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ABSTRACT 

Third generation photovoltaics are based on the concept of providing high conversion efficiencies with low device 

production costs. As such, second generation concepts, such as Dye-sensitized Solar Cells (DSCs), serve as a 

good starting point for the development of these new devices. Tandem DSC devices are one example of such a 

concept, and can be constructed using two photoactive electrodes (one photoanode and one photocathode) inside 

the one cavity, increasing the theoretical efficiency limit by around 50% as compared to the conventional design. 

As there has been substantial effort devoted to the development of n-type DSCs, the focus of researchers 

investigating tandem DSCs has been to create high performance p-type systems, which operate by an analogous, 

but inverted, mechanism to n-type DSCs. 

In order to realize high efficiency pDSCs a number of strategies have been pursued. Much of this has looked to 

optimizing individual components, such as the development of novel dyes with tailored absorption and electronic 

properties, the synthesis of new semiconductors and the incorporation of different redox mediators. Additionally, 

tandem devices require one to analyse the whole device, particularly to manage light harvesting across the two 

electrodes, which are intrinsically connected in series. Although this is a challenging task, it does open 

opportunities for more radical device redesigns. 
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GLOSSARY 

APCE / IQE Absorbed Photon to Charge Carrier Efficiency / Internal Quantum Efficiency 

CB Conduction Band 

CE Counter Electrode 

EG Band gap 

FF Fill factor 

HOMO Highest Occupied Molecular Orbital 

IPCE / EQE Incident Photon to Charge Carrier Efficiency / External Quantum Efficiency 

JSC Short Circuit Current Density 

LUMO Lowest Unoccupied Molecular Orbital 

nDSC Photoanodic Dye-sensitized Solar Cell 

OPV Organic photovoltaic 

PCE Photovoltaic Conversion Efficiency 

pDSC Photocathodic Dye-sensitized Solar Cell 

PEC Photoelectochemical Cell 

pnDSC Tandem Dye-sensitized Solar Cell (containing photoanode and photocathode) 

pQDSC Photocathodic Quantum Dot-sensitised Solar Cell 

PV Photovoltaic 

qEf Quasi Fermi energy / Quasi Fermi level 

SOMO Singularly Occupied Molecular Orbital 

SQ Shockley-Queisser (particularly with reference to predicted efficiency limits of single junction 

PV device) 

VB Valence Band 

VOC Open Circuit Voltage 

ΔG Driving force 

ΔGinj Driving force for charge injection 

ΔGreg Driving force for dye regeneration 
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1. ORIGINS AND OPERATION OF PHOTOCATHODIC DYE-SENSITIZED SOLAR CELLS 

 

 1.1. OVERVIEW 

 

 The demand for low cost clean energy necessitates continued research and development into technologies 

capable of producing such forms of electricity. To date, Dye-sensitized Solar Cells (DSCs) have been able to 

attain solar-to-electric conversion efficiencies of over 14% [1]. This is still significantly lower than pn-junction 

silicon devices or methylammonium lead halide based devices, which have gained popularity recently [2]. DSCs 

do, however, offer the prospect of being cheap and scalable in production, including amenability to roll-to-roll 

processing, without the toxicity associated with some competing technologies (such as those that use Cd, Pb based 

materials). DSCs are also highly customisable, with molecular light harvesters which can be tuned to absorb 

different wavelengths; redox mediators and semiconductors that can control device voltages. The authors of this 

review, and anybody who has worked in this area, of course note that the reality of device development is not so 

trivial and the interactions between these components should not be underestimated. 

  This range of controllable parameters makes DSCs ideal candidates for “third generation” photovoltaic 

(PV) concepts. This third generation has been defined by Martin Green [3] as devices which can surpass the 

Shockley-Queisser limit [4] (a concept addressed below) and do so at a low cost. This category of device is 

described in opposition to (i) the first generation of pn-junction silicon and (ii) the second generation of, primarily 

thin film, low cost but low efficiency devices including a range of chalcogenide based materials, amorphous 

silicon, organic photovoltaics and, of course, dye-sensitized solar cells (DSCs). 

 

 

Figure 1 – A simplified schematic of a tandem pnDSC, comprised of a photoanode and photocathode, connected internally 

through a redox mediator as well as via an external circuit. 

 

 Here we discuss one implementation of a third generation concept, a tandem DSC (pnDSC) which 

incorporates a photocathode and a photoanode (shown schematically in Figure 1). Due to the configuration of 

such a device the attainable voltages (open circuit, VOC) in the tandem device are nominally the sum of those in 

analogous photoanodic and photocathodic devices (nDSC and pDSC respectively), while current densities (JSC) 

will be limited by the weaker of the electrodes, in accordance with Kirchoff’s circuit laws. While efficiencies in 

excess of 8% are routinely reported for nDSC, to date the efficiencies of pDSCs are still much lower. Given the 

aforementioned circuit requirements, we will focus largely on the development of the pDSCs as this appears to be 

the biggest obstacle in the path of realising high efficiency pnDSCs (although, as we discuss later, there is a 

growing argument to look at redesigning the photoanode). Thus, interest in pDSC research is almost exclusively 
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with an aim towards incorporation in pnDSC. one major exception to this is, of course, the use of dye-sensitised 

photocathodes in water splitting applications, which is visited in more detail in Section 2.5.2. 

A brief historical perspective on events leading up to the first pDSC report is provided, as well as an 

overview of their development since this time. Following on from this, the prospects for this technology are 

analyzed and possible avenues for continued improvement proposed.  

 

 1.2. A BRIEF HISTORY OF EVENTS LEADINGUP TO THE pDSC 

 

 This section highlights some of the most important developments in history of photovoltaic research with 

reference to the landmark development of the pDSC and pnDSC in 1999 and 2000, respectively [5, 6]. The story 

of human understanding of photovoltaics (PV) commences with the work of Edmond Bequerel [7], more than 175 

years ago, when he observed a voltage arising from the exposure of silver halide electrodes to light, i.e., a  

photoelectrochemical cell (PEC). It was the better part of a century until Einstein was able to formally explain the 

nature of this effect, in work that would lead to him being awarded the Nobel prize for physics 1921 [8]. In this 

intervening years researchers made further observations, including (of particular interest here) James Moser, [9] 

who reported the increased sensitivity of an electrode when Erythrosin was introduced. As such, this can be 

considered the first sensitized PEC. 

 Throughout the early to mid-20th century there was comparatively little research into PEC systems, while 

pn junction photovoltaics became more established with Bell labs reporting 6% photovoltaic conversion efficiency 

(PCE) in 1954; a massive jump from the 0.5% of commercial photocells at the time [10]. On the other hand, 

interest in PEC research grew substantially during the late 1950’s and 1960’s, with fundamental principles of 

operation investigated by researchers, such as Nelson, Tributsch and Gerisher. [11, 12]. The field received a 

further boost in attention following the report by Honda and Fujishima [13] of photodriven water splitting using 

rutile titanium(IV) dioxide (TiO2). As Nozik later commented, Honda and Fujishimas were “the first to point out 

the potential application of photoelectrochemical systems for solar energy conversion and storage” [14], 

representing a departure from purely fundamental studies into physical processes, towards application based PEC. 

Interestingly, as Honda and Fujishima observed oxygen evolution at the TiO2 surface they actually mentioned the 

need for a p-type semiconductor to create a tandem device in order to realize the capabilities of such devices. 

 Five years later, Jeffrey Bolts and co-workers [15] were the first to realize a tandem regenerative PEC 

system, using n-CdSe and p-CdTe electrodes. In this case a polysulfide redox electrolyte was employed to provide 

a photovoltaic system rather than the provision of chemical energy storage (as in the conversion of water into 

molecular hydrogen and oxygen). 

 The concept of p-type sensitisation was highlighted by Memming 1972, using various dyes on both n- 

and p- doped GaP [16]. At this point there was still a significant debate between researchers as to the mechanism 

of photocathodic sensitisation, with models for either charge transfer or energy transfer presented - as reproduced 

below in Figure 2. In Memming’s work charge transfer was shown to be at least the dominant (if not exclusive) 

mechanism.  
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Figure 2 – Charge and energy transfer models, the two mechanisms initially proposed for photocathodic sensitisation – 

Reprinted with permission, from Memming - Photochemistry and Photobiology 16(4). Copyright 1972 American Chemical 

Society [16]. 

 

 Nozik’s 1978 review of the field, from which the above quote was taken, provides an excellent overview 

of the state-of-play in PEC research at the time, analysing the early fundamental studies, while setting up for the 

following decade of again increased interest in the concept of PEC and specifically sensitized PEC. In 1980 

Matsumura et al. [17] provided a benchmark of 2.5% conversion efficiency under monochromated light (22% 

Incident Photon to Charge carrier Efficiency - IPCE) using an aqueous (iodine) electrolyte and sintered Al doped 

ZnO disk comprised of microparticles, stained with Rose Bengal. During the same period, Tennakone et al. [18-

20] reported the p-type material CuSCN, sensitized by a variety of organic dyes. 

 The 1991 Nature paper of  O’Regan and Gratzel was, of course, one of the most important developments 

in this field [21]. This was the first sensitized PEC to give a substantial device efficiency under broadband 

illumination (~7% PCE), and demonstrated that the nanoparticles could increase the effective surface area without 

leading to catastrophic recombination. This article has now been cited more than 15,000 times (Reuters Web of 

Science). 

 In 1995, O’Regan [22] also used the CuSCN, this time in a DSC, to transport holes away from oxidised 

dye molecules (after it having injected an electron into an n-type semiconductor such as TiO2). Importantly, it was 

seen that this process could be very efficient (quantum efficiency ≤ 88%), however, it was only viewed as a way 

to replace the liquid electrolyte in a conventional DSC design, with O’Regan describing this device as a Dye-

sensitized Heterojunction (DSH), meaning that it is not capable, even with ideal materials, to surpass the Shockley-

Queisser (SQ) limit. Since this time, a range of p-type semiconductors have found use as hole transport materials 

in DSCs including CuO [23], CuSCN [22], 4CuBr∙3S(C4H9)2 [24], CuI [25], CuAlO2 [26] and NiO [27]. 

 In 1999 He et al. reported the first pDSC [5], followed by the incorporation of this photocathode a pnDSC 

the year after [6]. Here they employed either Erythrosin B or a free-base porphyrin as a sensitizer on a porous 

scaffold of Nickel(II) Oxide (NiO) nanoparticles, with an iodide/tri-iodide redox mediator. Upon illumination 

(68% sun) they observed pDSC device efficiencies of 0.0076% and 0.0033% respectively. The pnDSC device 

reported by He et al. [6] had a PCE of 0.39% and served as an important proof-of-principle, providing nearly 

additive VOC as one might expect (nVOC + pVOC ~ pnVOC). In this initial report the photoanode and photocathode 

were not optimised to produce matching current densities, which is to say the nDSC alone provided a JSC of ~7 

mA/cm2, while the pDSC was only capable of producing JSC ~0.27 mA/cm2. In principle it can be expected that 

the de facto series connection of the electrode should limit the JSC of a pnDSC to the lower of what the two 
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electrodes can generate. In actual fact the JSC is higher but the current-voltage (J-V) curve displays an inflection 

(similar to the schematic in Figure 3 below). This suggests that at small applied biases (close to JSC) the 

overpotential for electrolyte reduction at the cathode is sufficiently large that the system is driven by the 

photoanode. This phenomenon has also been observed by other authors when the photoelectrodes are not current 

matched [28, 29], but the maximum power point seems to inevitably reside in a voltage range where both 

photoelectrodes are the primary elements driving current flow (rather than dark processes).  

 

 

Figure 3 – Schematic of current-voltage response of pnDSC with poor current matching. 

 

 Developments in pDSC device efficiency are addressed below in Section 2.1 and show a rapid and 

dramatic increase since this first report. pDSCs have also been the subject of a number of review articles, including 

specialised topics such as ternary copper oxide materials [30-36]. 

 

 1.3. DEVICE OPERATION 

 

 The photocathode (shown schematically in Figure 4a) consists of a p-type semiconductor to which with 

a dye is affixed. Upon photoexcitation this dye molecule is able to ‘inject a hole’ into the conduction band (CB) 

of the semiconductor. This hole (h+) injection can also be viewed as an electron (e-) being injected from the 

semiconductor to the dye, made possible by the dual Singularly Occupied Molecular Orbitals (SOMO) of the 

excited dye. After this charge transfer process, the resulting anionic dye is oxidised back to its neutral state by a 

redox active electrolyte. In a way somewhat similar to the debate about photocathodic sensitisation mechanisms 

during the 1960’s and 1970’s (see Figure 2), initially there was uncertainty about which process (h+ injection to 

semiconductor or e- to the mediator) occurred first. This was addressed by Borgström et al. [37] who were able to 

verify this ordering of these events in 2005, with the observation of dye anion spectral features following 

photoexcitation. The extracted hole travels through the mesoporous network of the p-type semiconductor to an 

external circuit and then the counter electrode, where it serves to oxidize the reduced species in the electrolyte, 

thereby maintaining charge balance. Typically, a catalytic material, such as platinum, is introduced on the counter 

electrode to minimize the required over-potential for regeneration in single photoelectrode devices. The attainable 

voltage (open circuit voltage, VOC) of this pDSC is defined by the difference in energy of the redox mediator and 

the quasi Fermi energy (qEF) of holes in the p-type material (typically approximated to the VB edge). Although it 

is possible that qEF can be depressed into the VB of a p-type semiconductor (or raised into the CB of a n-type 

material), very slow charge transport, in concert with very limited recombination, would be required to build up 

charge densities large enough to have a significant impact on VOC. The maximum current density (short circuit 
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current density, JSC) will depend upon light harvesting efficiency (LHE), charge injection and charge collection 

efficiencies (Φinj and ΦCC respectively). 

 In comparison, for the nDSC case (Figure 4b), the photoexcitated dye injects an electron into the CB of 

an n-type semiconductor, which then diffuses through the mesoporous scaffold to the external circuit. The 

resultant dye cation can be reduced by the electrolyte, which is itself reduced at the counter electrode, by charges 

extracted at the working electrode. Once again catalytic materials, such as platinum, are used to expedite this 

process. Here, the VOC is limited by qEF of electrons in the n-type material and the redox potential of the electrolyte. 

The upper limit of JSC is defined in the same way as above. 

 When both of the aforementioned systems are brought together their inverted mechanisms of operation 

serve as a compliment (Figure 4c). If charge generation is kept in balance (for the moment recombination 

processes are set aside from our considerations), the two systems will create a higher VOC as they are, de facto, 

series connected, i.e. limited by qEF of holes in the p-type and electrons in the n-type semiconductor. JSC is 

nominally limited to the lower of the two photoelectrodes, however, as was highlighted above (Figure 3), this is 

not strictly true. 

 

(a)  (b)  

(c)  

Figure 4 – Schematic operation of (a) photocathodic pDSC, (b) photoanodic nDSC and (c) tandem pnDSC. 

 

 The above description of device operation focussed solely on the pathways which lead to measurable 

electrical output (i.e. the ideal pathway). It is important to realize that in real devices recombination reactions 

compete with the forward processes (shown schematically in Figure 5). The primary recombination mechanisms 

in pDSCs are back transfer of injected holes from the valence band (VB) of the semiconductor to either the anionic 

dye or to the oxidised species in the electrolyte.  

 Early studies saw the former of these mechanisms to be a major limitation with a substantial portion of 

the injected charges being rapidly lost in recombination reactions [37, 38]. Fortunately, it has been possible to 

create systems where these recombination reactions are sufficiently retarded that high quantum efficiencies have 
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been realized [28, 39]. The most effective method for achieving this has been the tailoring of sensitizers, although 

the use of core-shell structured working electrodes has also been shown to be moderately effective [40, 41]. Both 

of these approaches are discussed in greater detail below, in Sections 2.2 and 2.4.3 respectively.  

 

 

Figure 5 – Schematic representation of major recombination pathways in pDSCs. 

 

 1.4. THIRD GENERATION PHOTOVOLTAICS 

 

 As mentioned in Section 1.1, pnDSCs can be considered an example of a third generation photovoltaic 

concept. The definition provided by Martin Green [3] suggests three labels for photovoltaics. The first generation 

includes the first commercialised technology, pn-junction silicon. From the Bell labs 1954 report of 6% 

conversion efficiency, confirmed values have now exceeded 25% [2] even under non-concentrated sunlight 

conditions. Given that these are single junction devices with a band gap of ~1.1 eV, these efficiencies are close to 

their theoretical upper limit. 

 The second generation is defined as being a low cost alternative to the above. It was initially envisaged 

that thin film technologies would replace crystalline silicon solar cells in many applications due to reduced 

manufacturing costs. To date the only non-silicon based system to see significant commercial adoption is cadmium 

telluride (CdTe). Reasons for this include the continued decrease in cost of crystalline silicon PV and the 

proportion of a systems total price which is accounted for by ‘balance-of-plant’ costs. Meanwhile, some other 

second generation technologies have found niche markets, such as amorphous silicon panels on calculators and 

DSCs integrated into backpacks where they can be used to charge portable electronic devices [42]. 

 Technologies which offer the prospect to surpass the efficiency limits set by a single junction have been 

termed the third generation. Ideally, this improved performance should also be achieved without significant 

increase to the cost, although the above example of pn-junction silicon reminds us the role of continued 

development, improved production processes and economies of scale play in achieving this. Before looking at 

examples of these third generation devices, it is important to understand where the limiting efficiencies for single 

junction devices come from. 

 

 1.4.1 EFFICIENCY LIMITATIONS IN SINGLE JUNCTION PV 

 

 Photons emitted from the sun, reaching the surface of the earth, cover the range of ~280-4000 nm, (4.4 

eV < hν < 0.31 eV), with their distribution reported under different conditions, such as air mass 1 (AM1) 

corresponding to the sun being directly overhead. In order to better approximate typical illumination conditions, 
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AM1.5 is more commonly used as a standard, i.e. the distribution of photons in sunlight under 1.5 air masses, 

equivalent to irradiation from the sun while it is angled at of 37°, at 41.81° from the zenith [43]. 

 If photons are more energetic than the bandgap (EG) of a semiconductor they can be absorbed, with their 

energy used to excite an electron from the VB to the CB, thus providing an electron-hole pair (exciton). In most 

cases any excess energy (hν > EG) is simply lost as heat. Photons of lower energy than EG are simply transmitted 

and their energy lost to the PV device.  This highlights the trade-off of absorbed photons (which controls current) 

and exciton energy (voltage), in a simple and generalised sense. It also demonstrates the role EG plays in 

determining the attainable efficiency for a particular material. In 1963, Shockely and Queisser published a detailed 

balance account of this [4], also accounting for radiative recombination. In their analysis, the sun was assumed to 

be a perfect 6000 K black body irradiation source (as opposed to a measured solar spectrum) while the device is 

held at 300 K. From this they estimated a single junction efficiency limit of ~30 % for a 1.1 eV EG for non-

concentrated sunlight. As a result, the limiting efficiency of a device based on its EG is referred to as its Shockley-

Queisser (SQ) limit. 

 Henry [44] revisited this topic, using both a measured solar spectrum and also looking at the possibility 

of using multiple junctions to better utilize the incident light. A generalised schematic of a tandem solar cell (as 

compared to the specific case of pnDSCs shown in Figure 4c) can be seen below in Figure 6 and demonstrates 

how two junctions can each harvest different wavelength ranges, resulting in less energy being lost to 

thermalization in each. These electrodes can be connected in series or parallel, with a series connection typically 

preferred on account of the difference in device voltage - one way around this is to have two of the second 

electrode (low VOC) in series (side-by side) in series with the first (high VOC). Ideally, a series connected device 

would produce similar currents from each electrode (taking into account light transmission through the first 

electrode). 

 

 

Figure 6 – Generalised schematic representation of a tandem solar cell, with each junction selectively harvesting one portion 

of the solar spectrum and converting it with high efficiency (comparatively small losses to thermalization). 

 

 As a result of this, two junction model (and the use of a more accurate solar spectrum) an efficiency limit 

of 41% for a tandem under 1 sun illumination (50% at 1000 suns) was calculated. For reference, Henry places the 

theoretical efficiency limit at 31% (37% for concentrated light) for a single junction, while a near infinite (36 

electrode) configuration, under concentrated irradiation, provides a value of 72%. 

 The above models are based on pn-junction devices. While some authors have considered the cases of 

PEC [45] and others have specifically focussed on detailed balance accounts of organic sensitized systems, [46] 

the physical realities of DSCs leave a certain ambiguity as to the applicability of these models. Snaith [47] also 

presented an approach to determine the efficiency limits of DSCs, using a more empirical approach. Once charges 
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are injected into a wide bandgap material, the role of radiative recombination should become almost insignificant. 

However, the driving force required for this injection to occur efficiently and without substantial back-transfer is 

a loss in potential that must be minimised in order to realise high PCEs. In Section 3.2, we attempt to address the 

theoretical limits for pnDSC. 

 While multiple junction devices (particularly tandems) are the best developed and understood of the 

technologies capable of surpassing the above SQ limit, there are a number of approaches that can also make more 

effective use of sunlight as compared to the aforementioned single junction devices. This includes spectral 

modification (up-conversion / down-conversion) and their non-radiative counterparts (intermediate band and 

multiple exciton generation respectively) as well as hot carrier solar cells. For reference each of these is described 

briefly below in Table 1: 

 

Table 1 – General overview of third generation PV concepts, with particular reference to implementations in DSCs. 

 

 

Multiple junction solar cell 

 

Junctions arranged in decreasing order of EG, resulting in 

small thermalization losses at each junction as the incident 

photons are only slightly more energetic than each EG. A 

variant of this uses spectral splitting (eg. Dichroic mirrors, 

diffraction gratings or prisms) to irradiate side-by-side 

devices with wavelengths of light to which they are most 

suited. 

 

 

Photon up-conversion 

 

The energies of two low energy photons, transmitted through 

the active layer, are combined and re-emitted back towards 

active layer. May be accomplished through sequential 

absorption, stimulated emission or triplet-triplet annihilation 

[48]. Allows for increased photocurrent generation without 

compromise VOC [49, 50]. 

 

 

Photon down-conversion 

 

 

High energy photons are able to excite a material which then 

emits multiple low energy photons. These can be absorbed 

by a low EG material, resulting in higher JSC. One example of 

this is singlet fission, the inverse of the triplet-triplet 

annihilation process.  

 

Intermediate band solar cell 

Non-emissive analogue of an up-conversion system. 

Electrons can be either directly excited from the CB to VB 

by high energy photons or in a two stage process using an 

intermediate band (IB). (CB  VB or VB  IB and IB  

CB). Recently the IB concept has been applied to DSCs [51, 

52]. 
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Multiple exciton generation 

 

 

Non-radiative analogue of down-conversion. Certain 

materials, particularly quantum dots, can generate multiple 

excitons when excited by photon hν > 2·EG [53]. 

 

Hot carrier solar cell 

 

Charges are extracted without being allowed to thermalize to 

the band edges. Allows for more energy to be extracted from 

high energy photons without transmissive losses of low 

energy ones, as a wide EG material leads to. 

 

 As mentioned previously, the low projected cost, along with the design flexibility of DSCs, make them 

ideal candidates for use as the basis of third generation PV. To date there have been a number of examples of 

such, including up-conversion assisted, multi-exciton and recently an intermediate band dye-sensitized solar cell 

(see references in Table 1 above), as well as other variants of tandem (listed below in Table 2). 

 

Table 2 – Various implementations of tandem DSC (aside from pnDSC) 

 

 

 

Stacked (nnDSC) 

 

 

Two nDSCs stacked on top of one another, with the top being 

highly transmissive and the bottom employing a red-IR 

absorbing dye. The use of different redox mediators and/or 

semiconductors allows this device design, in principle, to 

surpass the single junction SQ limit.  

 

First reported in 2004 [54, 55], this architecture has been 

employed to realize 11.5% conversion efficiency using 

spectrally complimentary organic dyes [56]. These can be 

configured  either in series or in parallel. 

 

Murayama and Mori introduced a similar concept 

incorporating a single mesh counter electrode into a DSC with 

two photoanodic working electrodes [57]. If different 

dye/semiconductor combinations are used on each of these 

electrodes, the system can, in principle, exceed the SQ limit. 
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Hybrid (DSC + other) 

 

Several attempts have been made to combing DSCs with other 

PV technologies better suited to the harvesting of infrared light. 

This has to date included CIGS [58] and organic systems [59]. 

2. pDSC LITERATURE SURVEY 

 

 It is arguable that development in that the field of nDSC has been hamstrung by the initial efficiencies 

reported by O’Regan and Grätzel in 1991 (and 10% published shortly after in 1993). Development of devices, 

such as DSCs, has often been characterised by researchers focussing on one component at a time, while rest of 

the device remained as per the state-of-the-art. It is questionable as to whether this is necessarily the best approach 

to device development. On one hand, the interaction between components in systems such as DSCs plays a 

significant role in determining their overall performance, while on the other, changing multiple parameters 

simultaneously increases the workload significantly. Systems including TiO2, ruthenium sensitizers and iodide-

triiodide redox mediators have been the standard for a long time, with departures from this formula (typically one 

component at a time) leading to lower overall PCE. 

 In 2006, a record PCE of 11.1% was set [60] and in 2010, 11.7% [61], with devices which again used a 

Ru complex sensitized, mesoporous TiO2 and an I-/I3
- based electrolyte. Although issues with each component 

had been identified (Ru dyes are expensive and laborious to purify, iodine is corrosive and provides parasitic 

absorption) it was not until recently that this ‘stalemate’ was broken, notably with the work of Yella et al. [62], 

where the combination of a (Co(II)/(III)) redox mediator and Zn-porphyrin dye led to the realisation of 12.3% 

PCE. Further modification of the dye structure lead to 13% conversion efficiencies [63], while more recently 

14.3% PCE has been realised using two organic dyes and a (Co(II)/(III)) mediator [1]. In a further departure from 

the conventional design, one of the two sensitizers used here was bound to the TiO2 by a silyl anchoring group. 

 The impressive initial reported PCEs of nDSC were not mirrored in pDSCs. Their modest starting point 

(< 0.01%) may in some ways be seen as a benefit, pushing researchers to investigate all aspects of the device, and 

not necessarily in isolation [64-66]. It is obvious that more ‘tweaking’ the system will not achieve the target 

performance. Furthermore, general understanding of the science, garnered from work on nDSC has been able to 

feed into pDSC development.  

 When considering the design of a tandem, pnDSC, structure there needs to be even further emphasis 

placed on understanding of the interplay of components. This includes the need for an appropriate choice of redox 

mediator (with an understanding of dye-mediator interactions on both sides of the cell) and considerations of 

spectral matching. Furthermore, spectral matching for an optimised device needs to accommodate any parasitic 

absorptions which may occur due to the electrolyte or semiconductors. This is exemplified by the dramatically 

different performances of tandem devices under illumination from either the photoanode or photocathode side 

[28]. In addition to these special considerations, ’normal’ DSC concerns still apply, such as volatility of 

electrolytes and sealing, corrosive mediators and the photodegradation of organic materials [67]. 

 

 2.1. OVERVIEW OF pDSC DEVELOPMENT 

 



Page 13 of 56 

 In order to understand where the field of pDSC research sits at this point in time, three publication metrics 

(based on Reuters Web of Science searches) were examined here (Figure 7); specifically the distribution of these 

over the last 16 years. Firstly, citations of the 1999 paper from He et al. [5] were examined, as it is assumed that 

the field is small enough that the majority of relevant articles will still reference this work. This metric also 

includes a number of tangentially related articles, such as those using NiO for other purposes, where there is 

passing mention of its applicability in pDSCs. The second search looked at the number of articles which match 

the search term “photocathod*” and “dye sensiti* solar cell”, with wildcards used to ensure variations are 

included. This search captures a more specific subset of papers, including review articles, but many of them may 

only include a small section on pDSC research. The third category was generated by us, based on papers we could 

find reporting original pDSC device data. Each of these categories shows the interest in this field in slightly 

different ways and of course all are important. It is noteworthy that there was a substantial lag from the first report 

(1999) and substantial interest from other researchers. This may have been due to a pessimistic outlook of the 

technology, given the low device conversion efficiencies. 

 

 

Figure 7 – Metrics for ISI indexed publications which (i) cite (He, et al 1999), (ii) contain the key words 

“photocathod*” and “dye sensiti* solar cell” or (iii) report original research data for pDSC devices. 

 

 The first paper on pDSCs, as discussed above, reported only very low efficiencies [5]. The next report 

on pDSC did not appear for another 6 years, when Nakasa et al. applied Coumarin 343 (C343) as a sensitizer [29]. 

Once some improvements were realised there appears to have been a snowball effect, with higher efficiencies 

attracting more attention, leading to more research being conducted, and subsequently further increases in device 

performance. Interest in pDSC may also be partially due to the crowded nature of nDSC research and the desire 

of researchers to find niche areas of research in which they can potentially have a greater impact. Until recently, 

with the commercial availability of dyes specifically designed for pDSCs [68], C343 sensitized NiO remained the 

‘unofficial standard’ for photocathodes, used as a control in a number of studies [69-79]. 

 In 2008, Morandeira et al. produced the first push-pull dye specifically tailored for pDSC application. In 

spite of a high (~45%) Absorbed Photon to Charge carrier Efficiency (APCE), low light harvesting efficiency 

limited overall performance [80]. The same year, members of the same group reported the dye “P1”, with 0.05% 

conversion efficiency [81]. With further device optimisation this was increased to a PCE of 0.15% [82]. The 

structures of these dyes, along with other notable examples can be found in Table 3. 

 In 2010, our group introduced another donor-acceptor type dye, with a variable length bridge of alkylated 

thiophenes [28]. This served to substantially retard recombination between injected holes in the NiO and the dye 

anion, as evidenced by the long lived dye anion (observed in transient absorption measurements) and an APCE of 

~96%, when six thiophene units are included. This was used to produce devices with up to 0.41% conversion 
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efficiency. The following year the replacement of commercial NiO with high crystallinity, faceted particles, lead 

to an increased VOC and hence another record efficiency [83]. In 2012, and again in 2014, the substitution of I-/I3
- 

redox couple for (Co(II)/(III)) and then Fe(II/III) complexes resulted in PCEs of 1.3% and 2.51% respectively 

[84, 85], with devices displaying VOCs comparable to those of high performance nDSCs. The last four of these 

record pDSC PCEs have been obtained using PMI-6T-TPA (Table 3). 

 In the sections, below we summarize work undertaken in the development and optimisation of pDSCs. 

This has been broken down into sections focused on sensitizers, electrolytes and semiconductors, in the interests 

of simplicity and readability. Once again it should be iterated that in the development of these devices everything 

should be (and sometimes is) ‘on the table’. 

 

 2.2. SENSITIZERS 

 

One of the most widely investigated components of pDSC (and nDSC for that matter) is the sensitizer - by 

our count there have been > 90 different sensitizers reported to be used in pDSCs to date. Some of the requirements 

for photocathodic and photoanodic systems are the same, such as chemical robustness and having a high extinction 

coefficient. Obviously the oxidation and reduction potentials need to provide sufficient driving force for charge 

injection into the semi-conductor, while mitigating back transfer. The exact magnitude of this is a debated topic, 

and is further discussed below in Section 3.2 where we attempt to estimate upper limits on pnDSC efficiencies.  

Much of the early work in this field utilised ‘off-the-shelf’ dyes, such as Erythrosin B and C343. Use of 

the latter to sensitize photoanodes provides IPCE > 80% [86], and also facilitated high IPCE (> 20%) in pDSC 

devices [75]. A major challenge in the early stages of pDSC development was to prove that high quantum 

efficiencies could be realised at all. Mori et al. compared a series of sensitizers for p-DSCs including a C343 and 

another coumarin sensitizer, NKX-2311, which has a red-shifted absorption spectrum compared to C343. In spite 

of this red-shift, the JSC was found to be lower than that of the devices made with C343 [75]. Cyanine sensitizers, 

NK-2684, NK-3628, and NK-2612, were also used in this comparative study, which led higher JSC values, largely 

due to the higher absorption coefficient of these sensitizers. Device performance was severely limited by the 

interfacial charge recombination reactions occurring between the reduced sensitizer and the injected holes.  

Table 3 - Selected structures of dyes used in pDSCs 

 

Dye Significance 

 

Coumarin 343 (C343) 

One of the first dyes applied in pDSCs [29]. 

Commercially available and low cost. High 

IPCEs reported using this dye in both pDSC 

and nDSC devices. 

 

 

Peryleneimide–Napthalenediimide dyad (PI-NDI) 

 

First donor-acceptor dye specifically designed 

for pDSC[80]. 
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P1, P4 

 

Breakthrough dyes, providing high APCE and 

IPCE [39, 81]. P1 is now commercially 

available [68]. 

PMI-nT-TPA 

Long lived charge separated state (TAS); high 

VOC for I-/I3
- and NiO. Utilised in several 

successive champion pDSC devices [28, 83-

85]. Synthesised by group of Peter Bäuerle. 

 

 

SQ-PMI-NDI 

 

One of the most successful dyes to sensitize 

pDSC into the IR. A 25% IPCE was achieved 

at 620 nm [87]. 

 

CAD3 

 

Reported JSC = 8.2 mA/cm2. IR absorber; IPCE 

at 700 nm > 20% [88]. 

 

QT-1 

 

Reported JSC = 8.2 mA/cm2 by Zhang et al. 

[89]. Structurally similar to the “O2” dye (N.B. 

Devices with O2 only obtained JSC of 1.43 

mA/cm2 [90]). 
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N3, N719 

 

Staples of research for nDSC. Shown to have 

desensitizing effects when used in NiO pDSC 

[76]. Reported JSC = 8.35 mA/cm2 on NiCo2O4 

[91]. 

 

O3 

Ru dye used to generate JSC > 3 mA/cm2 in 

pDSCs [92]. 

 

2.2.1 DONOR-ACCEPTOR TYPE DYES 

 

At the most basic level, successful design of dyes for pDSC has involved the creation of donor-acceptor 

dyes, where two moieties are in electronic communication, but retain certain characteristics of their own. One of 

these moieties should be more electron withdrawing and the other electron accepting. In order to predict how such 

a molecule might perform when photoexcited, electron distribution in the highest occupied molecular orbital 

(HOMO) and lowest unoccupied molecular orbital (LUMO) are often calculated (HOMO-1 and LUMO+1 may 

also considered). The LUMO is considered as a good approximation of where the Single Occupied Molecular 

Orbital (SOMO) within which electron density generated following photoexcitation lies. such as is highlighted in 

the example in Figure 8. The LUMO should be characterized by low electron density in proximity to the surface, 

while the HOMO the opposite. This increases the probability of hole injection to the semiconductor, as well as 

promoting dye anion regeneration. 

 

 

Figure 8 – Electron density in frontier orbitals of donor-acceptor dyes ‘PMI-nT-TPA’. Originally published in Nature 

Materials [28], copyright Nature Publishing Group 2010. 

 

The first dye explicitly designed (to our knowledge) for application in pDSCs, introduced by Morandeira 

et al. [80], was essentially a dyad containing perylene imide and naphthalene diimide moieties (PI-NDI). These 

researchers recognised that the rules for good dye design should be largely reversed compared to those for nDSC 

[93]. Although the concept of donor-acceptor dyes was initially borrowed from nDSC research, the necessity to 
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adopt these concepts in pDSC was much more pronounced, in part due to the effectiveness of dyes such as N719, 

which mitigated the necessity for such design in nDSCs for a long time. The more recent trend to move away 

from expensive and difficult to purify dyes in nDSC did however increased the demand for deeper understanding 

of these ‘rules’ for dye design. 

As mentioned, one of the first dyes shown to provide reasonable JSCs (at least within an order of magnitude 

of the record nDSC values) was “P1” (Table 3), which consists of a triphenylamine donor group and a 

dicyanovinylene acceptor group, connected via a thiophene ring [81]. Following device optimisation, a maximum 

IPCEs of 35% and then 63% were obtained by the same authors [39, 82]. A 44% IPCE was reported for a new 

dye, P4, alongside the value of 35% for P1. This new dye was produced by substitution of the two phenyl rings 

with thiophenes [39]. The PMI-nT-TPA series of dyes, first published in 2010, are composed of a 

perylenemonoimide group (PMI) acceptor, an oligothiophene spacer (nT, where n = 2, 4, 6) and are coupled to a 

triphenylamine group as the donor (TPA). These led to even higher efficiencies [28], with the systematic variation 

in the number of thiophene units resulted in the observed dye anion lifetimes in a redox free environment 

increasing by roughly an order of magnitude, as measured in transient absorption experiments. The variant with 

six thiophene units exhibited the longest-living charge-separated state and significantly enhanced device 

performance. 

While the first donor-acceptor dyes were based on perylene imide and naphthelene diimide, the majority 

of reports since have incorporated either diphenylamine or triphenylamine as a donor moiety, most likely 

following reports of P1 and PMI-nT-TPA [28, 81]. Researchers have focused their attention towards testing a 

range of acceptors, various π-bridges as well as binding moieties. The creation of dye series with different 

acceptors has become a popular topic of study, with a number of groups [82, 94-96] exploring this aspect. 

Unfortunately, to date, none of these were able to provide improved performance over the aforementioned P1 and 

PMI-nT-TPA dyes, with the exception of P4 which provided slightly higher PCE than P1 in direct comparisons. 

Among the acceptors trialled were 9,10-dicyanoacenaphtho[1,2-b]quinoxaline (DCANQ), dicyanovinylene 

(DCV) [81, 90, 94-97], tricyanofurane [94] squarine [87, 94], bodipy [98] and 1,3-diethyl-2-

thioxodihydropyrimidine-4,6-dione (DETB) [82, 96]. 

Some of the reasons put forward for the failure to further improve PCE were decreased driving forces for 

charge injection and/or dye regeneration (ΔGinj and ΔGreg respectively) depending on the moiety employed. Li et 

al. [99] recognised, the asymmetric rates of injection and regeneration suggest a smaller ΔGinj should be required 

as compared to ΔGreg. Furthermore, the nature of regeneration via a radical iodine intermediate (I3
- + e-  I2

•- + I-

) means that the relevant value of ΔGreg is actually ~ 325 meV smaller than the estimate often used (based on 

D*/D- and I-/I3
-) [82, 94, 100], and this needs to be accounted for. This translates to a substantial energy loss 

between that of the absorbed photon and what is outputted by the device. This issue is addressed again below in 

Sections 2.3.1 and 3.2. 

To facilitate a long lived charge separated state, an extended π conjugated bridge is employed. In our 2010 

study, we showed a sexthiophene bridge with near unity APCE [28]. In follow up studies, steric hindrance 

resulting from the location of the alkyl chain on the thiophene was shown to significantly affect the structure of 

the molecule and subsequently its electronic properties [101]. The twist between bridge and acceptor induced by 

the alkyl chain is seen to be important in promoting injection and/or preventing rapid recombination of the excited 

electron with holes in the semiconductor. Other groups have compared bridges comprised of thiophene [90, 96], 

carbazole [96], thiolated carbazole [96], pyridine [102] ethylenedioxythiophene (EDOT) [90], phenyl [90], 

fluorene [103], and combinations of the above [103]. 
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 In further studies by Le Pleux et al. [104], coupling of the PMI moiety to a naphthelenediimide (NDI) or 

a fullerene (C60) as a secondary acceptor was found to increase the charge separated state lifetime by about five 

orders of magnitude compared to parent PMI sensitizer alone. Nevertheless, these modifications were not 

sufficient to surpass the performance achieved with the PMI-6T-TPA sensitizer.  

 

2.2.2 DYE BINDING MECHANISM 

 

 As mentioned above, much of the development of dyes for pDSC looks at creating derivatives of either 

P1 or PMI-nT-TPA (or combining aspects of each) [105]. One of the major differences between these two 

benchmark dyes is the number of binding groups. On one hand, a single linker more readily facilitates inclusion 

of a second acceptor on TPA (either symmetric or asymmetric). This is particularly relevant for pDSC using NiO 

or other highly coloured semiconductors, as high LHE can be achieved with comparatively thin films, thereby 

limiting parasitic absorption. On the other hand, Chang et al.[106] found, from a direct comparison of mono- and 

di-carboxylated dyes with otherwise the same molecular structure, that the PCE of the device with the 

dicarboxylate linker was almost double that of the single. Similar redox potentials were observed but there was a 

major difference in dye loading. Therefore, they concluded that the inclusion of two binding groups forces the 

dyes into an upright configuration so that they are more densely packed and maintain photoexcited electrons 

further from the semiconductor. 

 Most dyes contain carboxylic acid linkers (or close relatives of), almost by default, as they have been 

widely used in nDSC, providing good chemical stability, reasonable injection and (typically) low back electron 

transfer rates. Interestingly, the recent record efficiency for nDSC was set using a cocktail system where one of 

the dyes employs a silyl anchor. Yann Pellegrin et al.[107] synthesized a ruthenium(II) tris(bipyridine) derivative 

with various linker groups, finding similar performances for carboxylate and catechol linkers, a slight 

improvement with methyl phosphinic acid and a substantially worse performance with biscarbodithioic acid. 

Notably, they also observed that the binding of carboxylic acid to NiO is ~18 times stronger than on TiO2. A 2012 

computational study of these dyes by Anne et al. [108], concluded these results were likely due to the dye redox 

potentials, which were dependent on the binding group. A similar study by Munoz-Garcia in 2015[109], using 

C343 as a model, saw similar shifts in calculated oxidation potentials when a carboxylic acid compared to a 

phosphonic acid. Although not advantageous here, this may be a method to stabilize dye frontier orbital energies, 

which will become necessary as NiO is replaced with other p-type semiconductors possessing more low lying VB 

edge potentials (vacuum scale). Furthermore, acetylacetone [87] and pyridine [102] have each been used to bind 

dyes to NiO. In early work on sensitized p-type materials, Tennakone used ionic binding to adhere dyes to CuSCN 

[19]. 

 

 2.2.3 RUTHENIUM BASED SENSITISERS 

 

While Ru dyes have been the dominant choice for sensitisation in photoanodes since the 1991 Nature 

article [21], their use in pDSCs has been limited. Several groups have reported the performances of pDSC devices 

using either N3 or N719, with mixed results. He et al. [71] observed a JSC of 0.35 mA/cm2, which is modest, 

compared to the 1 mA/cm2 they measured from a C343 sensitized analogue and similar to what is observed by 

Sheehan et al. [110]. Here they also observed similar JSC for their unsensitized device, suggesting that either 

electrolyte sensitization or measurement artefacts are the most likely cause of such current densities. Ursu et al. 

[111] applied N719 to CuGaO2 and Fe-doped CuGaO2 with low JSCs resulting. Unfortunately, they did not provide 
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any comparison devices and given the large semiconductor particles used in this study low JSCs are not unexpected. 

One surprising system, in contrast to reports of N719 with other p-type semiconductors, is from Shi et al. [91] 

who reported a JSC of 8.35 mA/cm2 when they applied it to NiCO2O4. Previously Qin et al. [81] saw a very poor 

response (and no IPCE response attributable to dye sensitisation) from N3 on NiO. Furthermore, in our 2008 

paper, a desensitizing response was observed N719, i.e., dyed devices perform worse than undyed [76], which fits 

in line with the idea that the N719/N3 complex or strongly interact with I-. This idea was put forward by Clifford 

et al. to account for the fact that this dye is such an effective sensitizer of TiO2 in nDSCs [112, 113]. 

In spite of the poor results obtained for N3/N719 on NiO, this is not universally true of Ru based sensitizers. 

More successful attempts at producing Ru dyes have been reported by Pellegrin et al. [107] (with different binding 

groups, as mentioned above) as well as Freys et al. [114], who compared Ru(dicarboxypyridine)3 and 

Ru(dicarboxypyridine)(4-nitronaphthalene-1,8-dicarboximide) using both I-/I3
- and Co(II)/(III) based electrolytes. 

Here the latter of the dyes contains a strongly electron accepting moiety, having a significant impact on the redox 

potentials of the dye. In this case the first dye shows a small response with I-/I3
-, and almost none with 

(Co(II)/(III)). The second also shows a modest response when used in a device with I-/I3
-, however, an APCE of 

almost 30% is attained when used in conjunction with a (Co(II)/(III)) electrolyte.  

In 2013, Ji et al. [92] introduced three dyes (dicarboxylate TPA donor and cyclometalated Ru acceptor). 

These provided broad absorption and modest JSC values (~2.5-3 mA/cm2). The following year Wood et al. [115] 

introduced two donor-acceptor type dyes, with similar structures, leading to similar JSCs. Huang et al. [116] 

reported further, similar, sensitizers. However, in the latter example, they employed ITO nanoparticles as the 

semiconductor. Although this resulted in a photocathodic current, the mechanism for this was not the same as in 

previous pDSCs. Instead charge generation involves electrons being injected into the dye from the CB of the 

degenerate semiconductor. 

One further issue that may limit the applicability of Ru complexes in pDSCs are the relative low extinction 

coefficients of Ru complexes, leading to low light harvesting efficiencies when used with NiO - parasitic 

absorption limits the amount of light that can be harvested by the dye, even if the semiconductor layer is made to 

be thick, as is typically the case in Ru complex employing nDSC devices. 

 

2.2.4 INORGANIC SENSITIZERS 

 

Recently, Sun et al. put forward the idea of using polyoxometalates, however, to date, these have not been 

experimentally tested [117]. Meanwhile inorganic sensitizers, including quantum dots have also been utilised by 

a handful of researchers to create pDSCs. In the first report of a QD sensitized pDSC, or pQDSC, published in 

2009, Rhee et al. [118], applied Cu2S to NiO. The broad and featureless shape of the Cu2S absorption, along with 

the broad featureless IPCE response of unsensitized NiO (with I-/I3
- based electrolyte) led to some ambiguity as 

to whether this was truly QD sensitized [119], however, the fact that the measured IPCE response doesn’t go to 

zero at 800 nm (the absorption onset of the QDs is around 1030 nm) suggests this device is indeed Cu2S sensitized, 

possibly in addition to I-/I3
- generated photocurrent. This component of photocurrent is a feature of all I-/I3

- based 

pDSCs. 

 Interestingly, this first report used I-/I3
-, which is known to be corrosive towards materials including metal 

sulphides. The majority of reports into pQDSC have, however, used a polysulfide redox mediator, S2-/Sx
2-, 

although (Co(II)/(III)) based electrolytes have also been successfully employed as well [120]. Furthermore, dense 

NiO layers have been shown to be necessary to minimize the back reaction of this mediator at the FTO interface 

[119, 121]. CdS and CdSe have been the most popular choices of inorganic sensitizer [119, 120, 122-124], 
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including a dual sensitizer CdSe + CdS system, which forms an energy cascade [121]. Of the CdS systems, only 

Mao et al. have been able to produce devices with JSC in excess of 1 mA/cm2. Interestingly, this was achieved 

using CoO as the semiconductor, rather than NiO. Park et al. [125]  have also managed to attain JSC > 3 mA/cm2 

using CdSe. Here, a VOC of 490 mV was also observed, leading to an overall PCE of 0.35%. 

 More recently reports have started to emerge of methylammonium lead halide perovskites (MALH) 

being used in pDSCs. Tian et al. [126] reported an efficiency of 0.16 % while Wang et al. [127] were able to 

achieve up to 0.71% (0.91% at reduced light intensity). These first reports used MALH in a manner analogous to 

that reported in 2011 by the group of Nam-Gyu Park [128], and brought the material to the attention of the solar 

cell community. It was, however, the implementation of MALH in a solid state device [129] which resulted in the 

material becoming of interest to a much wider scientific community. In this second implementation, the 

substitution of the porous TiO2 layer for Al2O3, an insulator, was shown to produce a functioning (even higher 

PCE) device - raising questions about whether it could be classified as a DSC or as something else. This definition 

was challenged further with the advent of planar heterojunction structures [130]. 

Tian et al. [126] also used an n-type fullerene derivative, phenyl-C61-butyric acid methyl ester (PCBM) 

to create a solid state p-type MALH based device, as have others [131]. As well as this, NiO has been used in 

planar heterojunction devices [132] and monolithic device architectures [133], where device efficiencies of 1.5%, 

9.5% and 11.4% were realised respectively. The decision of where to draw the line of device classification is 

somewhat arbitrary, and the need to draw a line at all is even debatable. On the one hand, it should be emphasised 

that while researchers may identify different technologies as competition, they should avoid viewing them as 

being ‘the enemy’. On the other hand, some distinction needs to be drawn in order to complete an analysis such 

as we endeavour to do in this review.  

Photocathodes have also been prepared directly from materials such as Se or PbS and combined with 

photoanodes to create pnDSCs [134-136], with near additive VOCs in the former, but not so in the latter. PbS does 

however offer significant absorption into the IR. 

 

2.2.5 RED & NEAR INFRARED SENSITIZERS 

 

In pnDSCs, the two sensitizers should be spectrally complimentary to facilitate similar current generation 

at each electrode under AM1.5 conditions. The electrode generating the largest portion of the overall voltage 

should absorb in the blue-green part of the spectrum and will (generally) be the front face, thereby reducing 

thermalisation losses. One of the features of pnDSCs is the (in principle) ability to illuminate from either side, as 

long as the red-most sensitizer has an absorption window matching the other sensitizer. This may be achieved 

through the use of molecular sensitizers with discrete orbital energies. 

Efforts to address the red-shifting of dyes for pDSCs have, thus far, been few in number. With high 

quantum efficiencies attained for blue-green absorbing dyes, and general design rules for pDSCs being better 

understood, it seems reasonable that this should be a high priority area of pDSC development. So far a handful of 

groups [75, 87, 88, 94, 110, 137] have produced dyes for pDSCs with substantially red-shifted absorbance. In 

three cases, squarine has been employed as the electron acceptor. The most successful of these has been Warnan 

et al. who realised a 25% IPCE (λ = 620 nm) with a triad (SQ-PMI-NDI) [87]. Wood et al. obtained similar results 

(3.3 mA/cm2 and 18% IPCE at 625 nm) [88] using an asymmetric TPA based sensitizer. These researchers 

followed this work up with P1 derivatives containing bodipy acceptor moieties [98]. With this strategy they have 

been able to sensitized pDSC to well past 700 nm, with IPCE values in excess of 20%. Previously, Mori et al. 
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[75] and Sumikara et al. [137] reported dyes with IPCEs of ~1% and 1.8% for NiO and CuO respectively, with 

for wavelengths up to 790 nm. 

It has often been assumed that the photocathode will be the most suitable choice for sensitisation in the 

red/infrared part of the spectrum, however, recent developments in redox mediator energy tuning and the 

application of these in highly efficient pDSCs, suggest that this is not strictly true. At the least, researchers should 

view this with an open mind and consider the possibility of having a blue-green sensitized photocathode with a 

red-NIR sensitized photoanode. To this end it is worth making a note on the development of red-NIR dyes for 

nDSCs. With the exception of N749 (Ru(II) “black dye”) the field is characterised by low VOCs for dyes with 

absorption onsets past ~800 nm. One of the most successful examples is a squarine based dye, B1, with an 

absorption onset around 800 nm. This provides VOC = 591 mV [138], while most other IR sensitised nDSC have 

VOC < 500 mV [139-142]. As far as we are aware, there has been little work done combining IR dyes with alternate 

redox mediators. 

 

 2.3. ELECTROLYTE 

 

The electrolyte used in a DSC consists of a redox couple (also referred to as redox shuttle or redox 

mediator), various additives (discussed in brief below) and a solvent. The main task of this is to regenerate the 

dye after charge injection. In pDSC this means oxidising a photoreduced dye, followed by transport of the reduced 

mediator away from the surface. The inverse is true for nDSC and of course both are necessary for pnDSC. The 

electrolyte is one of the two ways in which the electrodes in pnDSCs are joined, the other being the external 

circuit. 

The challenge is to introduce a redox mediator that shows fast dye regeneration and slow interfacial charge 

recombination between the reduced/oxidized species present in the electrolyte and the injected charge in the 

semiconductor. To fulfil these requirements, the redox mediator should have a good solubility and high ionic 

mobility in the solvent of interest, have a sufficient driving force to regenerate the dye, and have fast electron 

transfer kinetics and to be able to regenerate at minimal over potential at a catalytic counter electrode in the case 

of single photoelectrode systems [143]. In addition, low light absorption within the visible spectral region allows 

better light harvesting by the sensitizer [144]. 

 

 2.3.1 REDOX COUPLES 

 

As seen previously (Section 1.3), the redox mediator sets one of the limits to the device VOC. Until recently, 

triiodide/iodide (I3
−/I−) has been almost exclusively used and best performing redox shuttle employed in pDSCs 

(and nDSCs for that matter). Although this redox mediator has been extensively applied and studied within 

pDSCs, the small difference in potential between I-/I3
- (-4.8 eV vs vacuum) and VB edge of NiO (-5.15 eV vs 

vacuum) limit the reasonably attainable device VOCs [5, 38, 76, 143]. In 2012, Zhang et al. reported a device PCE 

of 0.61% with a VOC of 350 mV, which is both the best reported efficiency and highest VOC achieved with I3
−/I− 

redox mediator, and based on the above values very close to the limit for VOC in this system, [83, 145] as per the 

discussion in Section 1.3. There are also disagreements regarding the above quoted values of VB edge and redox 

potentials [146, 147]. Furthermore, the actual redox potential of the couple is dependent upon the relative 

concentrations of each species in accordance with Nernstian principles, as well as solvent effects (which will be 

discussed below). 
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On account of the small offset between the redox potentials of I-/I3
- and the VB edge of NiO, there has 

been a drive to change one or both of these components in order to achieve higher VOC in pDSC devices. There is 

of course a counter argument to be made against changing the mediator simply to attain higher voltages, based on 

the fact that the VOC of a pnDSC is not limited by the mediator, but rather qEf of electrons in the n-type and holes 

in the p-type semiconductor - in short, what is gained on one side is lost to the other (see Figure 4c). On the other 

hand, altering the redox potential of the mediator can allow for a greater level of device design flexibility, 

especially when mediators such as organometallic redox complexes are employed, where the redox potentials can 

be tuned based on ligand selection [148]. Furthermore, there are a number of other reasons why the I-/I3
- mediator 

should be replaced, besides the small energy offset: 

 The corrosive nature of I−/I3
− limits applicability in modules as typical current collectors such as silver 

or copper are readily dissolved by I-/I3
-. Furthermore many inorganic sensitizers and plasmonic structures 

cannot be combined with this mediator. 

 Iodine is itself volatile and can sublime if it is not securely encapsulated. 

 There is an inherent energy loss as the two electron reduction and oxidation processes process via 

intermediates [149, 150]. Several authors have shown the (I3
-/I2

•-) potential to be a major impediment to 

dye regeneration in pDSC [82, 94]. 

 Polyiodides absorb blue and green light, in competition with sensitizers. 

 Photocathodic current generation of polyiodides has a low quantum efficiency and doesn’t benefit the 

photoanode [78, 151-153]. 

 

 Below (Figure 9) shows the two one electron redox potentials associated with I-/I3
-. Here, Gibson et al. 

also show that these potentials can shift dramatically due to solvent effects [149]. 

 

Figure 9 – Recombination reaction (hole transfer from NiO to electrolyte) and dye regeneration for I-/I3
- (and specifically the 

intermediate reactions) in different solvents – Reprinted with permission from Gibson et al., Langmuir 28(15). Copyright 

2012 American Chemical Society [149]. 

 

 Light absorption by polyiodides can result in moderate photocurrents. This has been noted to be at least 

partially responsible for IPCE features around 380 nm, rather than NiO or the dye [154]. Below (in Figure 10a) it 

can be high concentrations of I2 in PC based electrolytes lead to the creation of higher order polyiodides with 

different absorption spectra, which are also photoactive. Figure 10b demonstrates that this photoactivity of 

polyiodides exists even in the absence of NiO, however the magnitude is decreased. In nDSCs this mechanism 

runs counter to the intended photoanodic operation [151]. 
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Figure 10 – IPCEs of pDSC with electrolytes containing 0.5M LiI and various concentrations of I2 with (a) undyed NiO (b) 

no semiconductor (FTO|electrolyte|Pt|FTO). Modified from [154]. 

 

 A key challenge for higher efficient p-DSCs is the development of a redox mediator with; (i) a suitable 

redox potential; (ii) fast electron kinetics for dye regeneration, but sufficiently slow to supress recombination 

reactions; and (iii) low absorption of visible light. The first reports of alternative redox mediators for pDSC came 

in 2009 with (Co(II)/(III)) complexes used by Gibson et al. [155]. Since this, other cobalt complexes [85], 

polysulfides [119], iron complexes [84] and thiol/dithiol compounds [66, 156] have been successfully employed, 

with a selection of these shown below in Table 4, as well as in Figure 11. 

 

Table 4 – redox couples used in pDSC 

 

Compound structure and name Redox potential (conditions, ref) 

  

Iodide-triiodide  

 

0.53 eV (vs NHE) ; 0.4M LiI, 0.04M I2 in Acetonitrile[146]  

 

0.315 eV (vs NHE); 0.6 M BMII, 0.03M I2 in 

acetonitrile:valeronitrile mix [85] 

 

  

[Co(dtb-bpy)3]3+/2+(dtb-bpy = 4,4’-di-tert-

butyl-2,2’-dipyridyl) 

 

-0.26 eV (vs ferrocene); 0.1M/0.1M Co2+/Co3+ in propylene 

carbonate[64] 
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 [Co(ttb-tpy)3]3+/2+ (ttb-bpy = 4,4’,4”-tri-

tert-butyl-2,2’:6’,2”-terpyridyl) 

 

-0.32 (vs ferrocene); 0.1M/0.1M Co2+/Co3+ in propylene 

carbonate[64] 

 

 

[Co(dm-bpy)3]3+/2+ (dm-bpy = 4,4’-

dimethyl-2,2’-dipyridyl) 

 

-0.23 (vs ferrocene); 0.1M/0.1M Co2+/Co3+ in propylene 

carbonate[64] 

 

 

[Co(dMeO-bpy)3]3+/2+ (dMeO-bpy = 4,4’-

dimethoxy-2,2’-dipyridyl) 

 

-0.28 (vs ferrocene); 0.1M/0.1M Co2+/Co3+ in acetonitrile[64] 

 

[Co(en)3]3+/2+ (en = ethylenediamine) 

 

-0.25 eV (v NHE); 0.07M [Co(en)3](BF4)3, 0.3M 

Co(BF4)2·6H2O in acetonitrile 

 - 5.51 eV (vacuum scale); 0.3M T-, 0.9M T2 in 7:3 

MeCN:PC[156] 
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1-methy-1H-tetrazole-5-thiolate  monomer 

and dimer (T-/T2) 

 

0.485 (vs NHE); 0.4M T-, 0.4M T2 in acetonitrile and 

ethylene carbonate mix[157] 

 

  

Fe(acac)3
(0/1-) (acac = acetylacetonato) 

-0.2V (v NHE); 0.1M (NBu4)[Fe(acac)3], 0.05M [Fe(acac)3] in 

acetonitrile[84] 

 

The 2009 report of Gibson et al. of a pDSC with [Co(dtb-bpy)3]3+/2+ (dtb-bpy = 4,4’-di-tert-butyl-2,2’-

dipyridyl) as the redox mediator [155], in conjunction with the PI-NDI sensitizer (Table 3), it was used to provide 

a PCE of 0.20% and a VOC of 350 mV. The same group followed this with a study of a series of cobalt(II)/(III) 

tris(bipyridyl) complexes (Table 4) in 2011, however, none of these redox mediators could surpass an efficiency 

of 0.25%, which was attributed to interfacial charge recombination reactions [64]. 

The efficiency of a pDSC using [Co(en)3]3+/2+ (en = ethylenediamine) redox mediator was demonstrated to 

be much higher [85]. Powar et al. achieved a record efficiency of 1.30% with a JSC of 4.44 mA cm−2 and a VOC of 

709 mV for these devices in conjunction with PMI-6T-TPA (Table 3). The significant improvement was largely 

due to the substantially higher VOC obtained as a result of the favourable redox potential of −0.03 V vs. NHE, 

compared to the previous (Co(II)/(III)) based mediators. Importantly, the use of [Co(en)3]3+/2+ is seen to be 

effective for dye regeneration, in spite of this dramatically higher redox potential. 

 In 2013 and again in 2014, Xu et al. [66, 156] employed 1-methy-1H-tetrazole-5-thiolate and the 

corresponding disulphide dimer (T-/T2) as an alternative to I-/I3
-. This was particularly relevant for their work with 

plasmonic nanostructures, made of gold, which could be rapidly corroded by I-/I3
-. Although this mediator was 

reported to have a very low redox potential of -5.51 eV (vacuum scale), this should be read in the context of them 

measuring I-/I3
- at -5.56 eV, in contrast to the bulk of other reports on the potential of this mediator. Moreover, 

Wang et al. have reported T-/T2 in nDSCs (attaining 6.4% PCE) with a redox potential of 0.485 eV (vs NHE) 

[157]. 

 Figure 11 shows a selection of redox mediators used in pDSCs. It is particularly interesting to note the 

potential range over which cobalt complexes can be tuned through ligand selection. 
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Figure 11 – Reported potentials of redox mediators in pDSC, converted to vacuum scale (at 4.44 eV vs NHE)[158]. 

  

 Recently, we reported the use of tris(acetylacetonato)iron(II)/(III), [Fe(acac)3]0/1- as a mediator in pDSC 

[84]. This one electron mediator has a redox potential of -0.2 V (vs. NHE), leading to an even larger difference in 

potential than was seen for [Co(en)3]3+/2+.  Charge recombination was shown to lead to slightly lower VOC than 

was expected. Application of a nickel oxide (NiO) blocking layer on the working electrode, and chenodeoxycholic 

acid as a co-adsorbant were required to suppress these unfavourable back reactions at the electrolyte/working 

electrode interface. In spite of this issue, a JSC of 7.65 mA/cm2 and PCE of 2.51% were realised. The high diffusion 

rates afforded this high JSCs and good scaling of performance with light intensity. There exists the possibility of 

fine tuning the redox potential of these complexes by either varying the metal centre or the acetylacetonate ligand 

by introducing different groups. 

 

 2.3.2 ELECTROLYTE SOLVENT  

 

 While the solvent is an often overlooked component of the electrolyte, it plays a significant role in the 

performance of the device. It provides the medium for dissolution and diffusion of the ionic conductors. The types 

of solvents in use, and prerequisites for electrolyte solvents, are same for both n- and p-DSCs (and consequently 

for pnDSCs). A few main requirements for a good solvent are [159-162]: 

 Melting point below −20 °C and boiling point over 100 °C to avoid solvent freezing and evaporation 

respectively, in outdoor applications and to retain long term stability. 

 High dielectric constant to ensure complete dissolution of the redox couple and any additives 

 Low viscosity that leads to a high diffusion coefficient of the redox mediator that improves the 

conductivity 

 Low light absorption in the visible and NIR regions 

 Inert towards metal contacts 

 Low toxicity 

 Low cost 

 A large number of organic solvents, such as esters, lactones, alcohols, tetrahydrofuran, and N,N-

dimethylformamide have been utilized in DSCs [21, 163, 164]. Moreover, a variety of nitriles such as acetonitrile, 

methoxyacetonitrile, 3-methoxypropionitrile, valeronitrile, and glutaronitrile have also been studied [161]. 

Among them, acetonitrile is the most widely used solvent for electrolytes due to the high solubility of salt 

components of the electrolyte, low viscosity, and excellent chemical stability, especially in the laboratory, where 



Page 27 of 56 

it allows for construction of devices without mass transport limitations, leading to high efficiencies. To date, the 

highest pDSC PCE (2.51%) was achieved with an acetonitrile based electrolyte [84]. On the other hand, the low 

boiling point of ~82 °C (and high vapour pressure) along with relatively high toxicity, limit its large scale 

application. Therefore, mixtures of nitriles are often used to reduce solvent volatility [162]. Another extensively 

studied nitrile is 3-methoxypropionitrile, which has a melting point of -63 °C and a boiling point of 164 °C. Due 

to its good chemical stability and low toxicity compared to acetonitrile, it has become a common solvent used in 

DSC electrolytes nowadays. Devices based on 3-methoxypropionitrile were found to retain 98% of their initial 

efficiency after 1000 h at 80 °C when kept in the dark. Also, the performance degradation was reported to be 

negligible after 1000 h of visible light soaking at 60 °C [162, 163, 165]. 

 It needs to be appreciated that the solvent affects the redox potential of not only the mediator (see Figure 

9 above), but also the dye and the semiconductor. Many early reports of pDSC devices have utilised propylene 

carbonate, possibly due to the resulting increase in driving forces for charge regeneration [149]. This requirement 

does not seem to apply with many of the more recent, donor-acceptor, dyes. This is of substantial benefit to tandem 

devices as propylene carbonate, being a protic solvent, has a significant effect on the CB edge potential of TiO2, 

leading to lower overall VOCs. 

 One method to circumvent the issues related to solvents is to employ a solid state architecture, such as 

the MALH devices mentioned above (Section 2.2). A dye-sensitized example has been reported by Zhang et al. 

with P1 sensitized NiO using PCBM and an aluminium top contact [166]. To date we are not aware of any solid 

state pnDSCs, and indeed it would most likely require resolution of quite a number of technical issues in order to 

produce such a device. 

 

 2.3.3 ELECTROLYTE ADDITIVES 

  

 One more concern for the creation of an electrolyte suitable for the use with both photoanodes and 

photocathodes is the inclusion of various electrolyte additives. These have been utilized in nDSCs to enhance the 

device performance by mitigating recombination processes and / or altering the density of states of the 

semiconductor. To date there has been little evidence to suggest analogous effects in pDSC. Nitrogen containing 

heterocyclic compounds have been applied in nDSCs since 1993 [164], with the most commonly used compound 

being tert-butylpyridine (tBP). A number of authors have reported that tBP reduces the charge recombination 

reactions at the electrolyte/TiO2 interface [167-171]. The absence of any effect on the photocathode is not 

necessarily an issue; in the design of complex structures, such as tandem devices the ability to optimize one 

electrode without significant effect on the other maybe viewed beneficially. 

 

 2.4. p-TYPE SEMICONDUCTORS 

 

In p-type semiconductor materials, the density of holes is greater than that of free electrons. As such the 

majority charge carriers are holes and as a result, the EF of these materials lies closer to the VB than the CB. As a 

critical part of the pDSC architecture, there have been review articles focussing solely on different NiO structures 

[36] and p-type copper delafossite materials for pDSC [30]. 

 

 2.4.1 NiO 
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Nickel oxide, NiO, has been the most widely used semiconductor material in p-DSCs. Nevertheless, there 

are drawbacks associated with NiO. By being a strongly coloured material NiO typically absorbs 30-40% of 

incident light in pDSCs and, therefore, limits the device performance significantly [28].  

 Extensive studies on NiO have shown that it is a wide band gap material (3.6-4.0 eV) with a high charge 

carrier density. Mesoporous NiO photocathodes have been deposited using a variety of methods, such as 

nanocasting [145], electrodeposition [172], hydrothermal synthesis [74, 173], spray pyrolysis [119, 174], sol-gel 

synthesis [5, 175], doctor blading [76] and screen printing [28, 85, 176]. The latter two of these strategies allows 

for the use of a range of particles, which may be difficult to produce in-situ [83, 176]. In addition to these 

strategies, some authors have also explored options such as anodisation of nickel metal structures [177]. 

JSC values generated within the device have been improved by using materials specifically engineered for 

purpose, such as NiO microballs (composed of many smaller nanoparticles) [176]. The high surface area, good 

electrical connectivity and favourable pore size distribution of these microballs, even after sintering, facilitated 

higher dye loading than nanoparticles, lessening parasitic absorption, resulting in better light harvesting 

efficiencies [176].  

Two papers by Zhang et al. highlighted the importance of highly crystalline structures in NiO based pDSC 

[83, 145], with substantial increases in charge carrier lifetime resulting. This may be seen to be related to surface 

state mediated recombination mechanisms, as per the discussion introduced by Smeigh et al. [178], where they 

see evidence of a Marcus normal relationship (as opposed to TiO2 systems which show inverse Marcus behaviour) 

between the driving force and the rate of recombination of the dye anion and the hole in NiO. Here defects in NiO 

(specifically trap states) play a major role. This of course runs counter to the need for a large ΔGreg, as observed 

by others. 

 Charge transport in NiO was also probed by D’Amario et al. [179], specifically in response to the 

question of whether NiO was capable of supporting high (comparable to the best nDSCs) current densities. They 

found high conductivity in mesoporous NiO, in spite of comparatively low values in the bulk. Additionally, they 

observed the effects of Li doping, resulting in a VB edge shift, leading to a higher device VOC. In a similar way, 

several authors have investigated doping of NiO with various metals, including Li [180] Co [181], Mg [182]. Shi 

et al. [91] employed the ternary oxide, NiCo2O4, in order to realize very impressive results (VOC = 189 mV, JSC = 

8.35 mA/cm2, PCE = 0.785 %). Incredibly, this was achieved using N719 and I-/I3
- as the dye and redox mediator 

respectively. 

 In all these cases, the high surface area (as required to facilitate high dye loadings and hence high light 

harvesting efficiencies) also leads to capacitive behaviour. It is therefore critical that researchers ensure their 

current-voltage measurements are conducted correctly, ensuring minimal influence of these artefacts. Below, in 

Figure 12a, four devices, with varying NiO thicknesses, and therefore total surface area, were measured in the 

dark at different sweep rates [154]. The apparent dark JSC highlights the magnitude of possible measurement errors 

(overestimation) if the voltage sweep is completed too fast. Figure 12b shows the response a device produced by 

Powar et al. [85], using a (Co(II)/(III)) electrolyte, which is seen to provide have a different efficiency based on 

the sweep rate and direction. Here, capacitive effects are coupled with diffusion limitations of the mediator. 
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Figure 12 – (a) apparent dark current as a function of settling time for various thicknesses of NiO film, step size = 10 mV 

(from [154]) (b) Measured efficiencies of pDSC devices with forward and reverse sweeps with different settling times (10 

mV step size), Image reproduced from Powar et al., Angewandte 52(2), copyright 2013 [85]. 

 

 2.4.2 OTHER p-TYPE SEMICONDUCTORS 

 

Due to the closeness of the redox potential of the commonly used I3
−/I− based electrolyte and the VB edge 

of NiO, the attainable VOCs are limited (with the typical estimation being around 0.35 V) [28]. Therefore, 

researchers investigated alternative p-type semiconductors with a more positive VB edge. CuO [137], CuAlO2 

[183],  CuCrO2 [65, 184], and CuGaO2 [185] are some materials that have been tested in p-DSCs to overcome this 

problem. Even though larger VOC’s have been achieved with these materials, the JSC has always been lower than 

those of the devices based on NiO, often due to the smaller surface area, which determines the amount of dye 

adsorbed (see Figure 13 below as an example of this). 

Although VOC can be also be increased by a more judicious choice of redox mediator, it is imperative that 

researchers also find p-type semiconductors to replace NiO. When used with TiO2, the attainable VOC of a pnDSC 

remains low. Indeed single junction nDSCs can surpass the VOCs of the best pnDSCs to date [186]. 
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Figure 13 – SEM image of CuAlO2 surface, demonstrating large particle sizes which lead to low dye loading and account 

for the low JSC values observed (from Nattestad et al. [183]). 

 

 Many of the most studied alternatives to NiO are Cu based delafossite materials [30], and are particularly 

interesting as they have slightly depressed VB edge energies compared to that of NiO. This also allows for many 

of the proven dyes for pDSC (shown on NiO) to also be used here. Looking forward, with larger changes in the 

VB edge, this will obviously need to be addressed with the creation of new dyes. The VB edges of these materials 

has been shown to be defined by the Cu 3d band (~ -5.1 eV AVS), with the other metal species serving to slightly 

mediate this. Below in Figure 14 is a selection of reported values for band edge potentials of p-type materials. As 

with dyes and redox mediators, there are some discrepancies over exact values. This may arise from experimental 

condition or even conversion factors [158]. 

 

 

Figure 14 – VB and CB edge potentials of selected p-type semiconductors (values obtained from various reports [5, 15, 18, 

23, 80, 91, 125, 137, 187-190], note, CB edge potential of NiCo2O4 was not reported). 

 

 2.4.3 CORE-SHELL STRUCTURED PHOTOCATHODES 

 

 The problem of charge recombination has been tackled in a number of ways in nDSCs. Hihgly faceted 

crystals, organic shielding agents (such as phosphinic acid [191]) and sensitizers with surface shielding groups 

[192]. have been employed to inhibit contact between the electrolyte and the semiconductor, while other 
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researchers produced core-shell structured electrodes to tackle this issue [193]. In pDSC, the problem of 

recombination has been recognised as substantial since the early reports [38]. The most successful approach to 

date for reducing recombination has been the use of donor-acceptor sensitizers (as well as the use of highly 

crystalline materials with lower defect concentrations [83, 145]), however core-shell structures have also been 

employed. Here a thin concentric layer of a second material is applied to the semiconductor film prior to 

sensitisation. Although a cascade configuration may be used [194], typically an insulating material is used, where 

this shell means that charge transfer (in both directions) is impeded and can only occur by tunnelling, as there is 

no direct electronic pathway from the dye to the semiconductor. Schematics of core-shell structured 

photoelectrodes are shown in Figure 15. 

 

 

Figure 15 – (a) Schematic representation of a core-shell structured film (M, M+ represents the mediator in reduced and oxides 

forms respectively). The core material (light grey) is isolated from the electrolyte and the dye molecules by a shell material 

(dark grey). (b-d) Schematic of the effects of core-shell structuring (and shell thickness) on rates of charge injection and 

recombination. 

 

 This insulating layer results in an asymmetric decrease in the rates of charge injection and recombination 

(see Equation 1 and Figure 15b-d). Typically, if the shell material is more than a few nanometers thick charge 

injection is decreased to a point where overall performance suffers dramatically (as seen schematically in Figure 

15d). Dye injection occurs on the scale of fs to ps [37] whereas the recombination path occurs in the range of µs 

to ms [28, 39]. 
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  φinj = probability of injection 

φreg = probability of dye regeneration 

kinj = injection rate 

kIC = internal conversion rate 

kfl = fluorescence rate 

kreg = regeneration rate 

krecom = recombination rate 
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Equation 1 – Charge injection and regeneration probabilities. 

 

 Where a tunnelling barrier exists, the rates of kinj and krecom both decrease. For a thin barrier, this has 

minimal effect on φinj, as the time constant kinj is the dominant value and exists in both the top and bottom of this 

equation, essentially cancelling itself out, unless the barrier is large enough to decrease this time constant by 

several orders of magnitude. Φreg is improved by the decrease in the krecomb value. 
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Core-shell structured NiO electrodes were employed by both Natu et al. and Uehara et al. with modest 

improvements to device efficiency [40, 41]. To the best of our knowledge these are the only two examples to date, 

and both employ Al2O3 as an insulating shell. Both saw small increases in JSC and more substantial improvements 

in VOC resulting from the use of this configuration. Natu et al., also saw that the VOC continued to increase with 

thicker layer, but the JSC was negatively impacted, presumably as charge injection was significantly impeded by 

the insulating layer. 

 

 2.5. SYSTEMS RELATED TO pDSC 

 

 The literature also contains a number of systems which bear similarity to pDSC, with similar modes of 

operation and / or functionality to pDSC systems. Some of these are inspired by, while others can be seen to have 

helped inspire pDSC. In this section we highlight a couple of these, with specific interest to (i) lessons that can be 

learned for pDSC development and (ii) ways in which pDSC research can be translated other fields to broaden its 

impact.  The list below is of reports which may be of interest to researchers in this field, however do not strictly 

fall into the category or pDSC or pnDSC: 

 Sensitized GaP was first reported by Memming [16], and served as an important study in determining 

the nature of p-type sensitisation. This system continues to be the subject of investigation [195]. 

Similarly, CuSCN was the subject of early p-type sensitisation studies [18, 19]. 

 CuSCN has also been used as an inorganic hole transport material in nDSCs [22]. 

 Nakabayashi et al. [196] reported photocathodic currents resulting from the sensitisation of p-doped 

diamond structures using [Ru(bpy)3]2+. 

 In 2010 Takechi et al. [197] reported the use of a tetrathiolporphyrin-bithiophene photocathode. With a 

platinum counter electrode, they were able to achieve VOC = 290 mV, JSC = 0.45 mA/cm2 for a total PCE 

of 0.05 % (with 5 % IPCE @ 420 nm). Combined with a N749 stained TiO2 photoanode they observed 

VOC = 970 mV, JSC = 2.3 mA/cm2 providing a PCE = 0.51 %. Again this device produced an ‘S’ shaped 

current-voltage curve, similar to seen in Figure 3.  

 Splan et al. [198] inadvertently produced a photocathodic device after multilayer dye sensitisation. Here 

they measured cathodic photocurrent with the dye bound to the ITO substrate and photocathodic with 

TiO2. This appears to be the similar to the mechanism proposed by Huang et al. [116]. 

 Matsuda et al. [151] also realised the creation of a pDSC unintentionally, as the result of using of very 

high I2 concentrations in their electrolyte, i.e. polyiodide sensitisation. 

 NiO has been used in organic photovoltaic devices (OPV) and planar heterojunction ‘perovskite’ devices 

as a hole transport material [199, 200]. 

 

 2.5.1 MALH (PEROVSKITES)  

 

 In Section 2.2, we briefly discussed the application of MALH as a sensitizer in pDSCs [126, 131], as 

well as the impact this material (or more correctly class of materials) is having to PV research [129]. The 

intersection between this class of materials and pDSC should not be underestimated. A review of this area from 

Li et al. [201] shows remarkable progress in perovskite production through the use of NiO, the staple of pDSC. 

A key point is that inorganic materials, such as NiO, CuI and CuSCN, offer a greater chemical stability as 

compared to organic hole transport materials. 
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 As MALH is the most critical material (and the only light harvester) in these devices it is arguable that 

the role of NiO (or other p-type material) is more akin to how O’Regan [22] and others [27] have utilised the 

materials in DSCs, i.e.,. the Dye-Sensitised Heterostructure mentioned in Section 1.2. The reader’s attention is 

drawn back to the discussion surrounding definitions of categories in Section 2.2. Nevertheless, tandem designs 

incorporating MALH perovskite materials would be a very interesting development. It also seems highly probable 

that this area of research would be strongly informed by developments in pnDSC. 

 

 2.5.2 SENSITIZED PHOTOCATHODES FOR WATER SPLITTING 

 

 As with nDSC, there is a great deal of knowledge, acquired from years of development, which can be 

translated to other technologies. One of the most obvious is water splitting. In 2012, Li et al. reported the use of 

their P1 sensitizer on NiO for water reduction to generate H2 gas [202]. This was accomplished with the aid of a 

cobalt co-catalyst and triethanolamine as a sacrificial electron donor. Later the same year, Tong et al. reported the 

first adaptation of a photocathode from pDSC to water splitting without the need for either this sacrificial material 

or secondary catalyst [203]. This system used the dye PMI-6T-TPA, which remained strongly bound to NiO after 

extended time periods on account of its hydrophobicity resulting from hexyl chains that prevented water from 

reaching the semiconductor surface where they could attack the carboxylic linkers. Tong et al. combined this dye-

sensitized system with BiVO4 to complete total water splitting by solar illumination. More recently Li et al. [204] 

have revisited their aforementioned system, binding the secondary cobalt co-catalyst to the NiO surface and 

combining with an analogous n-type system (small molecule organic dye and Ru catalyst both bound to TiO2). In 

2014, Park et al. reported CdSe sensitized NiO for hydrogen reduction [125], as well as in a pDSC device [124]. 

 To date all these photocathodic systems are only capable to produce current densities in the μA/cm2 

range, making them the limiting step again (with the best photoanodes producing O2 at much rate). It is hoped that 

with continued improvement to photocathodes for pDSCs further improvements will be realised here. 

Additionally, it is important to understand why sensitizer-semiconductor systems capable of producing modest 

current densities (> 5 mA/cm2) in pDSC devices cannot be directly translated to these systems. 

 

 2.6 META ANALYSIS OF pDSC DEVELOPMENT 

 

 Rightly or wrongly, device efficiency is often the primary metric with which people will judge a device, 

and is arguably one of the major reasons for the slow initial uptake of research in the field of pDSC. On the other 

hand, meta-analysis of reported pDSC efficiencies does provide an interesting picture and suggests the prospects 

for this technology may be more promising than some might believe. Below, in Figure 16a, are the reported PCEs 

from 103 reports of pDSC devices (from which nearly 250 devices were identified). The trend here is obviously 

impressive, with more than a 350-fold increase in reported efficiencies, realised in an approximately exponential 

fashion (see grey shaded area in Figure 16a, with red data points representing record PCEs). For this analysis, 

solid state MALH devices have been excluded. Green data points have been included to show development in 

record nDSC devices for contrast. 
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Figure 16 - (a) pDSC device efficiencies, with champion cells in red and champion nDSCs in green for comparative purposed 

and (b) VOC of pDSC devices. 

 

 The above trends illustrate rapid development in this field, with the PCE of champion cells increasing 

rapidly and in an apparent exponential manner since the first report in 1999 [5]. While this trend is impressive, it 

is of course not possible that this trend can continue indefinitely; however, it can be hoped that this will at least 

continue long enough to realise pDSC with comparable efficiencies to champion nDSCs (as will be required for 

truly high efficiency tandem devices). Modelling in this way does serve to illustrate the rapid rate of improvement 

which can be attained when device development is tackled on several fronts by researchers from a wide range of 

academic backgrounds, leading to dynamic research. It should also not be ignored that the field has benefited 

immensely from developments in nDSC (even where these developments didn’t translate to record nDSC 

efficiencies). 

 Analysis of the evolution of pDSC VOC values reveals a ‘punctuated equilibrium’ (Figure 16b). From the 

initial report of the pDSC, with a VOC of 80 mV, the first major step improvement was realised 2010-2011. 

Interestingly, this is that this came about on three fronts simultaneously: 

1. Reduced recombination (and possible dipole effects) leading to NiO-I-/I3
- systems producing higher 

VOCs [28]. 

2. The use of alternate redox couples such as (Co(II)/(III)) complexes [64]. 

3. Introduction of CuMO2 semiconductors with lower lying VB [65, 183, 205]. 

The second big step was realised with a new generation of redox mediators even better suited to pDSC, with 

device VOC values are close to those obtained by nDSC [84, 85]. In both nDSC and pDSC, the loss in potential 

(with most sensitisers having an absorption onset in the rage of 1.5 - 1.8 eV) continues to present a major 

impediment towards the realisation of competitive DSC PCEs. 

A table of the above data can be found in the appendix along with notes on the nature of the development 

reported in each article. This rapid development suggests that further improvements should be achievable and 
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there is a strong likelihood of pDSCs being able to attain similar PCEs to nDSCs in the near future. This of 

course would have major repercussions for pnDSC efficiencies. 

3. THE FUTURE OF pDSC RESEARCH  

 

 3.1. CHALLENGES for pnDSC AND pDSC 

 

 Obviously a number of challenges still exist, limiting the realisation of truly high efficiency pnDSCs. 

While the bulk of these specifically relate to development of the photocathode, there are still challenges to be met 

with further development of the photoanode. Two of these are the creation and implementation of high 

performance red-IR dyes and the search for alternate semiconductors to facilitate higher voltages (either p-type 

with lower lying VB or n-type with higher CB edge) in pnDSCs.  

 The creation of red-NIR sensitized nDSCs has recently become more interesting with pDSCs produced 

displaying VOCs comparable to those in nDSCs. The second task of replacing the semiconductor material, while 

not exclusive of the first, does tend to head in the opposite direction. Replacing TiO2 with a material possessing a 

higher CB edge potential (vacuum) would have in principle the same effect as replacing NiO with a material of 

lower VB edge potential. While pushing the CB edge potential up has been a focus of nDSC development, success 

stories tend to be few and far between [206, 207]. The sections below address the major challenges faced in the 

mission to create high performance photocathodes for pDSCs, pnDSCs as well as photocatalytic water splitting 

devices.  

 

 3.1.1 PARASITIC LIGHT HARVESTING  

 

 As has been discussed both here and elsewhere [208, 209], one of the major limitations of using NiO is 

its strong colouration. This is the chief limitation in the realisation of higher IPCE values [28, 176] and another 

major reason, along with VB edge potential, why researchers have investigated a range of alternative p-type 

semiconductors.  Renaud et al. [209] claimed this colouration to be largely due to the presence of Ni0. In order to 

completely oxidize this material to Ni2+, 900 °C had to be reached. In our previous studies [76] and again in this 

research, it was seen that the decrease in surface area associated with high temperature processing leads to 

significantly lower light harvesting efficiency and hence low JSC values. 

 A number of CuMO2 (M=Al, Ga etc.) delafossite materials have been used as p-type transparent 

conducting oxide materials [210, 211]. This combination of high conductivity and low absorption means they are 

a promising class of materials for incorporation into photocathodes. The literature shows that there are actually 

very few wide EG oxide semiconductors with VB edge potentials in the range of -5 to -6 eV (vacuum scale) [190]. 

The importance of this range is demonstrated below in Section 3.2. There are several ways around this limitation, 

including the use of doped and ternary metal oxides, as well as non-oxide p-type materials. Materials such as GaP 

[16, 195] may again be considered for use. B-doped diamond has also been used in p-type PEC, however the VB 

edge is around between -4.6 eV [212] and -5 eV [196] against vacuum, making it less than ideal as a replacement 

for NiO (-5.1 eV). 

  

 3.1.2 RED-SHIFTING DYE ABSORPTION  
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 In order to realize high device efficiency, the two electrodes in a pnDSC must have complimentary 

absorption ranges. In the limited number of examples of pnDSC which have been reported to date, this has not 

been achieved [5, 28, 29, 98]. The major impediment to this is of course the lack of a high performance red-NIR 

absorbing photocathode. Alternately, recent developments with (Co(II)/(III)) and then Fe(II)/(III) based mediators 

have resulted in the creation of pDSC with high VOCs. It is equally valid to look at the development of red-shifted 

dyes for nDSC. Again, dye regeneration may be an issue, based on the reported electrochemistry of such 

sensitizers [142, 150]. One of the chief reasons put forward for the poor performance of these red-shifted dyes has 

been the lower ΔGreg for dyes with stabilised LUMO energy levels. The energy losses associated with 

intermediates in the I-/I3
- system (I2

•-) is a contributing factor here. It is hoped that with single electron redox 

processes, this may be able to be overcome. 

 Beyond this, it should also be noted that as the VB edge of the p-type semiconductor is lowered or the 

CB edge potential of the n-type semiconductor is increased (or both), there will be new challenges for dye design, 

with more stabilised HOMO and / or destabilised LUMO energies required, in order to sensitize these alternate 

materials. 

 

 3.1.3 ELECTROLYTE OPTIMISATION 

 

 The I-/I3
- couple suffers from being a two electron redox processes, with intermediate processes resulting 

in substantial energy losses. It also has a strong absorbance throughout the blue part of the spectrum which results 

in a small (low IQE) cathodic photocurrent [151], which not great for pDSC (low QE) and counter-productive  for 

nDSC. While there is obviously a strong case against using I-/I3
- in pDSC and pnDSC (and for nDSC), it has 

remained the staple as it has lower environmental sensitivity than many of the alternative options [84]. This 

remains one of the biggest limitations, along with diffusion rates. Bulky (Co(II)/(III)) compounds have been 

shown to suffer from slow diffusion, limiting attainable current densities, especially at higher illumination 

intensities [64, 84, 85]. As a result, single electron, small, redox mediators such as (Co(II)/(III)) or Fe(II)/(III) 

complexes are attractive options. [Fe(acac)3]0/+ has been shown to have diffusion rates near the theoretical limit 

across a broad range of concentrations [84]. Furthermore, new mediators open up more possibilities for the 

creation of new photoanodes which may be able to compliment efficient photocathodes. The development and 

tuning of organic mediators will also be of great interest in this regard. 

 

 3.1.4 DECREASING RECOMBINATION / INCREASING THE FILL FACTOR 

 

 The issue of charge recombination has, rightly, been a major focus of the development of pDSCs. In an 

early report, Borgström et al. [37] identified rapid recombination between the photoreduced dye and the injected 

hole in NiO as a major loss channel. This issue of dye-semiconductor recombination spurred researchers to look 

at creating dyes which would limit this process [80]. Core-shell structures have also employed, albeit with limited 

success [40, 41]. On a somewhat more positive note, an investigation by Smeigh et al. [178] showed trap states 

in NiO to lead to Marcus normal recombination behaviour, as opposed to what is observed in TiO2 based nDSCs. 

This suggests that as ΔGreg is reduced, so should be the driving force for recombination between the dye anion 

and the injected hole, furthermore, D’Amario et al. recently demonstrated deep traps in NiO [179]. In spite of this 

and low conductivity in bulk NiO, mesoporous NiO appears to be capable of supporting high photocurrents (in 

the range of 20 mA/cm2, which is what would be required of a high performance pnDSC. 
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 The modelling of J-V responses by Huang et al. [213] examined the effects of resistive and recombinative 

losses. By recalculating the obtained J-V curve without series resistance, a slight improvement in JSC was seen, 

while the effects of eliminating photoinduced recombination were shown to have a much more substantial impact. 

They demonstrated a light dependent recombination mechanism, seen through decreased recombination resistance 

in electrochemical impedance spectroscopy. 

 More recently, an extensive investigation published by Daeneke et al. [208] identified several other 

limitations in addition to the issues raised above. The first of these was the electrochromic nature of NiO, which 

leads to reduced light harvesting efficiencies at biases approaching open circuit (~6% decrease leading to a 3% 

drop in FF versus a model with this effect removed). They also observed small losses relating to recombination 

of injected holes with the oxidised species in the electrolyte (in line with the conclusions reached by Huang et 

al.). More importantly, charge injection efficiency was shown to be strongly voltage dependent, based on transient 

absorption experiments measured at a range of applied biases. In addition to this, the recombination efficiency 

was shown to also have an applied voltage dependence. It is also important to keep in mind the systems used by 

researchers to make these analyses. While Huang et al. used a small dye, “O2” and I-/I3
-, Daeneke et al. used PMI-

6T-TPA and a [Co(en)3]2+/3+ based electrolyte. In either case, the common conclusions reached indicate the 

continued need for materials development of almost every component the pDSC architecture. 

 From the above analyses, it can be seen that there is no fundamental limitation to restrict pDSCs from 

attaining similar PCEs to nDSCs. Huang et al. showed that, if the recombination mechanism can be mediated a 

fill factor of around 0.6 should be attainable. This is close to what has been predicted [214] to be the limiting value 

(under 1 sun illumination and at room temperature) for a device operating with a VOC of ~160 mV. This issue 

should also be viewed in the light that our previous work with current matched photoelectrodes resulted in FFpn > 

FFn, FFp [28], suggesting that the fill factor in a tandem device is again a more complex issue. 

 

 3.1.5 DEVICE STABILITY 

 

 To date there has been little explicit focus on stability of pDSCs. This is most likely due to an assumption 

that the challenges are general DSC and not specific. Further to this, the challenges of attaining large currents 

(high quantum efficiencies) and large device voltages appear to have taken precedence. In order to realise practical 

devices, it will be necessary to replace the volatile solvents presently in use, as well as any materials which are 

highly sensitive to atmospheric conditions. This is because encapsulation is never perfect and the more thorough 

it is, the more it adds to device costs and subtracts from practicality (e.g. flexible devices). Solid state nDSCs are 

often put forward as a way around many of these issues. To date there is one example of this being translated to a 

pDSC [166].  

 

3.2. MODELLING THEORETICAL EFFICIENCIES  

 

 There is a degree of uncertainty regarding how to best determine the limiting efficiency for DSC systems. 

While Fingerhut [45] presented the case of PEC limiting efficiency and Tayebjee [46] for molecular absorbers, 

with each applying different assumptions, they reach similar final limiting values for single junction devices (26.8 

and 28.9%, respectively), which are both slightly lower than what is predicted by the SQ limit. Dye sensitized 

systems will almost certainly require a distinct model. On one hand, radiative recombination may be less of a 

concern as charges are rapidly injected into the CB / VB of a wide EG semiconductor. On the other hand, energy 
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offsets are required for this efficient charge transfer without substantial back transfer also limiting performance. 

As far as we can see, there is no ‘hard and fast’ rule as to the magnitude of this required energy. 

 Obviously any modelled system is based on a number of assumptions. Most of these stem from the fact 

that DSCs operate by a different mechanism to pn junction photovoltaics. As such calculations of their theoretical 

limits should be re-evaluated. Detailed balance analysis (eg. SQ) shows radiative recombination to be a significant 

loss mechanism under ambient conditions. While it is neglected in this analysis, obviously it will play a role in 

reality, as shown by Daeneke et al. [208] under applied bias. Radiative recombination in wide bandgap materials 

(such as TiO2, NiO) is expected to be small compared to what would be expected from the absorber material. 

 Below (Figure 17a) the AM1.5 spectrum [43] is displayed, punctuated at three wavelengths, λ1 λ2 and λ3, 

providing two complimentary absorption ranges. Ideally one of these would be adsorbed by a photoanode and the 

other, the photocathode in a pnDSC. As mentioned, the electrodes are configured such that the device will be 

limited by the weaker (lowest current density) of the two, meaning that each region should be designed to generate 

the same photocurrent as the other. In this exercise, we simplify the situation to have very sharp absorption onsets, 

no parasitic light harvesting from electrolytes, semiconductors or even conductive substrates. In reality these will 

play a role, but there does not seem to be a fundamental reason why the impacts of such materials cannot be 

reduced to negligible levels. 

 

 

 

Figure 17 – (a) AM1.5 spectrum with two highlighted regions corresponding to equal photon fluxes, and (b) the upper limit 

of current density which can be achieved under AM1.5 conditions by harvesting light from 400 nm up to λ2. (c) The 

corresponding required wavelength of absorption onset for λ3 for equal photo flux as between λ1 and λ2 and (d) as per (c) in 

eV. 

 

 Figure 17b shows the attainable current density based on light harvested between λ1 and λ2. At this point 

both Φinj and Φcc are assumed to be unity, as well as LHE within this band. For this, λ1 has been set to 400 nm to 

exclude UV light which is typically damaging to organic sensitizers. This portion of the spectrum can only be 

expected to generate at most ~0.7 mA/cm2. If λ2 exceeds 950 nm, it is actually not possible to harvest enough 
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photons from the AM1.5 spectrum to current match, as can be seen in figure 17c, which plots the value of λ3 

required to meet the demands of the other electrode harvesting between λ1 and λ2. Figure 17d replots this with λ3 

as photon energy. The two highlighted λ2 values here are of interest as they correspond with the requirement for 

λ3 to be (i) 1.13 eV (1100 nm) and (ii) 0.6 eV (2066 nm). These two values are highlighted as: (i) to date the most 

red-shifted dyes to show at least moderate photoresponses in nDSCs are Os(II) compounds, with onsets around 

1100 nm [215, 216]; while (ii) a dye with absorption onset of 0.6 eV would provide no additional voltage if ΔGinj 

and ΔGreg are assumed to be 0.3 eV each. In order to theoretically predict efficiencies, one of the major 

assumptions that needs to be made relates to the required driving forces for charge injection and dye regeneration. 

Here, the authors note the simplicity of our model, however, it has been shown experimentally that in many 

systems, QE drops off rapidly when the energy offset is below a threshold value [148] as rates for forward and 

back transfer become less asymmetric. This is a broadly relevant question across all DSC research, and one which 

has been approached by a number of authors, as discussed below. 

 The advent of more stable ferrocene redox mediator systems for nDSC allowed Daeneke et al. [148] to 

investigate charge regeneration through the use of a series of ferrocene derivatives. Here it was seen that ΔGreg 

values as small as 0.2-0.25 eV could provide near quantitative regeneration. Previously, Feldt et al. [217] had 

suggested a ΔGreg value closer to 0.4 eV was necessary. This is explained in terms of the reorganisation energy of 

the redox mediator and suggests that it is possible this ‘threshold’ ΔGreg of 0.2 eV may be further improved upon. 

Once again, the benefits of using single electron redox process can be seen as there is ~0.3-0.35 eV lost when 

using I-/I3
-. As discussed earlier (Figure 9), Gibson et al. [149] also investigated the role of ΔGreg in pDSCs using 

I-/I3
- and a series of  peryleneimide dyes. Below (Figure 18) device IPCE maxima are compared against ΔGreg, 

where this value is determined as the energy difference between the dye reduction potential and the I2
•-/I3

- redox 

potential. 

 

 

Figure 18 – regeneration driving force versus resultant IPCE for various perylene derivatives bound to NiO with I-/I3
- in 

different solvents (data from Gibson et al. [149]). 

 

 Similarly, the minimum required ΔGinj for nDSCs has been investigated with a series of coumarin based 

sensitizers and TiO2, by Hara et al. [218]. Based on IPCE values, they observed that as little as 150 meV may be 

required for near quantitative injection. On the other hand, a study by Mori et al. [75], using a similar approach, 

suggested a ΔGinj of 0.6 eV was required for pDSCs. It is important to note that the dyes used in this study were 

not designed for pDSC application, suggesting that favourable electron distribution in the SOMO may 

substantially decrease the ΔGinj requirements. 

 The dye O13, reported by Ji et al. in 2013 realised pDSC with JSC > 2.6 mA/cm2 with only ΔGinj of 0.13 

eV [92]. Even more impressive is the apparent ΔGinj for the champion dye PMI-6T-TPA on NiO of less than 100 
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meV, based on electrochemical measurements [219]. This of course needs to be considered in the context of 

photoelectron spectroscopy in air [220] measurements, which suggest the work function of this dye to be -5.6 eV 

(versus vacuum) [183]. This ambiguity suggests that researchers in this field need to develop more appropriate 

measurements to determine in situ values. This is of course an issue that effects not just pDSC/pnDSC research, 

but rather the whole field of electrochemistry. 

 As was mentioned previously in Section 2.2, the required values of ΔGinj and ΔGreg may be different 

from each other. For the sake of this model these can be traded between the processes, (e.g. ΔG = 0.4 eV could 

account for either ΔGinj = 0.2 eV and ΔGreg = 0.2 eV or ΔGinj = 0.1 eV and ΔGreg = 0.3 eV). It is also assumed that 

reorganisation energies will be small and are also accounted for within these driving forces. Models with ΔG = 

0.6 eV, 0.4 eV and 0.2 eV are presented for both single junction and tandem DSCs in Figure 19a. The other major 

assumption relates to the proximity of qEf and the band edges. Here, it will be assumed that qEF approximates the 

VB/CB edge for a photocathode/photoanode respectively. As noted previously, it is possible that with slow charge 

extraction and limited recombination, qEF may reside below the VB edge / above the CB edge. For the purposes 

of this model, this would however be equivalent to selecting a dye with smaller driving force for charge injection. 

 Under operating conditions, VOC = (λ2/hυ) + (λ3/hυ) – (2 ∙ΔG). Here the FF was determined using the 

approximation provided by DeVos [214], at room temperature and assuming VOC to be the offset between the CB 

edge of the n-type and VB of the p-type semiconductor. 

  

 

Figure 19 – Theoretical limiting efficiencies for single junction and tandem devices with different ΔG, as a function of (a) λ2 

(see Fig 15a) and (b) λ3 in the case of tandem devices. 

 

 Obviously with optimal configuration, the tandem devices are capable of attaining higher efficiencies for 

a given ΔG, however, two points bear being explicitly stated. Firstly, the optimal λ2 values for tandem devices are 

for relatively short wavelengths and secondly, as the ΔG values increase, this optimum is further blue shifted. 

Figure 19b illustrates the required λ3 value to match the photon flux of the first electrode. If we are to take ΔG = 

0.6 eV, an optimal configuration of pnDSC would have dye 1 absorbing to 730 nm and dye 2 to 1078 nm. This 

could provide a device with VOC of 1.6 V and PCE of 28.4%, which is notably below the predicted theoretical 

limit (SQ) for a single junction device – highlighting the critical nature of decreasing such energy losses. With 

ΔG = 0.4 eV, λ2 = 790 nm, λ3 = 1290 nm a theoretically possible 34.9% PCE is realized. Corresponding ΔG values 

for single junction DSCs would suggest PCEs of 19.6% (880 nm onset) and 25.1 % (900 nm onset) respectively 

are possible. 

If TiO2 is retained as the n-type semiconductor, with (CB edge potential of ~ -4 eV), p-type materials 

with VB edge values (vacuum) of -6.13 eV, -5.73 eV or -5.65 eV would be required for ΔG = 0.2, 0.4 or 0.6 eV 

respectively. Redox mediators would of course need to be tuned in accordance with these energy levels. 
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Alternately TiO2 may be replaced. To date only a handful of other n-type semiconductors have been used to create 

moderately successful nDSCs. These include ZnO [221], Nb2O5 [222] and Zn2SnO4 [223]. 

 For the specific case of TiO2 and NiO devices, the VOC is set to 1100 mV, unless the aforementioned 

shift of qEF into the VB/CB by a significant amount occurs. Experimental results of pnDSCs with a VOC of 1079 

mV suggest this may either occurring, or that the values (VB/CB edge potentials) measured ex situ are not the 

same in situ in a DSC. 

If we assume this voltage (1.1 V) is approximately limiting, the maximum efficiency is therefore 

determined by the value of ΔG and the subsequent dye absorption ranges to which it corresponds. Figure 20, 

below, shows the theoretical device efficiency along with λ3 as a function of ΔG. It can be seen for small driving 

forces the model finds its optimum deep into the IR (λ3 = 4000 nm). The reason for this is that using these low 

energy photons (~0.3 eV) facilitates higher JSC, as the normal situation of the trading off of current for voltage 

does not apply here. Even with this in mind, the ‘best case’ (with optimistic ΔG = 0.2 eV) provides slightly above 

what can be theoretically be obtained for a single junction device [45, 46] (and again below the SQ limit). This 

highlights that if NiO and TiO2 remain locked in, the prospects for this system are indeed limited, a fact evidenced 

by the fact that redox mediators more positive than the VB edge of NiO can be used in nDSCs (such as Br-/Br3
-). 

These limitations were also recognized by Sobus and Ziolek in their analysis of theoretical device efficiencies for 

tandem DSCs [224]. 

 

 

Figure 20 – Efficiency limit and required λ3 to be employed to achieve said efficiency as a function of ΔG.  

 

 This modelling exercise demonstrates the substantial benefit which may be derived from pnDSC as 

opposed to single junction. In addition, module design may be aided from the low current, high voltage nature of 

tandems (lower series resistance losses). 

 

 3.3 RESEARCH PRIORITIES AND CONCLUSIONS 

 

 Throughout this article we have explored the remarkable progress that has occurred in the field of dye-

sensitized photocathode research, with a 350-fold improvement in PCE between 1999 and 2015 [5, 84]. This has 

come about through development of nearly all components of the device. However, a number of limitations to 

pDSC performance still remain. These have also been examined, along with strategies to combat them. In addition 

to this, the possibility of very high pnDSC PCEs have been explored through a modelled system. In order to get 

close to these ideal performances, the previously mentioned limitations need to tackled. In our opinion one of the 

biggest issues are the energy losses associated the two electron redox processes of the I-/I3
- couple. Already 
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replacements for this have afforded substantial improvements. More broadly, the losses in potential experienced 

in DSCs are one of the chief limitations, and their minimization requires a great deal of attention. 

 Another critical aspect of pDSC development is the replacement of NiO with a material that can afford 

higher pnDSC VOCs. Although this may also be achieved by replacing TiO2, it is a very efficient and well 

understood system. Furthermore, NiO suffers from strong colouration (exacerbated by electrochromic properties) 

and trap states which facilitate recombination. 

 The third major issue to be addressed is the need for complimentary light harvesting. Recent development 

in redox mediators suggests that this challenge may be met either on the photocathode or the photoanode. 

Alongside this is the need to ensure electrochemical measurements are done such that they reflect the true 

environment of the materials in the device. It is also important to remember in the context of solar energy 

development that cross-fertilization can take place and may lead to even more radical redesigns and novel device 

architectures.  

If we are to surpass the SQ limit, substantial improvements are required on both the pDSC and nDSC 

sides, although are a philosophical and economic question as to whether this must be the end goal for pnDSCs. 

Even if pnDSCs are not able to surpass the 31% PCE required to make them 3rd generation by the conventional 

metric (there is a question about what this threshold should be for DSCs, given the lack of a comprehensive 

theoretical model), the implementation of 3rd generation concepts should allow for substantial improvements in 

device performance as compared to single junction DSCs. The first examples of pDSCs led to a great deal of 

scepticism as to whether they would ever be good enough to combine with nDSCs to make these high efficiency 

devices, however recent developments show there is no fundamental reason why this can be achieved. It is also 

seen that researcher interest in this field has grown substantially - boding well for the technology. 
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