+ iu)Y −MY ].

Therefore, the characteristic exponent at t = 1 of the CGMY model is equal to

ΨCGMY (u, 1) = CΓ(−Y )[(M − iu)Y −MY + (G+ iu)Y −GY ],

which, after the time being added on, becomes

ΨCGMY (u, t) = tΨCGMY (u, 1) = tCΓ(−Y )[(M − iu)Y −MY + (G+ iu)Y −GY ].
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Therefore, the characteristic function of the CGMY model can be obtained as

ΦCGMY (u, t) = E
[
eiuXt

]
= eΨCGMY (u,t),

= exp{tCΓ(−Y )[(M − iu)Y −MY + (G+ iu)Y −GY ]}.

This has completed the proof.

After the details of the CGMY model are explored, we turn to investigate the

pricing of European-style option derivatives under this model. This issue will be the

main topic of the next chapters.



Chapter 3

Analytical solution approach

In this chapter, we consider the pricing of European-style options under the CGMY

model purely analytically. This chapter is further divided into three sections, accord-

ing to three important issues to be addressed. In the first section, we shall briefly

revisit the derivation of the FPDE system governing the European-style options un-

der the CGMY model. In the second section, a closed-form analytical solution is

derived from the established FPDE system. In the third section, we investigate some

asymptotic behaviors of our solution, the put-call parity and the Greek Letters.

3.1 FPDE system for European-style options

In this section, we shall briefly introduce the FPDE system that the price of European-

style options must satisfy under the CGMY model. For more details, please refer to

[21].

Let V (x, t) be the price of European-style options, with x being the log under-

lying price and t being the current time. It is known that under the risk-neutral

measure Q, the option price is the discounted expectation of the payoff values, i.e.,

V (x, t) = e−r(T−t)EQ [Π(xT )] .

36
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With the Fourier transform of the payoff available, i.e.,

Π̃(ξ) = z[Π(x)] =

∫ +∞

−∞
eiξxTΠ(xT )dxT ,

V (x, t) can be rewritten as

V (x, t) =
e−r(T−t)

2π
EQ

[∫ +∞

−∞
e−iξxT Π̃(ξ)dξ

]
.

Now, changing the order of the expectation and the integration, we obtain

V (x, t) =
e−r(T−t)

2π

∫ +∞

−∞
EQ
[
e−iξxT

]
Π̃(ξ)dξ,

=
e−r(T−t)

2π

∫ +∞

−∞
e−iξxt−iξ(r−v)(T−t)+(T−t)Ψ(−ξ)Π̃(ξ)dξ,

= z−1
[
e[−r−iξ(r−v)+Ψ(−ξ)](T−t)Π̃(ξ)

]
, (3.1.1)

where Ψ(ξ) is the characteristic exponent of the Lévy process. Specifically, EQ[e−iξxT ] =

e−rξxt−iξ(r−v)(T−t)+(T−t)Ψ(−ξ) can be proved straightforwardly through the fact the

characteristic function of lnST , using (1.3.8), is given by

EQ[eiξ lnST ] = eiξ lnSt+iξ(r−v)(T−t)+(T−t)Ψ(ξ).

Taking the Fourier transform on both sides of (3.1.1), we obtain

Ṽ (t; ξ) = z[V (x, t)] = z
{
z−1[e[−r−iξ(r−v)+Ψ(−ξ)](T−t)Π̃(ξ)]

}
,

= e[−r−iξ(r−v)+Ψ(−ξ)](T−t)Π̃(ξ).

Therefore, in the Fourier space, Ṽ (t; ξ) satisfies the following ODE:


dṼ

dt
= [r + iξ(r − v)−Ψ(−ξ)] Ṽ ,

Ṽ (T ) = Π̃(ξ).
(3.1.2)

Applying the inverse Fourier transform to (3.1.2), the FPDE system governing the
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European options under the CGMY model can be obtained as



∂V

∂t
+ (r − v)

∂V

∂x
+ CΓ(−Y )eMx

xD
Y
∞
(
e−MxV

)
+CΓ(−Y )e−Gx−∞D

Y
x

(
eGxV

)
=
[
r + CΓ(−Y )

(
MY +GY

)]
V,

V (x, T ) = Π(x),

(3.1.3)

where

v = CΓ(−Y )[(M − 1)Y −MY + (G+ 1)Y −GY ].

It should be remarked that for Y < 0, −∞D
Y
x (·) and xD

Y
∞(·) are Weyls fractional

integrals defined by

−∞D
Y
x f(x) =

1

Γ(−Y )

∫ x

−∞
f(y)(x− y)−Y−1dy,

and

xD
Y
∞f(x) =

1

Γ(−Y )

∫ ∞
x

f(y)(x− y)−Y−1dy,

respectively. For Y > 0, −∞D
Y
x (·) and xD

Y
∞(·) are Weyls fractional derivatives

defined by

−∞D
Y
x f(x) =

1

Γ(n− Y )

∂n

∂xn

∫ x

−∞
f(y)(x− y)n−Y−1dy,

and

xD
Y
∞f(x) =

1

Γ(n− Y )

∂n

∂xn

∫ ∞
x

f(y)(y − x)n−Y−1dy,

respectively.

It can be observed that (3.1.3) is quite complicated in comparison to the clas-

sical B-S system or even the FPDE governing the option price under the FMLS

model [21]. The current FPDE system (3.1.3) involves both left-side and right-side

fractional derivatives, which are difficult to deal with either numerically or analyti-
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cally. In the literature, the analytical solution of the CGMY model has never been

achieved, which has greatly hindered further quantitative analysis of the CGMY

model. It should also be noticed that (3.1.3) is fundamentally different from the

case where the fractional derivative appears in the time direction and can be elimi-

nated by using the Laplace transform [29]. In our case, the Laplace transform would

not work. Despite those difficulties, we still have managed to derive a closed-form

analytical solution for the CGMY model. This issue will be further discussed in the

next section.

3.2 Closed-form analytical solution

After the FPDE system governing the price of European-style options being success-

fully established in the previous section, we shall now concentrate on deriving the

closed-form analytical solution. Here, we consider the case for 1 < Y < 2, because

the CGMY model has a complete monotone density with an infinite activity and

infinite variation.

To solve for (3.1.3) analytically, we shall start from the expression of V in the

Fourier space. As mentioned in Section 3.1, in the Fourier space, Ṽ (t; ξ) satisfies


dṼ

dt
= [r + iξ(r − v)− CΓ(−Y )((M + iξ)Y −MY + (G− iξ)Y −GY )]Ṽ ,

Ṽ (T ) = Π̃(ξ),

(3.2.4)

where Ṽ (t; ξ) = z[V (x, t)] and Π̃(ξ) = z[Π(x)]. More details are left in Appendix

A for interested readers.

Upon solving (3.2.4), the option price in the Fourier space can be obtained as

Ṽ (t; ξ) = exp{−[r+iξ(r−v)−CΓ(−Y )((M+iξ)Y−MY +(G−iξ)Y−GY )](T−t)}Π̃(ξ).

(3.2.5)

To obtain an analytical formula for the option price in the original space, the Fourier

inversion needs to be carried out. After the Fourier inversion is applied to (3.2.5),
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we obtain

V (x, t) =
1

2π

∫ ∞
−∞

e−ixξ · e−[r+iξ(r−v)−CΓ(−Y )((M+iξ)Y −MY +(G−iξ)Y −GY )](T−t)Π̃(ξ)dξ,

=
k0

2π

∫ ∞
−∞

e−ixξ−(T−t){iξ(r−v)−CΓ(−Y )[(M+iξ)Y +(G−iξ)Y ]}Π̃(ξ)dξ,

=
k0

2π

∫ ∞
−∞

e−ixξ · e−iξk1Π̃(ξ) · ek2(M+iξ)Y ek2(G−iξ)Y dξ,

= k0z−1
[
e−iξk1 ˜Π(ξ) · ek2(M+iξ)Y ek2(G−iξ)Y

]
,

= k0z−1
[
e−iξk1 ˜Π(ξ)

]
∗z−1

[
ek2(M+iξ)Y ek2(G−iξ)Y

]
,

= k0Π(x+ k1) ∗z−1
[
ek2(M+iξ)Y

]
∗z−1

[
ek2(G−iξ)Y

]
, (3.2.6)

where k0 = exp{−
[
r + CΓ(−Y )(MY +GY )

]
(T − t)}, k1 = (r − v)(T − t), and

k2 = CΓ(−Y )(T − t).

To obtain the purely analytical formula, the inversions of exp{k2(M+ iξ)Y } and

exp{k2(G− iξ)Y } contained in (3.2.6) need to be considered. We have the following

lemmas for them.

Lemma 3.2.1 The Fourier inversion of e−k2|ξ|
Y

is given by

z−1
[
e−k2|ξ|

Y
]

= P (x;Y ) =
1

k
1/Y
2

fY,0

(
|x|
k

1/Y
2

)
,

=
1

Y k
1/Y
2

H1,1
2,2

[
|x|
k

1/Y
2

∣∣∣∣ (1− 1
Y
, 1
Y

) (1
2
, 1

2
)

(0, 1) (1
2
, 1

2
)

]
,

where H(·) is the H-function.

Proof. Upon realizing that e−|ξ|
Y

is nothing but the characteristic function of a

centered and symmetric Lévy distribution, as well as the relationship between the

Fourier transform and the characteristic function of a probability density function,

it can be deduced that the Fourier inversion of e−k2|ξ|
Y

is equal to multiples of

the closed-form representation of the Lévy stable density fY,0(x), which is usually
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expressed in terms of the H-function in [45] as follows.

fY,0(x) =
1

Y
H1,1

2,2

[
x

∣∣∣∣ (1− 1
Y
, 1
Y

) (1
2
, 1

2
)

(0, 1) (1
2
, 1

2
)

]
.

This has completed the proof.

Now, we consider the inversion of ek2(M+iξ)Y . We have the following lemma.

Lemma 3.2.2 The Fourier inversion of ek2(M+iξ)Y is given by

z−1
[
ek2(M+iξ)Y

]
= eMxP (x;Y ),

where P (x;Y ) is the same as defined in Lemma 3.2.1.

Proof. According to the exponential function property of the Fourier transform

discussed in Chapter 1, we have

z
[
eMxP (x;Y )

]
= ek2(iλ)Y |λ=ξ−iM= ek2(iξ+M)Y .

Therefore, we have

z−1
[
ek2(iξ+M)Y

]
= eMxP (x;Y ).

This has completed the proof of this lemma.

With the help of the odd-even property of the Fourier transform, as well as the

result of Lemma 3.2.2, the following lemma can be obtained straightforwardly.

Lemma 3.2.3 The Fourier inversion of ek2(G−iξ)Y is given by

z−1
[
ek2(G−iξ)Y

]
= e−GxP (x;Y ),

where P (x;Y ) is the same as defined in Lemma 3.2.1.

Now, combining the results obtained in Lemma 3.2.2 and Lemma 3.2.3, the

analytical expression for the European options under the CGMY model can be
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found as

V (x, t) = k0Π(x+ k1) ∗
[
eMxP (x;Y )

]
∗
[
e−GxP (x;Y )

]
,

= k0

∫ +∞

−∞

[
eMτP (τ ;Y ) ∗ e−GτP (τ ;Y )

]
Π(x− τ + k1)dτ. (3.2.7)

For the case of European call options, we have

Vc(x, t) = k0

∫ d0

−∞

(
1

k
1/Y
2

eMτfY,0(
|τ |
k

1/Y
2

) ∗ 1

k
1/Y
2

e−GτfY,0(
|τ |
k

1/Y
2

)

)(
ex−τ+k1 − E

)
dτ,

=
k0e

x+k1

k
2/Y
2

∫ d0

−∞

(
eMτfY,0(

|τ |
k

1/Y
2

) ∗ e−GτfY,0(
|τ |
k

1/Y
2

)

)
e−τdτ

− k0E

k
2/Y
2

∫ d0

−∞
eMτfY,0(

|τ |
k

1/Y
2

) ∗ e−GτfY,0(
|τ |
k

1/Y
2

)dτ, (3.2.8)

where d0 = x− lnE + k1.

For European puts, we obtain

Vp(x, t) = k0

∫ +∞

d0

(
1

k
1/Y
2

eMτfY,0(
|τ |
k

1/Y
2

) ∗ 1

k
1/Y
2

e−GτfY,0(
|τ |
k

1/Y
2

)

)(
E − ex−τ+k1

)
dτ,

=
k0E

k
2/Y
2

∫ +∞

d0

eMτfY,0(
|τ |
k

1/Y
2

) ∗ e−GτfY,0(
|τ |
k

1/Y
2

)dτ

− k0e
x+k1

k
2/Y
2

∫ +∞

d0

(
eMτfY,0(

|τ |
k

1/Y
2

) ∗ e−GτfY,0(
|τ |
k

1/Y
2

)

)
e−τdτ, (3.2.9)

where d0 is the same as defined in (3.2.8).

We believe that our formula (3.2.8) and (3.2.9) are already in the simplest

form.

3.3 Asymptotic behaviors of the closed-form so-

lution

One of the most efficient ways to check the validity of our closed-form solution

(3.2.8) is to investigate its asymptotic behaviors with parameters involved taken

on some extreme values [25]. Whether or not the observed asymptotic behaviors
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coincide with the financial terms set for the corresponding option model could be

a necessary condition to verity the solution. On the other hand, analyzing the

asymptotic behaviors could help readers understand the properties of the CGMY

model. In view of these, we shall conduct some asymptotic analysis in this section.

Theorem 2 With C =
σ2

4Γ(−Y )
, the formula (3.2.8) and (3.2.9) degenerate to

the B-S formula with volatility σ for European calls and puts, respectively, by further

taking the limit as Y → 2.

Proof. When Y → 2, C =
σ2

4Γ(−Y )
, we have

v|Y→2 =
σ2

4
[(M − 1)Y −MY + (G+ 1)Y −GY ]|Y=2 =

σ2

4
(2G+ 2− 2M).

Substituting it into the FPDE of CGMY model, we can obtain

∂V (x, t)

∂t
+
(
r −Gσ

2

2
− σ2

2
+M

σ2

2

)∂V (x, t)

∂x
+
σ2

4
eMx

[
e−MxM2V (x, t) + e−Mx∂

2V (x, t)

∂x2

+2e−Mx(−M)
∂V (x, t)

∂x

]
+
σ2

4
e−Gx

[
eGxG2V (x, t) + eGx

∂2V (x, t)

∂x2
+ 2eGxG

∂V (x, t)

∂x

]
=
(
r +

σ2

4
M2 +

σ2

4
G2
)
V (x, t).

Simplifying this equation, we have

∂V (x, t)

∂t
+
σ2

2

∂2V (x, t)

∂x2
+ (r − σ2

2
)
∂V (x, t)

∂x
− rV (x, t) = 0. (3.3.10)

On the other hand, the standard B-S model equation is

∂V (S, t)

∂t
+
σ2

2

∂2V (S, t)

∂S2
+ rS

∂V (S, t)

∂S
− rV (S, t) = 0.

Then, we make the parameter transform x = lnS and obtain the same equation as

(3.3.10). This has completed the proof from the view of FPDE.

Next, we shall prove this result from the solution of the CGMY model. For

simplicity, we shall concentrate on the puts only. The extension to the calls is

rather straightforward.
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According to the definition of fα,0, it is known that

lim
α→2

fα,0(|m|) =
1

2
H1,1

2,2

[
|m|
∣∣∣∣ (1

2
, 1

2
) (1

2
, 1

2
)

(0, 1) (1
2
, 1

2
)

]
,

which can be simplified as

f2,0(|m|) =
1

2
H1,0

1,1

[
|m|
∣∣∣∣ (1

2
, 1

2
)

(0, 1)

]
, (3.3.11)

whose Mellin transform admits M[f2,0(|m|)] =
1

2

Γ(s)

Γ(1
2

+ 1
2
s)

. On the other hand,

according to the property of the Gamma function discussed in Section 1.2, it is

known that

Γ

(
1

2
s

)
Γ

(
1

2
+

1

2
s

)
= 21−s√πΓ(s),

and thus

Γ(s)

Γ(1
2

+ 1
2
s)

=
(1

2
)−sΓ(1

2
s)

2
√
π

. (3.3.12)

Now, taking the inverse Mellin transform on both sides of (3.3.12), we obtain

M−1

[
Γ(s)

Γ(1
2

+ 1
2
s)

]
=M−1

[
(1

2
)−sΓ(1

2
s)

2
√
π

]
=
e−m

2/4

√
π

, (3.3.13)

which, combined with (3.3.11), yields f2,0(|m|) =
e−m

2/4

2
√
π

, a function identical to

the standard Gaussian density [45].
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Now, we turn to calculate the convolution involved in our formula with the

simplified Lévy density. We have

f1(x) ∗ f2(x) =

∫ +∞

−∞

1

4π

1

k2

eMτf2,0

(
|τ |√
k2

)
e−G(x−τ)f2,0

(
|x− τ |√

k2

)
dτ,

= e−Gx
1

k2

1

4π

∫ +∞

−∞
e(M+G)τe

− τ
2+(x−τ)2

4k2 dτ,

= e−Gx
1

k2

1

4π
e
− x2

4k2

∫ +∞

−∞
e
− τ

2−xτ−2k2(M+G)τ
2k2 dτ,

= e−Gx
1

k2

1

4π
e
− x2

4k2 e
2[x2 +(M+G)k2]

2

4k2

∫ +∞

−∞
e
− {τ−[x2 +(M+G)k2]}

2

2k2 dτ,

=
1

k2

1

4π
e
−4k2Gx−x

2+x
2

2 +2(M+G)2k22+2k2(M+G)x

4k2

∫ +∞

−∞
e
− {τ−[x2 +(M+G)k2]}

2

2k2 dτ,

=
1

k2

1

4π
e
−4k2Gx−x

2+x
2

2 +2(M+G)2k22+2k2(M+G)x

4k2

√
2πk2,

=
1

2
√

2πk2

e
(M+G)2k2

2 e
− 1

2x
2+2k2(M−G)x

4k2 . (3.3.14)

Substituting (3.3.14) into (3.2.7), we obtain

V (x, t) = k0

∫ +∞

−∞

1

2
√

2πk2

e
(M+G)2k2

2 e
− 1

2 τ
2+2k2(M−G)τ

4k2 Π(x− τ + k1)dτ.

For European put options, it is known that

Π(x− τ + k1) =

 E − ex−τ+k1 , x− τ + k1 < lnE;

0, otherwise,
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where d0 = τ = x− lnE + k1. Therefore, we have

Vp(x, t) =
k0

2
√

2πk2

e
(M+G)2k2

2

∫ +∞

d0

e
− 1

2 τ
2+2k2(M−G)τ

4k2 (E − ex−τ+k1)dτ,

=
k0√
2π
e

(M+G)2k2
2

∫ +∞

d2

e
−2k2m

2+2k22(M−G)2

4k2 (E − ex−[2
√
k2m+2(M−G)k2]+k1)dm,

=
k0√
2π
e

(M+G)2k2
2 e

(M−G)2k2
2

∫ +∞

d2

e−
m2

2 (E − ex−[2
√
k2m+2(M−G)k2]+k1)dm,

=
k0E√

2π
e(M2+G2)k2

∫ +∞

d2

e−
m2

2 dm

− k0√
2π
e(M2+G2)k2ex+k1

∫ +∞

d2

e−
m2

2
−2
√
k2m−2(M−G)k2dm,

=
k0E√

2π
e(M2+G2)k2

∫ +∞

d2

e−
m2

2 dm︸ ︷︷ ︸
I

− k0√
2π
e(M2+G2)k2ex+k1e−2(M−G)k2

∫ +∞

d2

e−
m2

2
−2
√
k2mdm︸ ︷︷ ︸

II

,

where τ = 2
√
k2m + 2(M − G)k2, and d2 =

d0 − 2(M −G)k2

2
√
k2

. Further calculation

shows that

I =
k0E√

2π
e(M2+G2)k2

∫ +∞

d2

e−
m2

2 dm,

= k0Ee
(M2+G2)k2(1−N(d2)),

= Ee−r(T−t)(1−N(d2)),

and

II =
k0√
2π
e(M2+G2)k2ex+k1e−2(M−G)k2

∫ +∞

d2

e−
m2

2
−2
√
k2mdm,

=
k0√
2π
e(M2+G2)k2ex+k1e−2(M−G)k2e2k2

∫ +∞

d1

e−
n2

2 dn,

= k0e
(M2+G2)k2ex+k1e−2(M−G)k2e2k2(1−N(d1)),

= ex(1−N(d1)),

= S(1−N(d1)),
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where m + 2
√
k2 = n, d1 = d2 + 2

√
k2 and N(·) is the cdf (cumulative distribution

function) of the standard normal distribution defined as N(x) =
1√
2π

∫ x

−∞
e−

z2

2 dz.

By setting C =
σ2

4Γ(−Y )
, we have d2 =

lnS/E + (r − 1/2σ2)(T − t)
σ
√
T − t

, and d1 =

d2 + σ
√
T − t.

Therefore, it is clear at this stage that

lim
Y→2

Vp(x, t) = Ee−r(T−t)N(−d2)− SN(−d1).

Therefore, it can be concluded that as Y→2, the European put option price under

the CGMY model degenerates to the corresponding B-S formula with volatility σ.

This has completed the proof.

After investigating the degeneration of our formula, we turn to examine the

asymptotic behaviors of the European put option price for extreme underlying val-

ues. For the corresponding call option, its value can be obtained by using the put-call

parity that will be established in Section 3.4.

Theorem 3 (i) lim
x→−∞

Vp(x, t) = e−r(T−t)E; (ii) lim
x→+∞

Vp(x, t) = 0.

Proof. Firstly, we shall prove that lim
x→−∞

Vp(x, t) = e−r(T−t)E. We remark that

Vp(x, t) can also be rewritten as

Vp(x, t) = k0E

∫ +∞

d0

ρ(τ)dτ − k0e
x+k1

∫ +∞

d0

ρ(τ)e−τdτ,

where ρ(τ) =
1

k
2/Y
2

eMτfY,0

(
|τ |
k

1/Y
2

)
∗ e−GτfY,0

(
|τ |
k

1/Y
2

)
.

According to the definition of d0, it is not difficult to show that d0→−∞ as

x→−∞. Therefore, it is straightforward that

lim
x→−∞

Vp(x, t) = k0E

∫ +∞

−∞
ρ(τ)dτ − k0e

x+k1

∫ +∞

−∞
ρ(τ)e−τdτ.
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Firstly, let us calculate

∫ +∞

−∞
ρ(τ)e−τdτ . According to the fact that

∫ +∞

−∞
ρ(τ)e−τdτ =

∫ +∞

−∞
ρ(τ)ei(i)τdτ,

we can determine the above integral by taking the Fourier transform on ρ(τ) with

respect to τ first, and then setting the Fourier transform parameter ξ to i. As a

result, we obtain

∫ +∞

−∞
ρ(τ)e−τdτ = z[ρ(τ)] |ξ=i= ek2(M−1)Y +k2(G+1)Y ,

and thus

k0e
x+k1

∫ +∞

−∞
ρ(τ)e−τdτ = exk0e

k1ek2(M−1)Y +k2(G+1)Y = ex.

Then, the remaining task is to determine

∫ +∞

−∞
ρ(τ)dτ .

∫ +∞

−∞
ρ(τ)dτ =

∫ +∞

−∞

1

k
1/Y
2

eMτfY,0

(
|τ |
k

1/Y
2

)
∗ 1

k
1/Y
2

e−GτfY,0

(
|τ |
k

1/Y
2

)
dτ,

=

∫ +∞

−∞

∫ +∞

−∞

1

k
1/Y
2

eMηfY,0

(
|η|
k

1/Y
2

)
· 1

k
1/Y
2

e−G(τ−η)fY,0

(
|τ − η|
k

1/Y
2

)
dηdτ,

=

∫ +∞

−∞

∫ +∞

−∞

1

k
1/Y
2

eMηfY,0

(
|η|
k

1/Y
2

)
· 1

k
1/Y
2

e−G(τ−η)fY,0

(
|τ − η|
k

1/Y
2

)
dτdη,

=

∫ +∞

−∞

1

k
1/Y
2

eMηfY,0

(
|η|
k

1/Y
2

)∫ +∞

−∞

1

k
1/Y
2

e−G(τ−η)fY,0

(
|τ − η|
k

1/Y
2

)
d(τ − η)dη,

= ek2G
Y

∫ +∞

−∞

1

k
1/Y
2

eMηfY,0

(
|η|
k

1/Y
2

)
dη,

= ek2(MY +GY ), (3.3.15)

where we use the fact that

∫ +∞

−∞

1

k
1/Y
2

fY,0

(
|τ |
k

1/Y
2

)
e−τdτ = z

[
1

k
1/Y
2

fY,0

(
|τ |
k

1/Y
2

)]
|ξ=i,



CHAPTER 3. ANALYTICAL SOLUTION APPROACH 49

and the odd-even property of Fourier transform. Thus, we have

k0E

∫ +∞

−∞
ρ(τ)dτ = k0Ee

k2(MY +GY ) = e−r(T−t)E.

Therefore, we obtain

lim
x→−∞

Vp(x, t) = e−r(T−t)E,

where S can be ignored when x→ −∞.

Now, we turn to show that lim
x→+∞

Vp(x, t) = 0. To prove (ii), we notice that the

first integral of Vp will definitely vanish as x→+∞. Therefore, we shall concentrate

on showing the second integral will also vanish as x→+∞. For the second integral

of Vp, we have

lim
x→+∞

k0e
x+k1

∫ +∞

d0

ρ(τ)e−τdτ = k0e
k1 lim
x→+∞

∫ +∞
d0

ρ(τ)e−τdτ

e−x
,

which is equal to lim
x→+∞

k0Eρ(d0), after the L’hospital rule is applied. Accord-

ing to the fact that

∫ +∞

−∞
ρ(τ)dτ is bounded as shown in (3.3.15), it is clear

lim
x→+∞

k0Eρ(d0) = 0, because d0→+∞ as x→+∞. Consequently, we obtain

lim
x→+∞

k0e
x+k1

∫ +∞

d0

ρ(τ)e−τdτ = 0,

which shows that the second integral of Vp will vanish as x→ +∞. Therefore, we

have lim
x→+∞

Vp(x, t) = 0. This has completed the proof.

3.4 The put-call parity

One of the most important concepts in the quantitative finance area is the so-called

put-call parity. It is a relationship between the price of European vanilla options with

the same parameter settings. By using the put-call parity, the price of a European

put or call can be deduced directly from its European counterpart. Considering the
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importance of the put-call parity, in this section, we shall derive the put-call parity

for the CGMY model.

It should be pointed out that the existence of the risk-neutral measure for the

CGMY model implies that the “no arbitrage opportunity” assumption still holds

under the current model [44], and thus the put-call parity should hold. Mathemati-

cally, we have the following lemma for the put-call parity under the current model.

Lemma 3.4.1 For any given Y ∈ (1, 2), the prices of a European call option Vc

and its corresponding European put Vp satisfy the put-call parity, assuming that they

have the same parameter settings, i.e.,

Vc(x, t)− Vp(x, t) = S − e−r(T−t)E.

The proof of this lemma can be easily achieved by using our closed-form analytical

solutions, and is thus omitted.

Using the put-call parity, the following relationships of the Greeks can be easily

achieved [38].

Lemma 3.4.2 (i) ∆c = ∆p + 1; (ii) Γc = Γp;

(iii) ρc = ρp + Ee−r(T−t)(T − t);

(iv) V egac = V egap;

(v) Θc = Θp + Ere−r(T−t).

It should be remarked that the put-call parity and the Greeks of CGMY model

are identical with the standard Black-Scholes model, which verifies Theorem 2.

By using the put-call parity, the trading of European vanilla options under the

CGMY model can be greatly facilitated, in the sense that the price of either a Euro-

pean call or put can be deduced straightforwardly from the parity once its European

counterpart is determined accurately from our solution. The implementation of our

formula will be illustrated in detail in the next chapter, where some numerical ex-

amples and useful discussions are also to be provided. We will explore the functions
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of all the parameters in the CGMY model.



Chapter 4

Numerical examples and

discussions

As shown in the previous chapter, the analytical solution of the CGMY model is

derived rigorously. Therefore, there is no need to further address the “accuracy” of

the solution and present any calculated results. However, from the view point that

a comparison with previously published results may give the readers a sense of the

verification of the newly found formula, several numerical examples are still given

in this chapter. With the issues to be addressed, this chapter is further divided

into three sections. In the first section, the implementation details of our solution

are illustrated. In the second section, the comparison of our results with previously

published ones is provided. In the last section, the impacts of different parameters

on the option prices will be analyzed and discussed.

4.1 Numerical implementation of our analytical

solution

Although our solution is written in a similar form as the classical B-S formula and

the formula derived for the FMLS model [25], it is, however, not so straightforward

as the latter, as far as the numerical implementation is concerned. From (3.2.7),

52
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it can be observed that our final solution is written in terms of a double integral.

Besides, it involves the product of exponential function and H-function, as well as

the convolution of two H-functions.

Hereafter, we shall consider the put case. The corresponding call values can be

obtained straightforwardly by using the put-call parity established in Section 3.4.

To determine the Lévy density fY,β, we shall use the series representation, i.e.,

fY,β(x) =
1

π

∞∑
n=1

Γ(1 + nξ)

n!
sin(πnγ)(−x)n−1,

where ξ = 1/Y and γ = (Y − β)/2Y . In this thesis, we set β = 0 because the

distribution used in the current model is a symmetric Lévy distribution. Therefore,

γ = 1/2, and the series representation can be simplified to

fY,0 =
1

π

∞∑
n=1

Γ(1 + n/Y )

n!
sin(

πn

2
)(−x)n−1. (4.1.1)

However, from the numerical experiment, it can be observed that the series repre-

sentation (4.1.1) converges rather slowly when x becomes very large. Alternatively,

from some critical value x and onwards, we use the large asymptotic of fα,0 intro-

duced in [33] instead of (4.1.1), i.e.,

fY,0 ∼
1

π

∞∑
n=1

Γ(1 + n/Y )

n!
sin(

πnY

2
)|x|−1−nY . (4.1.2)

Numerical experiments suggested that x ≈ 3 is the most appropriate critical value

for our examples shown below.

On the other hand, from the expression of Vp, one can clearly observe that the

calculation of Vp involves the determination of integrals over semi-infinite domain.

One of the efficient ways to evaluate the integrals over semi-infinite domain is to use

the generalized LG (Laguerre-Gauss) quadrature [9]. To apply the LG quadrature,
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we transform the integration domain into semi-infinite domain as

eMτ fY,0(
|τ |
k

1/Y
2

) ∗ e−GτfY,0(
|τ |
k

1/Y
2

)

=

∫ +∞

−∞
eMηfY,0(

|η|
k

1/Y
2

) · e−G(τ−η)fY,0(
|τ − η|
k

1/Y
2

)dη,

=

∫ +∞

0

eMηfY,0(
|η|
k

1/Y
2

) · e−G(τ−η)fY,0(
|τ − η|
k

1/Y
2

)dη︸ ︷︷ ︸
I

+

∫ +∞

0

e−MηfY,0(
|η|
k

1/Y
2

) · e−G(τ+η)fY,0(
|τ + η|
k

1/Y
2

)dη︸ ︷︷ ︸
II

.

However, it should be pointed out that the LG method still fails to compute (I)

because the decay rate of the H-function is slower than the growth rate of the

exponential function.

To overcome this computational difficulty, we introduce a new scaling parameter

m to control the growth rate of the exponential function. Specifically, we use the

following two new integration variables, η′ =
mη

k
1/Y
2

, and τ ′ =
mτ

k
1/Y
2

. As a result,

(3.2.9) becomes

Vp(x, t) =
k0

m2

∫ +∞

md0

k
1/Y
2

∫ +∞

−∞
e
k
1/Y
2 (G+M)η′

m fY,0(
|η′|
m

)fY,0(
|τ ′ − η′|
m

)dη′

· e
−Gk1/Y2 τ ′

m (E − ex−
−Gk1/Y2 τ ′

m
+k1)dτ ′. (4.1.3)

It should be pointed out that the introduction of the new scaling parameter m could

effectively control the growth rate of the exponential function so that a balance can

be obtained between the growth rate of the exponential function and the decay rate

of the H-function. Our numerical experiments suggest that m = 11 is an appropriate

value.

Now we use the generalized LG quadrature to evaluate (4.1.3) again. We split
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the inner integral of (4.1.3) into two integrals defined on semi-infinite domain as

Vp(x, t) =
k0

m2

∫ +∞

md0

k
1/Y
2

e
−Gk1/Y2 τ ′

m

(∫ +∞

0

e
k
1/Y
2 (G+M)η′

m fY,0(
|η′|
m

)fY,0(
|τ ′ − η′|
m

)dη′

+

∫ +∞

0

e
−k1/Y2 (G+M)η′

m fY,0(
|η′|
m

)fY,0(
|τ ′ + η′|
m

)dη′
)

(E − ex−
−Gk1/Y2 τ ′

m
+k1)dτ ′,

which can now both be calculated accurately by using the LG quadrature.

4.2 Validity of our closed-form analytical solution

One of the best ways to test the reliability of the proposed numerical evaluation

technique for our solution is to calculate the solution as Y → 2, and compare it

with the standard B-S formula with the same parameter settings. Theoretically,

when Y → 2, the solution is identical to the B-S formula with σ = 2
√

lim
Y→2

CΓ(−Y ),

if all the other parameters are the same, as has been shown in Theorem 2 already.

Provided in Fig 4.1(a) are two sets of European put prices as a function of the un-

derlying price from a given time to maturity determined respectively from (4.1.3) at

Y = 1.999 and the B-S formula with σ = 2
√
CΓ(−1.999). The absolute differences

between the two sets of prices are further shown in Fig 4.1(b).
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(b) Option price differences

Figure 4.1: Comparison of our solution at Y = 1.999 with the B-S formula.

Model parameters are K = $10, r = 0.017, σ = 0.24, M = G = 1, C =
σ2

4Γ(−Y )
,

and T − t = 0.55(year).

From these two figures, one can clearly observe that the two sets of option prices

agree perfectly well with each other with the maximum absolute error between the
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two being no more than 5%. This indicates that our solution is indeed approaching

to the B-S formula as Y → 2.

For Y 6= 2, we further compare our solution with the B-M formula derived

in [4] for the CGMY model. This formula is also provided in Section 1.4. We

remark that the fundamental difference between our solution and the B-M formula

is that the latter is still written in terms of the inverse Fourier transform without

the inversion being carried out analytically.

We also use the generalized LG quadrature to evaluate the B-M formula. In

Fig 4.2(a), the comparison between our formula (4.1.3) and the B-M formula at

Y = 1.8 is provided. The absolute errors between the two are further shown in

Fig 4.2(b). From these two figures, it is clear that our option price agrees well
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(a) The B-M formula price VS our price at Y =
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Figure 4.2: Comparison of our solution at Y = 1.8 with the B-M formula. Model
parameters are K = $10, r = 0.35, C = 0.02, M = G = 1, and T −t = 0.55(year).

with the existing formula for the CGMY model, with the maximum absolute error

between the two being no more than 5%. This level of accuracy is indeed acceptable

in practice. This has again confirmed the reliability of our closed-form solution as

well as the proposed numerical implementation technique.

4.3 Impacts of different parameters

With confidence in our analytical solution as well as the proposed numerical im-

plementation technique, we shall now turn to investigate the impacts of different

parameters on the prices of European puts.
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4.3.1 The impact of Y

Depicted in Fig 4.3 is the comparison among several sets of European put option

prices at different Y values, while all the other parameters are set to be the same.

From this figure, one can observe that the option price is a monotonic increasing

function of Y . This is indeed reasonable, and can be explained as follows. Firstly, we

Figure 4.3: European puts at different values of Y . Model parameters are
K = 10, G = M = 1, r = 0.1, and C = 0.01.

shall focus on analyzing an out-of-the-money European put option. It is known that

this option will have a positive value only if there is a large decrease in the underlying

price. Therefore, the option price only relies on the left tail of the distribution of

the asset, and the fatter the left tail is, the more valuable the option would be.

On the other hand, as mentioned earlier in Section 2.2, the parameter Y controls

both tails of the underlying return distribution. Moreover, the left tail will become

fatter as Y becomes larger. Therefore, the option would become more valuable if Y

becomes larger.

Now, we turn to investigate those in-the-money European puts. To obtain the

pricing biases, the put-call parity derived in Section 3.4 will be utilized. From the

put-call parity, it is clear that if a European put is in the money, the corresponding

European call is out of the money, and vise versa. Therefore, analyzing those in-the-

money European puts is equivalent to analyzing the corresponding out-of-the-money

European calls. For an out-of-the-money European call, its intrinsic value depends
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only on the right tail of the distribution of the asset, because this option will become

valuable only when there is a large increase in the underlying price. Similarly, the

fatter the right tail is, the more valuable the option will become. According to

Fig 2.2, it is clear that the right tail will also become fatter as Y becomes larger.

Therefore, the out-of-the-money European call option price would increase as Y

becomes larger, and the corresponding in-the-money European put will do so as

well.

Taking all the above points into consideration, it is clear that for a European

put under the CGMY model, its price would become higher as Y becomes larger.

Similarly, it can be shown that the European call option price is also a monotonic

increasing function with respect to Y under the current model.

4.3.2 The impact of C

Depicted in Fig 4.4 is the comparison among several sets of European put option

prices at different C values, while all the other parameters are set to be the same.

It can be observed from Fig 4.4 that the option prices become higher as C becomes

larger. From the figure, one can also observe that the option prices become flatter as

Figure 4.4: European puts at different values of C. Model parameters are
K = 10, G = M = 1, r = 0.1, and Y = 1.8.

C increases. This is indeed reasonable. As mentioned in Section 2.2, the parameter
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C controls the overall kurtosis of the distribution as

KurtosisCGMY = 3 +
C(MY−4 +GY−4)Γ(4− Y )

[C(MY−2 +GY−2)Γ(2− Y )]2
.

From the above formula, it is clear that the kurtosis function is a monotonic de-

creasing function of C. Therefore, both tails would become fatter as C increases.

According to the discussion in the last subsection, we can conclude that the option

price shall move upwards as C becomes larger.

4.3.3 The impacts of G and M

Figure 4.5: European puts at different values of G. Model parameters are
K = 10, M = 1, r = 0.1, Y = 1.8, and C = 0.01.

Figure 4.6: European puts at different values of M . Model parameters are
K = 10, G = 1, r = 0.1, Y = 1.8, and C = 0.01.
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In this subsection, we shall investigate the impacts of G and M on the European

option price. As mentioned in Section 2.2, G and M control the rate of exponential

decay on the right and left of the Lévy density, respectively.

Depicted in Fig 4.5 and Fig 4.6 are the option price of the CGMY model for

different values of G and M , respectively. We can observe from Fig 4.5 that the

option price shifts downwards as the increase of the value of G, whereas in Fig 4.6,

the option price goes upwards as the increase of the value of M . This phenomenon

might also be explained from the relationship between the tail of the underlying

return distribution and the price of the option. For simplicity, we omit the details

here.



Chapter 5

Conclusion

In this thesis, we consider the pricing of European options under the CGMY mod-

el. Through Fourier transform, a closed-form analytical solution for European-style

options under the CGMY model is successfully obtained for the first time. The

asymptotic behaviors of the solution are then examined, which confirms the relia-

bility of the CGMY model. On the other hand, for practical purpose, we propose

an efficient numerical method to implement the analytical solution. Numerical ex-

periments confirm the validity of our closed-form analytical solution as well as the

reliability of the propose numerical implementation technique. Finally, we discuss

quantitatively the influences of different parameters on the option prices. It is also

very promising to extend the current approach to price other European-style options

under different complicated models with fractional-order derivatives.
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Appendix A

Lemma A.0.1

z
[
e−Gx−∞D

Y
x e

Gxf(x)
]

= (G− iξ)Yz(ξ),

and

z
[
eMx

xD
Y
∞(e−Mxf(x))

]
= (M + iξ)Yz(ξ).

Proof. According to the exponential function property of the Fourier transform

discussed in Section 1.2, we have

z
[
e−Gx−∞D

Y
x (eGxf(x))

]
= z

[
−∞D

Y
x (eGxf(x))

]
|λ=ξ+iG . (A.0.1)

On the other hand, according to Corollary 1.2.3 contained in Chapter 1, we have

z[−∞D
Y
x (eGxf(x))] = (−ik)Yz[eGxf(x)], (A.0.2)

where z
[
eGxf(x)

]
can be further simplified as

z
[
eGxf(x)

]
= z(λ) |(λ=k−iG),

= z(k − iG). (A.0.3)
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Now, combining (A.0.1)-(A.0.3), we obtain

z[e−Gx−∞D
Y
x (eGxf(x))] = (−ik)Yz(k − iG) |k=ξ+iG,

= (G− iξ)Yz(ξ).

Similar approach can also be applied to evaluate z
[
eMx

xD
Y
∞(e−Mxf(x))

]
, and we

obtain

z[eMx
xD

Y
∞(e−Mxf(x))] = (ik)Yz(k + iM)|k=ξ−iM ,

= (M + iξ)Yz(ξ).

.



Appendix B

The definition of CM, FV and FA

The definitions of CM (complete monotone Lévy densities), FV (finite variation)

and FA (finite activity) can all be found in [16] as follows.

Theorem 4 By Bernstein’s theorem all CM (complete monotone Lévy densities)

are given by the Laplace transforms of positive measures on the positive half line, or

that there exists a measure ρ(da) such that

k(y) =

∫ ∞
0

e−aνρ(da),

which means that all such densities can be written in this form for some positive

measure ρ(da).

Theorem 5 Let X = (Xt)t>0 be a Lévy process with triplet (b, σ2, F ).

(a) If F (<) < ∞, then almost all paths of X = (Xt)t>0 have a finite number of

jumps on every compact interval. In that case, the Lévy process has finite activity.

(b) If F (<) = ∞, then almost all paths of X = (Xt)t>0 have a infinite number of

jumps on every compact interval. In that case, the Lévy process has infinite activity.

Theorem 6 Let X = (Xt)t>0 be a Lévy process with triplet (b, σ2, F ).

(a) Almost all paths of X have finite variation if σ = 0 and
∫
|x|≤1
|x|F (dx) <∞.

(b) Almost all paths of X have infinite variation if σ 6= 0 or
∫
|x|≤1
|x|F (dx) =∞.
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