

University of Wollongong Research Online

Australian Institute for Innovative Materials - Papers

Australian Institute for Innovative Materials

2017

Iron and nickel doped CoSe2 as efficient non precious metal catalysts for oxygen reduction

Beibei Yu Hubei University

Jiayi Jin Hubei University

Huimin Wu Hubei University, hw267@uow.edu.au

Shengfu Wang *Hubei University*

Qinghua Xia *Hubei University*

See next page for additional authors

Publication Details

Yu, B., Jin, J., Wu, H., Wang, S., Xia, Q. & Liu, H. (2017). Iron and nickel doped CoSe2 as efficient non precious metal catalysts for oxygen reduction. International Journal of Hydrogen Energy, 42 236-242.

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

Iron and nickel doped CoSe2 as efficient non precious metal catalysts for oxygen reduction

Abstract

Iron and nickel doped CoSe2 were prepared by solvothermal method, and they were proved to be ternary chalcogenides by series of physical characterization. The effects of the iron and nickel contents on the oxygen reduction reaction were investigated by electrochemical measurements, and the highest activities were obtained on Co0.7Fe0.3Se2 and Co0.7Ni0.3Se2, respectively. Both Co0.7Fe0.3Se2 and Co0.7Ni0.3Se2 presented four-electron pathway. Furthermore, Co0.7Fe0.3Se2 exhibited more positive cathodic peak potential (0.564 V) and onset potential (0.759 V) than these of Co0.7Ni0.3Se2 (0.558 V and 0.741 V). And Co0.7Fe0.3Se2 displayed even superior stability and better tolerance to methanol, ethanol and ethylene glycol crossover effects than the commercial Pt/C (20 wt% Pt).

Keywords

precious, metal, catalysts, iron, oxygen, nickel, reduction, doped, cose2, efficient, non

Disciplines

Engineering | Physical Sciences and Mathematics

Publication Details

Yu, B., Jin, J., Wu, H., Wang, S., Xia, Q. & Liu, H. (2017). Iron and nickel doped CoSe2 as efficient non precious metal catalysts for oxygen reduction. International Journal of Hydrogen Energy, 42 236-242.

Authors

Beibei Yu, Jiayi Jin, Huimin Wu, Shengfu Wang, Qinghua Xia, and Hua-Kun Liu

Iron and nickel doped CoSe₂ as efficient non precious metal catalysts for oxygen reduction

Beibei Yu¹, Jiayi Jin¹, Huimin Wu^{*,1}, Shengfu Wang¹, Qinghua Xia¹, Huakun Liu^{**,2} ¹Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062, PR China

²Institute for Superconducting & Electronic Materials, School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, Wollongong, NSW 2522, Australia

Abstract: Iron and nickel doped $CoSe_2$ were prepared by solvothermal method, and they were proved to be ternary chalcogenides by series of physical characterization. The effects of the iron and nickel contents on the oxygen reduction reaction were investigated by electrochemical measurements, and the highest activities were obtained on $Co_{0.7}Fe_{0.3}Se_2$ and $Co_{0.7}Ni_{0.3}Se_2$, respectively. Both $Co_{0.7}Fe_{0.3}Se_2$ and $Co_{0.7}Ni_{0.3}Se_2$ presented four-electron pathway. Furthermore, $Co_{0.7}Fe_{0.3}Se_2$ exhibited more positive cathodic peak potential (0.564 V) and onset potential (0.759 V) than these of $Co_{0.7}Ni_{0.3}Se_2$ (0.558V and 0.741V). And $Co_{0.7}Fe_{0.3}Se_2$ displayed even superior stability and better tolerance to methanol, ethanol and ethylene glycol crossover effects than the commercial Pt/C (20 wt% Pt).

Keywords: Non-noble metal catalyst; Chalcogenide; Electrocatalysis; Oxygen reduction reaction

^{*} Corresponding author. Tel.: 86 18971479006; Fax: 86 27 88663043.

E-mail address: <u>whm267@hubu.edu.cn</u>

^{**} Corresponding author. E-mail address: hua liu@uow.edu.au

1. Introduction

Nowadays, non-precious metal-based electrocatalysts have exhibited promising activities towards oxygen reduction reaction (ORR) [1-4]. Among them, cobalt based selenides (CoSe_x) are attracting enormous interest as new ORR electrocatalysts. For example, CoSe₂/C obtained by Feng et al. [5, 6] showed superior electrocatalytic activity towards ORR with an open circuitry potential of 0.81 V in 0.5 M H₂SO₄, and higher methanol tolerance than that of Pt/C. Susac et al. [7] exhibited that cobalt-selenium (Co-Se) with varying content of Se obtained by magnetron sputtering and chemical methods indicated a electrocatalytic activity towards ORR in an acidic electrolyte.

However, the ORR activities of these materials are still far from proton exchange membrane fuel cells' practical applications [8-11]. To further improve electrocatalytic activity, doping of transition metal is crucial to the Co-based chalcogenides. Zhao et al. [12] exhibited the tungsten doped Co-Se electrocatalysts synthesized by decarbonylation of carbonyl compounds in 1,6-hexanediol solvent, and indicated high ORR electrocatalytic activity in 0.5 M H₂SO₄. Nanosized particles of Ru_xFe_ySe_z were prepared by Solorza-Feria [13] showed higher electrocatalytic activity towards ORR than that of the Ru_xSe_y.

In order to enhance ORR electrocatalytic activity, two series of ternary non-noble metal chalcogenides were synthesized in this work. The electrocatalytic activity towards ORR and stability of the chalcogenides were investigated in 0.5 M H₂SO₄. Furthermore, the relationships between the content of doping transition metals and electrocatalytic activity were investigated.

2. Experimental

2.1. Electrocatalyst synthesis

All chemicals were purchased from Sigma-Aldrich.

 $Co_xFe_{1-x}Se_2$ (*x*= 0.9, 0.8, 0.7, 0.6, 0.5) were obtained via a solvothermal method. Briefly, 0.291g cobalt nitride hexahydrate (Co(NO₃)₂·6H₂O) and different iron (II) sulfate heptahydrat (FeSO₄·7H₂O) (Table S1) were dissolved in 30 mL diethylenetriamine (DETA) and deionized water (DIW) (V_{DETA}/V_{DIW}= 2:1). Then, 0.591g sodium selenite (Na₂SeO₃) and 8.5 mL hydrazine hydrate (N₂H₄·H₂O) were added into the solution, and stirred for 30 min. Finally, the mixture was transferred into an autoclave and treated at 140°C for 24 h.

 $Co_xNi_{1-x}Se_2$ (*x*= 0.9, 0.8, 0.7, 0.6, 0.5) were prepared by the similar method, only using nickel nitride hexahydrate (Ni(NO₃)₂·6H₂O) (Table S2) instead of FeSO₄·7H₂O. CoSe₂ was prepared with no addition of FeSO₄·7H₂O [14].

2.2. Characterization

X-ray diffraction (XRD) experiments were carried out on a GBC MMA X-ray diffractometer with Cu Kα radiation. X-ray photoelectron spectroscopy (XPS) was performed by an ESCALAB 250Xi device. Scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) attachment (JSM6510LV) was used to observe the morphological and chemical composition analyses. The specific surface area was measured by a Quantachrome iQ-MP nitrogen adsorption apparatus.

The ORR activities of all catalysts were obtained with a CHI 750E electrochemical workstation (CH Instrument Company, Shanghai, China). Pt wire and saturated calomel electrode as the counter and reference electrodes, respectively. Rotating disk electrode (RDE, 5 mm in diameter) loaded with various catalysts was used as the working electrodes. 5 mg catalyst was ultrasonically dispersed in 0.5 mL Nafion solution. Then, 10 μ L (0.1 mg catalyst) suspension was transferred on the RDE. All

the potentials of this paper were reported with respect to reversible hydrogen electrode (RHE).

3. Results and discussion

3.1. Material characteristics

Fig. 1 (A) showed the XRD patterns of (a) $Co_{0.9}Fe_{0.1}Se_2$, (b) $Co_{0.8}Fe_{0.2}Se_2$, (c) $Co_{0.7}Fe_{0.3}Se_2$, (d) $Co_{0.6}Fe_{0.4}Se_2$ and (e) $Co_{0.5}Fe_{0.5}Se_2$, respectively. While Fig. 1 (B) showed the XRD patterns of (a) $Co_{0.9}Ni_{0.1}Se_2$, (b) $Co_{0.8}Ni_{0.2}Se_2$, (c) $Co_{0.7}Ni_{0.3}Se_2$, (d) $Co_{0.6}Ni_{0.4}Se_2$ and (e) $Co_{0.5}Ni_{0.5}Se_2$, respectively. The observed diffraction peaks could be indexed to $CoSe_2$ (200), (210), (220), (311), (123), (400), (331) and (024) (JCPDS No. 09-234). No additional peaks of other phases had been observed, confirming the substitution of Fe or Ni in $CoSe_2$ lattice [15]. The intensity of the peaks reduced with the doping concentration increasing, which indicated the loss of crystallinity due to lattice distortion and smaller crystallite size [15]. However, the ternary Co-Fe-Se or Co-Ni-Se phase had not been investigated. These could due to the phases present in a very small nanocrystal, or overlap of diffraction peaks from $CoSe_2$ phase and $Co_{0.7}Ni_{0.3}Se_2$ showed better catalytic activity towards ORR than others according to Fig. S2.

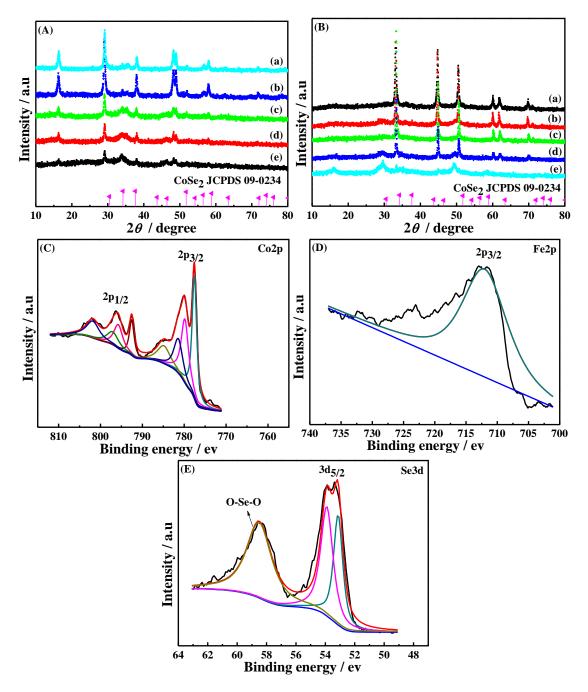


Fig. 1 (A) XRD patterns of (a) $Co_{0.9}Fe_{0.1}Se_2$, (b) $Co_{0.8}Fe_{0.2}Se_2$, (c) $Co_{0.7}Fe_{0.3}Se_2$, (d) $Co_{0.6}Fe_{0.4}Se_2$ and (e) $Co_{0.5}Fe_{0.5}Se_2$, (B) XRD patterns of (a) $Co_{0.9}Ni_{0.1}Se_2$, (b) $Co_{0.8}Ni_{0.2}Se_2$, (c) $Co_{0.7}Ni_{0.3}Se_2$, (d) $Co_{0.6}Ni_{0.4}Se_2$ and (e) $Co_{0.5}Ni_{0.5}Se_2$. XPS spectra of $Co_{0.7}Fe_{0.3}Se_2$ in the (C) Co 2p, (D) Fe 2p, and (E) Se 3d regions.

The XPS of $Co_{0.7}Fe_{0.3}Se_2$ showed that it mainly consisted of Co, Fe, and Se elements. Apparently, the binding energy of each element revealed a shift compared with their pure elements. The binding energies of Co $2p_{3/2}$ (780.1 eV, Fig. 1 (C)) and Fe $2p_{3/2}$ (711.6 eV, Fig. 1 (D)) were much higher than binary chalcogenides such as

CoSe₂ (Co $2p_{3/2}=778.7$ eV) [18, 19] and iron diselenide (FeSe₂, Fe $2p_{3/2}=707.2$ eV) [20]. However, Se $3d_{5/2}$ (Fig. 1 (E)) shifted to more negative binding energy than CoSe₂ (Se $3d_{5/2}=54.4$ eV) [18, 19]. And the relative amount of Se oxide (4.06%) was formed at the Co_{0.7}Fe_{0.3}Se₂ surface based on XPS analyses. However, the oxide is too small amount that it cannot be detected by XRD. The changes in binding energies for these elements can be explained by the fact that selenium is more electronegative than iron or cobalt. Charge transfer from cobalt and iron to selenium could lead to the chemical shift. So, cobalt and iron moved to positive binding energy, while selenium moved to negative binding energy. The results suggested it was a ternary chalcogenide [21]. Meanwhile, The XPS spectra of Co_{0.7}Ni_{0.3}Se₂ was shown in Fig. S3 (B)) were much higher than CoSe₂ (Co $2p_{3/2}=778.7$ eV) and nickel diselenide (NiSe₂, Ni $2p_{3/2}=853.1$ eV) [22, 23]. And, selenium shifts to negative binding energy of Se $3d_{5/2}$ (Fig. S3 (C)) compared to CoSe₂ (Se $3d_{5/2}=54.4$ eV), indicating that it also was a complete ternary chalcogenide. The relative amount of Se oxide was 2.23%.

SEM of Co_{0.7}Ni_{0.3}Se₂ and Co_{0.7}Fe_{0.3}Se₂ were shown in Fig.2 (A) and (B), respectively. Co_{0.7}Ni_{0.3}Se₂ revealed a fluffy morphology. However, the Co_{0.7}Fe_{0.3}Se₂ was mainly composed of a huge amount of homogeneous sphere-like shaped particles, so maybe had bigger surface areas. Meanwhile, the specific surface areas of Co_{0.7}Ni_{0.3}Se₂ and Co_{0.7}Fe_{0.3}Se₂ were measured to be 35.6 and 43.5 m²·g⁻¹, respectively. According to report [24], the high specific surface areas could contribute to create abundant active sites, which made them more accessible. Maybe different contents of doped iron or nickel could affect the morphology (Fig. S4). Fig.2 (a) and (b) represented the EDX of Co_{0.7}Ni_{0.3}Se₂ and Co_{0.7}Fe_{0.3}Se₂ and Co_{0.7}Fe_{0.3}Se₂ and Co_{0.7}Fe_{0.3}Se₂ and Co_{0.7}Fe_{0.3}Se₂ the morphology (Fig. S4). Fig.2 (a) and (b) represented the EDX of Co_{0.7}Ni_{0.3}Se₂ and Co_{0.7}Fe_{0.3}Se₂ and Co_{0.7}Fe_{0.3}Se₂, respectively.

results.

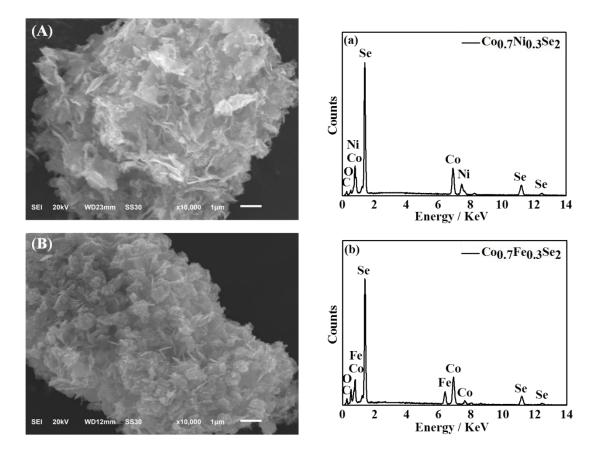


Fig. 2 SEM and EDX images of (A, a) Co_{0.7}Ni_{0.3}Se₂ and (B, b) Co_{0.7}Fe_{0.3}Se₂.

Table 1 XPS and EDX analyses of Co_{0.7}Fe_{0.3}Se₂ and Co_{0.7}Ni_{0.3}Se₂.

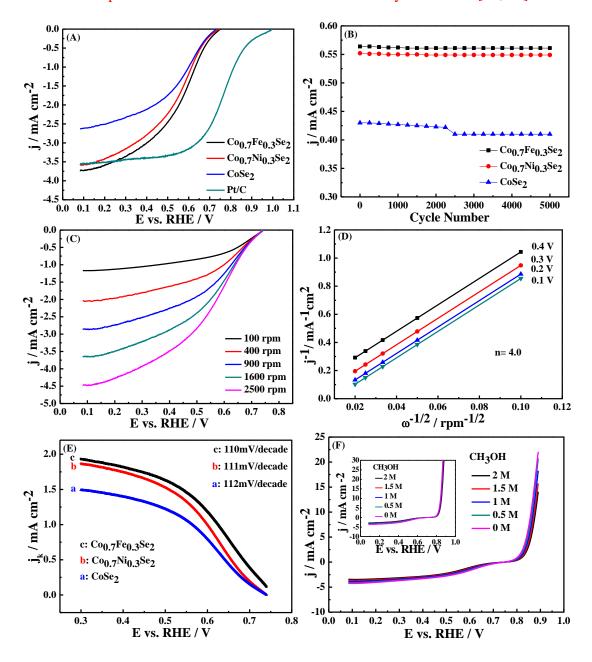
Sample	XPS (at. %)				EDX (at. %)			
Sample	Co	Fe	Ni	Se	Co	Fe	Ni	Se
Co _{0.7} Fe _{0.3} Se ₂	11.07	5.03		22.66	11.08	5.07		22.70
Co _{0.7} Ni _{0.3} Se ₂	4.47		2.06	11.42	4.52		2.12	11.83

3.2. Electrochemical characterization

Linear sweep voltammetry (LSV) measurements were shown in Fig. 3 (A). The onset potential (E_{ORR}) was defined as potential at which the current density was equal to zero. And the half-wave potential ($E_{1/2}$), when the current density was equal to half of the limiting diffusion current density, was extracted from the polarization curve.

The more positive E_{ORR} and $E_{1/2}$ were, the better electrocatalytic activity towards ORR they showed [25]. Except for Pt/C, $Co_{0.7}Fe_{0.3}Se_2$ exhibited more positive E_{ORR} and $E_{1/2}$ compared with $CoSe_2$ and $Co_{0.7}Ni_{0.3}Se_2$, suggesting a much better ORR activity, and the parameters were listed in Table 2. Previous reports showed that the doping of Fe on Co-based chalcogenides could improve the constitution and stabilization of the catalytically active species, resulting in favorable ORR performance [26].

The durabilities of CoSe₂, Co_{0.7}Ni_{0.3}Se₂ and Co_{0.7}Fe_{0.3}Se₂ were also analyzed by Cyclic voltammograms (CVs), and selected the current densities of different cycles to draw the Fig. 3 (B). Obviously, Co_{0.7}Fe_{0.3}Se₂ and Co_{0.7}Ni_{0.3}Se₂ showed excellent long-term performance. Furthermore, the maximum current densities values of the Co_{0.7}Fe_{0.3}Se₂ were higher than those of the CoSe₂ and Co_{0.7}Ni_{0.3}Se₂. The electrochemical stability of the catalyst might be related to the amount of selenium on the CoSe₂. It had been reported that selenium can play a role in protecting the electrochemical oxidation of metals in chalcogenide compounds [27]. And the presence of Se oxide could also prevent dissolution in O₂-saturated 0.5 M H₂SO₄, which might contribute to its excellent stability [28]. At the same time, Fe or Ni doped the CoSe₂ increased adsorption/desorption of metals compounds associated with microporous structure [29, 30].


A series of LSV curves recorded from 100 to 2500 rpm were obtained in Fig. 3 (C). Koutecky-Levich (K-L) plots at different potentials showed good linearity (Fig. 3 (D)), revealing first-order reaction kinetics towards the concentration of dissolved oxygen [31]. The electron transfer number (n) could be calculated from the following K-L equations (1) [32], and n was calculated to be 4:

$$j^{-1} = j_k^{-1} + j_d^{-1} = j_k^{-1} + (\mathbf{B}\omega^{1/2})^{-1}$$
(1)

where j, j_d and j_k were the measured, diffusion-limited and kinetic current densities, ω

represented the electrode rotating rate. Co_{0.7}Fe_{0.3}Se₂, Co_{0.7}Ni_{0.3}Se₂ and Pt/C showed a direct 4e⁻ reduction process towards ORR (Table 2) [33], while other Co_xFe_{1-x}Se₂ and Co_xNi_{1-x}Se₂ (Fig. S5) with different iron or nickel contents exhibited a mixed four-electron and two-electron reduction processes with H₂O₂ as the intermediate agent. The corresponding values of j_k and n were shown in Fig. S6 (B, D). The electronic structure of the transition metal was usually expressed by a percentage of d orbital in the metal bond (d%). The higher value of d% was, the more electrons filling in corresponding d energy band was, leading to less holes. The d% of the transition metal (Fe) added to CoSe₂, the bigger d% of Co atoms was transferred to smaller d% of the Fe atoms. Which increased the holes of Co, and improved the adsorption rate of oxygen. Although the difference between iron and nickel was very small, the d% of Ni was bigger than Co [34]. Therefore, the bonding ability of Co_{0.7}Fe_{0.3}Se₂ was higher than that of Co_{0.7}Ni_{0.3}Se₂, implying Co_{0.7}Fe_{0.3}Se₂ presented better ORR activity.

Fig. 3 (E) showed the tafel plots of the Co_{0.7}Fe_{0.3}Se₂, Co_{0.7}Ni_{0.3}Se₂ and CoSe₂ towards ORR. The j_k were calculated using K-L equation, Co_{0.7}Fe_{0.3}Se₂ exhibited a highest value than that of Co_{0.7}Ni_{0.3}Se₂ and CoSe₂. The tafel slope (*b*) and transfer coefficient (*a*) were listed in Table 2. The highest ORR activity of Co_{0.7}Fe_{0.3}Se₂ was further supported by the smallest tafel slope of 110 mV/decade among CoSe₂, Co_xFe_{1-x}Se₂ and Co_xNi_{1-x}Se₂ with different iron or nickel contents (Fig. S6 (A, C)). Which indicated that the ORR on Co_{0.7}Fe_{0.3}Se₂ was controlled by the first electron transfer process, similar to that of the Pt/C (Fig. S6 (E)) [35]. Moreover, the results were comparable or even better than other catalysts in Table 2. It might be due to the doped Fe increased the surface area, adsorption/desorption of metals compounds, and

Fig. 3 (A) LSV curves of Pt/C, CoSe₂, Co_{0.7}Ni_{0.3}Se₂ and Co_{0.7}Fe_{0.3}Se₂ in O₂-saturated 0.5 M H₂SO₄ at 1600 rpm and a scan rate of 10 mV s⁻¹. (B) The maximum current densities of CoSe₂, Co_{0.7}Ni_{0.3}Se₂ and Co_{0.7}Fe_{0.3}Se₂ recorded during repeated cycling by CVs. (C) LSV curves of the Co_{0.7}Fe_{0.3}Se₂ in O₂-saturated 0.5 M H₂SO₄ at different rotation rates. (D) K-L plots of Co_{0.7}Fe_{0.3}Se₂ at various potentials. (E) Tafel polts of CoSe₂, Co_{0.7}Ni_{0.3}Se₂ and Co_{0.7}Fe_{0.3}Se₂ at 1600 rpm. (F) LSV curves of Co_{0.7}Fe_{0.3}Se₂ in O₂-saturated 0.5 M H₂SO₄ at 0.5 M H₂SO₄ containing CH₃OH (0-2 M), Co_{0.7}Ni_{0.3}Se₂ was shown in corresponding inset.

Table 2 Comparison of catalytic activity data with Co_xFe_{1-x}Se₂, Co_xNi_{1-x}Se₂, CoSe₂

Catalyst	E _{ORR}	E _{1/2}	n	-b	α	$ j_k $ at 0.3V
$Co_{0.9}Fe_{0.1}Se_2$	0.740	0.576	3.3	121	0.625	1.440
$Co_{0.8}Fe_{0.2}Se_2$	0.747	0.582	3.9	117	0.639	1.722
$Co_{0.7}Fe_{0.3}Se_2$	0.759	0.584	4.0	110	0.645	1.830
$Co_{0.6}Fe_{0.4}Se_2$	0.745	0.580	3.8	119	0.635	1.672
$Co_{0.5}Fe_{0.5}Se_2$	0.737	0.573	3.2	125	0.622	1.437
$\mathrm{Co}_{0.9}\mathrm{Ni}_{0.1}\mathrm{Se}_2$	0.736	0.499	3.8	117	0.617	1.777
$Co_{0.8}Ni_{0.2}Se_2$	0.739	0.552	3.9	116	0.626	1.790
Co _{0.7} Ni _{0.3} Se ₂	0.741	0.556	4.0	111	0.640	1.827
Co _{0.6} Ni _{0.4} Se ₂	0.733	0.489	2.8	120	0.558	1.211
$Co_{0.5}Ni_{0.5}Se_2$	0.731	0.485	2.4	121	0.543	1.036
CoSe ₂	0.708	0.560	3.9	112	0.638	1.522
Pt/C	0.934	0.760	4.0	110	0.847	1.871
W-Co-Se [21]	0.755	-	2.0	113	-	-
$Ru_xMo_ySe_z$ [38]	0.740	-	4.0	116	0.520	-
$\operatorname{Ru}_{x}\operatorname{Cr}_{y}\operatorname{Se}_{z}$ [39]	0.800	-	4.0	116	0.510	-
CoSe ₂ /C [5]	0.720	-	-	125	-	-
Co ₇ Se ₈ [40]	0.811	-	3.9	121	-	-
Fe ₃ O ₄ / CoSe ₂ [41]	0.760	_	3.6	-	-	-

Pt/C and other catalysts reported in the literature based ORR catalysts.

The satisfactory catalyst towards ORR should exhibit superior tolerance to the fuels (such as methanol, ethanol and ethylene glycol), which could penetrate the membrane from the anode [14]. We measured the LSV of $Co_{0.7}Fe_{0.3}Se_2$ (Fig. 3 (F), S7 (C, E)), $Co_{0.7}Ni_{0.3}Se_2$ (Fig. 3 (F) (inset), S7 (D, F)) and Pt/C (Fig. S7 (A, B, G)) in O_2 -saturated 0.5 M H₂SO₄ containing 0-2 M methanol, ethanol and ethylene glycol, respectively. Compared with $CoSe_2$ [14], $Co_{0.7}Fe_{0.3}Se_2$ and $Co_{0.7}Ni_{0.3}Se_2$ showed little activity loss and had favorable tolerance to the methanol, ethanol and ethylene glycol. In contrast, there was an obvious decrease in the ORR activity of Pt/C, because of the

competitive reaction between oxygen reduction and methanol, ethanol and ethylene glycol oxidation [36, 37].

4. Conclusions

In summary, Fe and Ni doped $CoSe_2$ were successfully synthesized. The ORR catalytic activity of $Co_xFe_{1-x}Se_2$ and $Co_xNi_{1-x}Se_2$ catalysts changed with iron or nickel contents. As a result, $Co_{0.7}Fe_{0.3}Se_2$ demonstrated an excellent electroactivity and durability towards ORR, making it a promising non-noble metal electrocatalyst for full cells.

Acknowledgements

This work was supported by the National Natural Science Foundation of China through a project entitled "The synthesis of Pt-M/C nanoparticles and construction of non-enzymatic electrochemical biosensor" (Grant No. 21205030), and by State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology, 2015-KF-13), and by Hubei Key Laboratory of Pollutant Analysis & Reuse Technology (PA160104), and from the Natural Science Fund for Creative Research Groups of Hubei Province of China through a project entitled "Controllable Synthesis and Application of Nano-/microsized Functional Materials" (2014CFA015).

References

[1] Solorza-Feria O, Ellmer K, Gierstig M, Alonso-Vante N. Novel low-temperature synthesis of semiconducting transition metal chalcogenide electrocatalyst for multielectron charge transfer: molecular oxygen reduction. Electrochim Acta 1994; 39: 1647-1653.

- [2] Cheng H, Yuan W, Scott K. A liquid-gas phase mixed-reactant fuel cell with a RuSeW cathode electrocatalyst. J Power Sources 2008; 183: 678-681.
- [3] Gago AS, Morales-Acosta D, Arriaga LG, Alonso-Vante N. Carbon supported ruthenium chalcogenide as cathode catalyst in a microfluidic formic acid fuel cell. J Power Sources 2011; 196: 1324-1328.
- [4] Ganesan P, Prabu M, Sanetuntikul J, Shanmugam S. Cobalt sulfide nanoparticles grown on nitrogen and sulfur codoped graphene oxide: an efficient electrocatalyst for oxygen reduction and evolution reactions. ACS Catal 2015; 5: 3625-3637.
- [5] Feng YJ, He T, Alonso-Vante N. In situ Free-Surfactant synthesis and ORR-electrochemistry of carbon-supported Co₃S₄ and CoSe₂ nanoparticles. Chem Mat 2008; 20: 26-28.
- [6] Feng YJ, He T, Alonso-Vante N. Carbon-supported CoSe₂ nanoparticles for oxygen reduction reaction in acid medium. Fuel Cells 2010; 10: 77-83.
- [7] Susac D, Sode A, Zhu L, Wong PC, Teo M, Bizzotto D, Mitchell KAR, Parsons RR, Campbell SA. A methodology for investigating new nonprecious metal catalysts for PEM fuel cells. J Phys Chem B 2006; 110: 10762-10770.
- [8] Othman R, Dicks AL, Zhu ZH. Non precious metal catalysts for the PEM fuel cell cathode. Int J Hydrogen Energy 2012; 37: 357-372.
- [9] Chao YS, Tsai DS, Wu AP, Tseng LW, Huang YS. Cobalt selenide electrocatalyst supported by nitrogen-doped carbon and its stable activity toward oxygen reduction reaction. Int J Hydrogen Energy 2013; 38: 5655-5664.
- [10] He XB, Yin FX, Li G. A Co/metaleorganic-framework bifunctional electrocatalyst: The effect of the surface cobalt oxidation state on oxygen

evolution/reduction reactions in an alkaline electrolyte. Int J Hydrogen Energy 2015; 40: 9713-9722.

- [11] Chiao SP, Tsai DS, Wilkinson DP, Chen YM, Huang YS. Carbon supported Ru_{1-x}Fe_xSe_y electrocatalysts of pyrite structure for oxygen reduction reaction. Int J Hydrogen Energy 2010; 35: 6508-6517.
- [12] Zhao DJ, Zhang S, Yin GP, Du CY, Wang ZB, Wei J. Tungsten doped Co-Se nanocomposites as an efficient non precious metal catalyst for oxygen reduction. Electrochim Acta 2013; 91: 179-184.
- [13] González-Huerta RG, Chavez-Carvayár JA, Solorza-Feria O. Electrocatalysis of oxygen reduction on carbon supported Ru-based catalysts in a polymer electrolyte fuel cell. J Power Sources 2006; 153: 11-17.
- [14] Yu BB, Wu WQ, Jin JY, Wu HM, Wang SF, Xia QH. Facile synthesis of Co-based selenides for oxygen reduction reaction in acidic medium. Int J Hydrogen Energy 2016; 41: 8863-8870.
- [15] Kumar S, Verma NK. Structural, optical and magnetic investigations on Fe-doped ZnS nanoparticles. J Mater Sci: Mater Electron 2015; 26: 2754-2759.
- [16] Byskov LS, Hammer B, Norskov JK, Clausen BS, Topsoe H. Sulfur bonding in MoS₂ and Co-Mo-S structures. Catal Lett 1997; 47: 177-182.
- [17] Yoosuk B, Song C, Kim JH, Ngamcharussrivichai C, Prasassarakich P. Effects of preparation conditions in hydrothermal synthesis of highly active unsupported NiMo sulfide catalysts for simultaneous hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene. Catal Today 2010; 149: 52-61.
- [18] Gao J, Zhang B, Zhang X, Xu B. Magnetic-dipolar-interactioninduced self-assembly affords wires of hollow nanocrystals of cobalt selenide. Angew

Chem Int Ed 2006; 45: 1220-1223.

- [19] Najafpour MM, Hosseini SM, Tavahodi M, Ghobadi MZ. The conversion of CoSe₂ to Co oxide under the electrochemical water oxidation condition. Int J Hydrogen Energy 2016; 41: 13469-13475.
- [20] Huang SS, He QQ, Chen WL, Zai JT, Qiao QQ, Qian XF. 3D hierarchical FeSe₂ microspheres: Controlled synthesis and applications in dye-sensitized solar cells. Nano Energy 2015; 15: 205-215.
- [21] Lee K, Zhang L, Zhang JJ. Ternary non-noble metal chalcogenide (W-Co-Se) as electrocatalyst for oxygen reduction reaction. Electrochem Commun 2007; 9: 1704-1708.
- [22] Van der Heide H, Hermel R, Vanbruggen CF, Haas C. X-ray photoelectron spectra of 3d transition metal pyrites. J Solid State Chem 1980; 33: 17-25.
- [23] Yang J, Cheng GH, Zeng JH, Yu SH, Liu XM, Qian YT. Shape control and characterization of transition metal diselenides MSe₂ (M = Ni, Co, Fe) prepared by a solvothermal-reduction process. Chem Mater 2001; 13: 848-853.
- [24] Zhang Y, Huang LB, Jiang WJ, Zhang X, Chen YY, Wei Z, Wan LJ, Hu JS. Sodium chloride-assisted green synthesis of a 3D Fe-N-C hybrid as a highly active electrocatalyst for the oxygen reduction reaction. J Mater Chem A 2016; 4: 7781-7787.
- [25] Lu J, Bo XJ, Wang H, Guo LP. Nitrogen-doped ordered mesoporous carbons synthesized from honey as metal-free catalyst for oxygen reduction reaction. Electrochim Acta 2013; 108: 10-16.
- [26] Zhao ZL, Wu HX, He HL, Xu XL, Jin YD. Self-standing non-noble metal (Ni-Fe) oxide nanotube array anode catalysts with synergistic reactivity for high-performance water oxidation. J Mater Chem A 2015; 3: 7179-7186.

- [27] Bron M, Bogdanoff P, Fiechter S, Dorbandt I, Hilgendorff M, Schulenburg H, Tributsch H. Influence of selenium on the catalytic properties of ruthenium-based cluster catalysts for oxygen reduction. J Electroanal Chem 2001; 500: 510-517.
- [28] Li HY, Gao D, Cheng X. Simple microwave preparation of high activity Se-rich CoSe₂/C for oxygen reduction reaction. Electrochim Acta 2014; 138: 232-239.
- [29] Liu XJ, Xu ZZ, Ahn HJ, Lyu SK, Ahn IS. Electrochemical characteristics of cathode materials NiS₂ and Fe-doped NiS₂ synthesized by mechanical alloying for lithium-ion batteries. Powder Technol 2012; 229: 24-29.
- [30] Sivanantham A, Ganesan P, Shanmugam S. Hierarchical NiCo₂S₄ nanowire arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv Funct Mater 2016; 26: 4661-4672.
- [31] Liang YY, Li YG, Wang HL, Zhou JG, Wang J, Regier T, Dai HJ. Co₃O₄ nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 2011; 10: 780-786.
- [32] Zhang S, Shao YY, Yin GP, Lin YH. Stabilization of platinum nanoparticle electrocatalysts for oxygen reduction using poly(diallyldimethylammonium chloride). J Mater Chem 2009; 19: 7995-8001.
- [33] Chen P, Wang LK, Wang G, Gao MR, Ge J, Yuan WJ, Shen YH, Xie AJ, Yu, SH. Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction. Energy Environ Sci 2014; 7: 4095-4103.
- [34] Alonso-Vante N, Malakhov IV, Nikitenko SG, Savinova ER, Kochubey DI. The structure analysis of the active centers of Ru-containing electrocatalysts for the

oxygen reduction. An in situ EXAFS study. Electrochim Acta 2002; 47: 3807-3814.

- [35] Solorza-Feria O, Ellmer K, Giersig M, Alonso-Vante N. Novel low-temperature synthesis of semiconducting transition metal chalcogenide electrocatalyst for multielectron charge transfer: molecular oxygen reduction. Electrochim Acta 1994; 39: 1647-1653.
- [36] Yang H, Alonso-Vante N, Leger JM, Lamy C. Tailoring, structure, and activity of carbon-supported nanosized Pt-Cr alloy electrocatalysts for oxygen reduction in pure and methanol-containing electrolytes. J Phys Chem B 2004; 108: 1938-1947.
- [37] Li Y, Zhou W, Wang H, Xie L, Liang Y, Wei F, Idrobo JC, Pennycook SJ, Dai H. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat Nanotechnol 2012; 7: 394-400.
- [38] Suárez-Alcántara K, Solorza-Feria O. Kinetics and PEMFC performance of Ru_xMo_ySe_z nanoparticles as a cathode catalyst. Electrochimica Acta 2008; 53: 4981-4989.
- [39] Suárez-Alcántara K, Rodríguez-Castellanos A, Dante R, Solorza-Feria O. Ru_xCr_ySe_z electrocatalyst for oxygen reduction in a polymer electrolyte membrane fuel cell. J Power Sources 2006; 157: 114-120.
- [40] Masud J, Nath M. Co₇Se₈ nanostructures as catalysts for oxygen reduction reaction with high methanol tolerance. ACS Energy Lett 2016; 1: 27-31.
- [41] Gao MR, Liu S, Jiang J, Cui CH, Yao WT, Yu SH. In situ controllable synthesis of magnetite nanocrystals/CoSe₂ hybrid nanobelts and their enhanced catalytic performance. J Mater Chem 2010; 20: 9355-9361.

Supporting Information

Table of contents

I The prepared materials corresponding to the precursors' amounts of FeSO4·7H₂O and Ni(NO₃)₂·6H₂O

II CVs, LSV and Nyquist plots of Co_xFe_{1-x}Se₂ and Co_xNi_{1-x}Se₂

IIIXPS spectra of Co_{0.7}Ni_{0.3}Se₂

IVSEM of Co0.9Fe0.1Se2, Co0.5Fe0.5Se2, Co0.9Ni0.1Se2 and Co0.5Ni0.5Se2

VLSV and Koutecky-Levich plots of Co_xFe_{1-x}Se₂, Co_xNi_{1-x}Se₂ and Pt/C

VITafel polts of Co_xFe_{1-x}Se₂, Co_xNi_{1-x}Se₂ and Pt/C

VIILSV of Co0.7Fe0.3Se2, Co0.7Ni0.3Se2 and Pt/C against fuel crossover effects

I The prepared materials corresponding to the precursors' amounts of FeSO4·7H2O and Ni(NO3)2·6H2O

Table S1

Material number	$FeSO_4 \cdot 7H_2O(g)$
$Co_{0.9}Fe_{0.1}Se_2$	0.030
$Co_{0.8}Fe_{0.2}Se_2$	0.070
$Co_{0.7}Fe_{0.3}Se_2$	0.120
$Co_{0.6}Fe_{0.4}Se_2$	0.185
$Co_{0.5}Fe_{0.5}Se_2$	0.278

The amounts of $FeSO_4 \cdot 7H_2O$

Table S2

The amounts of Ni(NO₃)₂.6H₂O

Material number	Ni(NO ₃) ₂ ·6H ₂ O (g)
Co _{0.9} Ni _{0.1} Se ₂	0.032
$Co_{0.8}Ni_{0.2}Se_2$	0.073
Co _{0.7} Ni _{0.3} Se ₂	0.125
$Co_{0.6}Ni_{0.4}Se_2$	0.194
Co _{0.5} Ni _{0.5} Se ₂	0.291

II CVs, LSV and Nyquist plots of Co_xFe_{1-x}Se₂ and Co_xNi_{1-x}Se₂

Fig. S2 showed CVs, LSV, and Nyquist plots of $Co_xFe_{1-x}Se_2$ and $Co_xNi_{1-x}Se_2$ with different iron or nickel contents in O₂-saturated 0.5 M H₂SO₄. Obviously, the electrocatalytic activities of Co_{0.7}Fe_{0.3}Se₂ and Co_{0.7}Ni_{0.3}Se₂ were better than others.

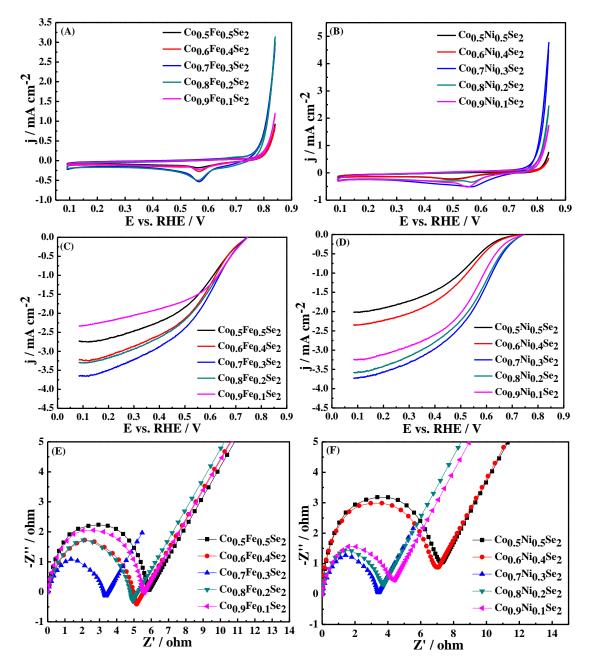


Fig. S2 CVs and LSV curves of (A, C) $Co_xFe_{1-x}Se_2$ and (B, D) $Co_xNi_{1-x}Se_2$ with different iron or nickel contents in O₂-saturated 0.5 M H₂SO₄ at a scan rate of 10 mV s⁻¹. Nyquist plots of (E) $Co_xFe_{1-x}Se_2$ and (F) $Co_xNi_{1-x}Se_2$ with different iron or nickel contents in O₂-saturated 0.5 M H₂SO₄ at open potential, frequency range: 1-10⁶ Hz.

IIIXPS spectra of Co_{0.7}Ni_{0.3}Se₂

Fig. S3 showed XPS spectra of the Co_{0.7}Ni_{0.3}Se₂. The binding energies of Co $2p_{3/2}$ (780.3 eV, Fig. S3 (A)) and Ni $2p_{3/2}$ (855.1 eV, Fig. S3 (B)) were much higher than CoSe₂ (Co $2p_{3/2}=778.7$ eV) and nickel diselenide (NiSe₂, Ni $2p_{3/2}=853.1$ eV). However, selenium shifts to negative binding energy of Se $3d_{5/2}$ (Fig. S3 (C)) compared to CoSe₂ (Se $3d_{5/2}=54.4$ eV), indicating that it was a complete ternary chalcogenide.

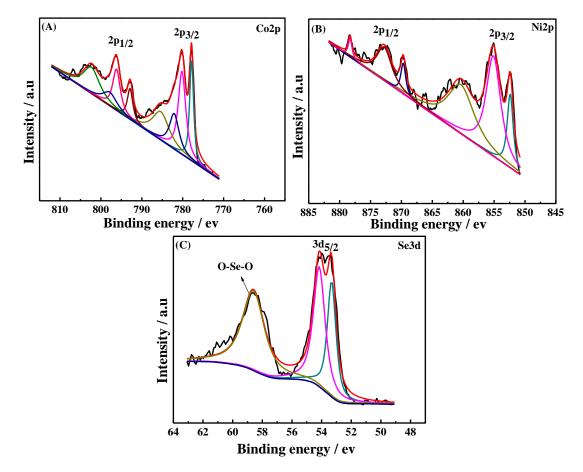


Fig. S3 XPS spectra of $Co_{0.7}Ni_{0.3}Se_2$ in the (A) Co 2p, (B) Ni 2p and (C) Se 3d regions.

IVSEM of Co0.9Fe0.1Se2, Co0.5Fe0.5Se2, Co0.9Ni0.1Se2 and Co0.5Ni0.5Se2

Fig. S4 showed SEM of (A) $Co_{0.9}Ni_{0.1}Se_2$, (B) $Co_{0.5}Ni_{0.5}Se_2$, (C) $Co_{0.9}Fe_{0.1}Se_2$ and (D) $Co_{0.5}Fe_{0.5}Se_2$. Obviously, all of the catalysts showed agglomerated surface and fluffy cotton-like microstructure. Furthermore, when the contents of doped Fe or Ni were higher, the morphology showed more agglomerated.

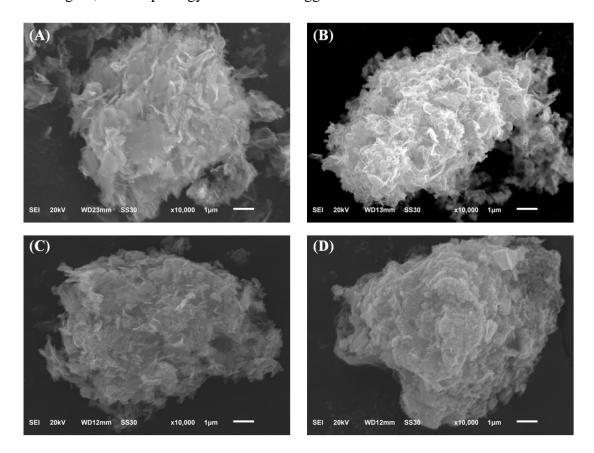
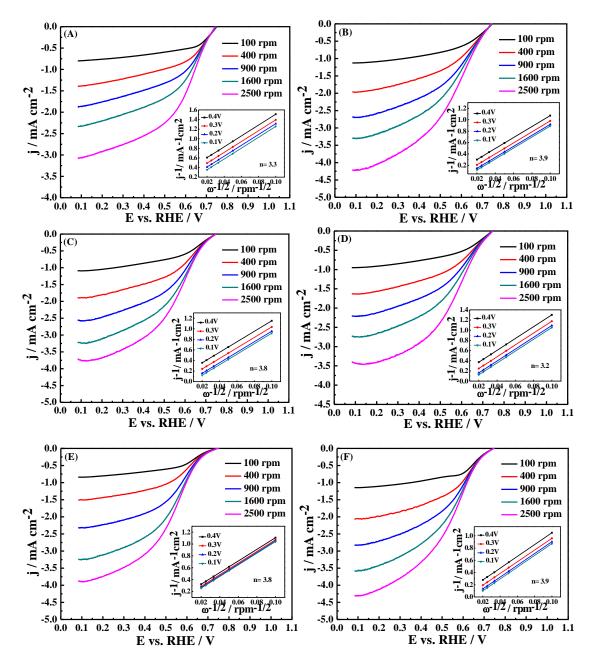



Fig. S4 SEM images of (A) Co_{0.9}Ni_{0.1}Se₂, (B) Co_{0.5}Ni_{0.5}Se₂, (C) Co_{0.9}Fe_{0.1}Se₂ and (D) Co_{0.5}Fe_{0.5}Se₂.

VLSV and Koutecky-Levich plots of Co_xFe_{1-x}Se₂, Co_xNi_{1-x}Se₂ and Pt/C

Fig. S5 showed LSV of $Co_xFe_{1-x}Se_2$ and $Co_xNi_{1-x}Se_2$ with different iron or nickel contents at different rotating rate. Obviously, the diffusion currents were enhanced with increasing rotating rate. The corresponding Koutecky-Levich plots showed good linearity at various potentials. Except for $Co_{0.7}Ni_{0.3}Se_2$ (Fig S5 (G)) and Pt/C (Fig S5 (J)) showed 4e⁻ ORR process, other catalysts involved mixed four-electron and two-electron reduction processes with H₂O₂ as the intermediate agent.

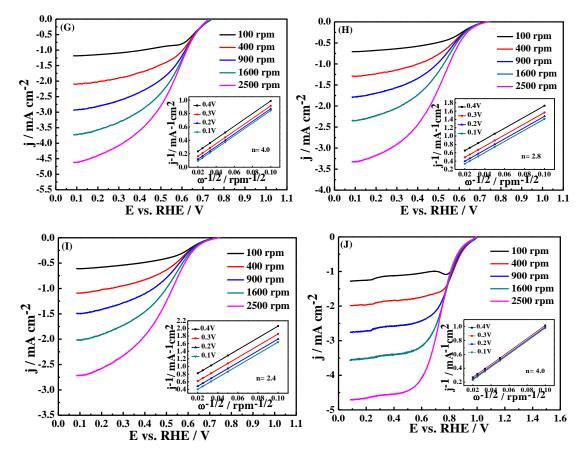


Fig. S5 LSV curves of (A) $Co_{0.9}Fe_{0.1}Se_2$, (B) $Co_{0.8}Fe_{0.2}Se_2$, (C) $Co_{0.6}Fe_{0.4}Se_2$, (D) $Co_{0.5}Fe_{0.5}Se_2$, (E) $Co_{0.9}Ni_{0.1}Se_2$, (F) $Co_{0.8}Ni_{0.2}Se_2$, (G) $Co_{0.7}Ni_{0.3}Se_2$, (H) $Co_{0.6}Ni_{0.4}Se_2$, (I) $Co_{0.5}Ni_{0.5}Se_2$ and (J) Pt/C in O₂-saturated 0.5 M H₂SO₄ at various rotation rates, the Koutecky-Levich plots were shown in corresponding inset.

VITafel polts of Co_xFe_{1-x}Se₂, Co_xNi_{1-x}Se₂ and Pt/C

Fig. S6 showed the tafel plots of the $Co_xFe_{1-x}Se_2$ (Fig. S6 (A)) and $Co_xNi_{1-x}Se_2$ (Fig. S6 (C)) with different iron or nickel contents, and Pt/C (Fig. S6 (E)). In addition to Pt/C, Tafel slopes of $Co_{0.7}Fe_{0.3}Se_2$ (110mV/decade) were smallest than others. The electron transfer number (n) and calculated kinetic-limited current density (*j_k*) value of different catalysts were clearly drawn in Fig. S6 (B) and (D). $Co_{0.7}Fe_{0.3}Se_2$ exhibited the highest *j_k* value of 1.83 mA cm⁻² at 0.30 V than other $Co_xFe_{1-x}Se_2$ and $Co_xNi_{1-x}Se_2$ catalysts.

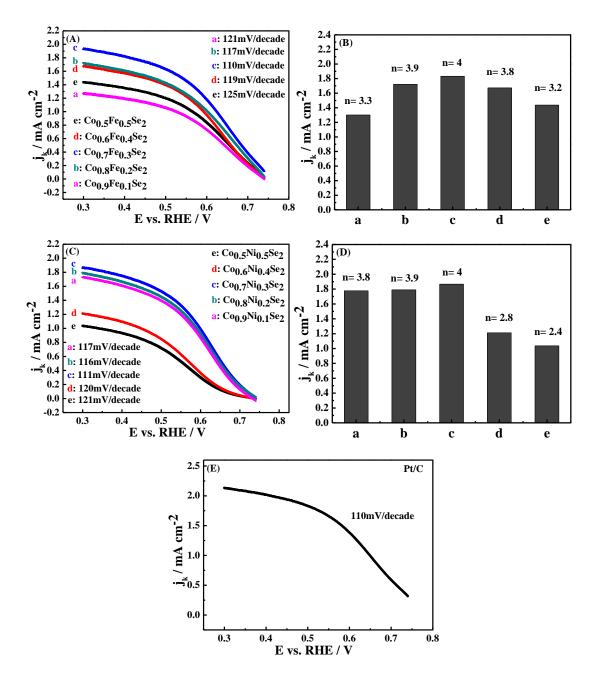


Fig. S6 Tafel polts of (A) $Co_xFe_{1-x}Se_2$ and (C) $Co_xNi_{1-x}Se_2$ with different iron or nickel contents at 1600 rpm, and Pt/C (E). (B, D) Electrons transfer number (n) and kinetic limiting current density (j_k) of (a) $Co_{0.9}Fe_{0.1}Se_2$, (b) $Co_{0.8}Fe_{0.2}Se_2$, (c) $Co_{0.7}Fe_{0.3}Se_2$, (d) $Co_{0.6}Fe_{0.4}Se_2$ and (e) $Co_{0.5}Fe_{0.5}Se_2$ and (a) $Co_{0.9}Ni_{0.1}Se_2$, (b) $Co_{0.8}Ni_{0.2}Se_2$, (c) $Co_{0.7}Ni_{0.3}Se_2$, (d) $Co_{0.6}Ni_{0.4}Se_2$ and (e) $Co_{0.5}Ni_{0.5}Se_2$ at 0.3V, respectively.

VILSV of Co0.7Fe0.3Se2, Co0.7Ni0.3Se2 and Pt/C against fuel crossover effects

Fig. S7 showed LSV of Pt/C (A, B, G), Co_{0.7}Fe_{0.3}Se₂ (C, E) and Co_{0.7}Ni_{0.3}Se₂ (D, F) in O₂-saturated 0.5 M H₂SO₄ containing different concentrations of CH₃OH, C₂H₅OH and (CH₂OH)₂. Obviously, Co_{0.7}Ni_{0.3}Se₂ and Co_{0.7}Fe_{0.3}Se₂ exhibited strong ability to avoid ethanol and ethylene glycol crossover effects.

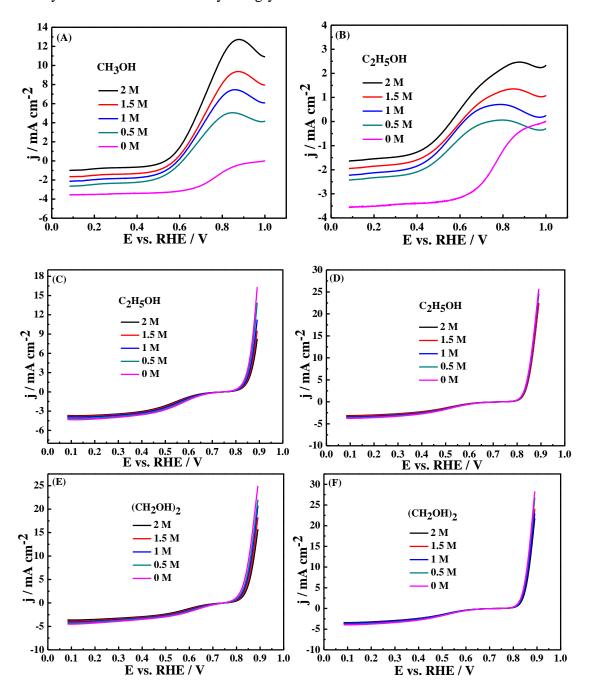


Fig. S7 LSV of (A, B, G) Pt/C, (C, E) $Co_{0.7}Fe_{0.3}Se_2$ and (D, F) $Co_{0.7}Ni_{0.3}Se_2$ in O₂-saturated 0.5 M H₂SO₄ containing different concentrations of CH₃OH, C₂H₅OH and (CH₂OH)₂.