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Logarithmic Size Ring Signatures without Random Oracles
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Abstract. Ring signatures enable a user to anonymously sign a message on behalf of group of users. In

this paper, we propose the first ring signature scheme whose size is O(log2 N), where N is the number of

users in the ring. We achieve this result by improving Chandran et al.’s ring signature scheme presented

at ICALP 2007. Our scheme uses a common reference string and non-interactive zero-knowledge proofs.

The security of our scheme is proven without requiring random oracles.

Keywords: Ring Signature, Common Reference String, Non-Interactive Zero-Knowledge Proof.

1 Introduction

The notion of ring signature was put forth by Rivest et al. [16] in 2001. In such a scheme, anyone can sign

a message on behalf of an ad-hoc created group (i.e. the ring) anonymously. In 2007, Chandran et al. [8]

presented a novel approach to achieve a sub-linear size ring signature scheme without random oracles, with

perfect anonymity in the common reference string model. Their scheme is proven secure under the Strong

Diffie-Hellman and the Subgroup Decision assumptions, by setting the ring as a
√
N ×

√
N matrix for N

members. In this work, we aim to further reduce the size of a ring signature, which is a very challenging

task.

Our Contributions

In this paper, we provide the first ring signature with logarithmic size without random oracles. To achieve

our result, we extend the idea proposed by Chandran et al. [8]. We construct our scheme following their

techniques using composite order groups with a bilinear map. We prove it secure under the Strong Diffie-
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Hellman and the Subgroup Decision assumptions. We obtain perfect anonymity in the common reference

string model.

The crux of our scheme is that we achieve O(log2(N)) for the ring signatures size, where N is the number

of members in the ring. In the following table, we compare our scheme with the one from Chandran et al.

[8] to highlight the difference in performance.

Scheme Size of the common Size of the Number of elements Typical Values for k = 128
reference string ring signature in the signature N = 1,000 N = 10,000 N = 100,000

Chandran et al.’s [8] O(k) O(k
√
N) 6 + 6dk

√
Ne 24292 76806 242869

Our approach O(k) O(k log2(N)) 6 + 7dk log2(N)e 8935 11912 14888
Table 1. Comparison of the size of the ring signature and the number of elements in the signature between Chandran
et al.’s work [8] and ours, including the size of the common reference string. Let N be the number of members and k
be the security parameter.

Our Technique

The novelty of our scheme is to construct the ring as a log2(N)-dimensional hypercube for N members,

which yields a logarithmic size ring signature scheme. A d-dimensional hypercube has N = 2d vertices and

d2d−1 edges. Each vertex corresponds to a d-bit binary string and two vertices are linked with an edge if

and only if their binary strings differ in precisely one bit. Therefore, each vertex is adjacent to d= log2(N)

other vertices, one for each bit position. We illustrate the hypercubes with N equal to 2, 4 and 8 in Fig. 1.

In [8], a grid is picked such that the diameter is of the square root of the number of the points on the

graph, i.e.
√
N . In our paper, we consider the hypercube as a graph which has the smallest diameter for a

given number of points. Thus, the diameter is of the logarithm of number of the points on the graph, i.e.

log2(N).

In our approach, we use a log2(N)-dimensional hypercube as a N -member ring to construct the signature.

Each verification key v in the ring is indexed by a d-bit string, denoted as b1b2 · · ·bd. In order to retrieve v,

we need to follow the path formed by all the bits, from b1 to bd. We obtain v as the vertex corresponding to

b1 · · ·bd. Moreover, the signature related to the verification key v has an equal size to the length of the path

between two vertices of the hypercube, i.e. between two points of the graph. We illustrate the graph with N
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Fig. 1. The N -vertex hypercube for N = 2,4,8. Two vertices are linked with an edge if and only their string differ in
precisely one bit position. Diameters are shown in dashed line.
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equal to 16 in Fig. 2.

Fig. 2. N = 16. The diameter is shown in dashed line and the squares represent the points through which the diameter
passes.
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In Fig. 3, we compare the paths in the grid and the hypercube. The paths start from point (resp. vertex)

0010 and finish at point (resp. vertex) 1100. We notice that in the grid, the path is 5-edge long, whereas

in the hypercube, it is only 3-edge long. This is due to that in a hypercube, we reach intermediate vertices

that differ from their direct neighbors in only one bit. Since 0010 and 1100 differ in three bits (only the last
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bit remains unchanged), we must pass through 1010 and 1110 to reach 1100. In the grid, we pass through

“useless” points 0110 and 1101, increasing the number of edges in the path’s length. The diameter of a

hypercube is always shorter than the one of the grid and the same property holds for the paths between

two given vertices (resp. points). While Chandran et al. [8] constructed their scheme based on a
√
N ×
√
N -

matrix, which is treated as a grid, our construction relies on structure of a hypercube. Hence, in our scheme,

the verification keys will be the vertices of a hypercube of dimension log2(N) and the size of the signature

will depend of the path built to reach a targeted verification key.

Fig. 3. N = 16. In the grid (resp. hypercube), the path is drawn from point (resp. vertex) 0010 to point (resp. vertex)
1100. The grid’s path is 2-edge longer than the hypercube’s one.
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Related Work

Ring signatures have been found very promising in many practical applications [15, 9]. Rivest et al. [16]

proved their unconditional anonymous scheme is secure in the random oracle model. Zhang and Kim [20]

incorporated the notion of identity-based cryptography to avoid the necessity of incorporating certificates.

Subsequently, Au et al. constructed a certificate-based ring signature scheme in [1]. Traceable ring signature

was proposed by Fujisaki and Suzuki [10]. Liu et al. [14] presented the first linkable ring signature scheme sat-

isfying anonymity, linkability, and spontaneity. Wang and Liu [19] introduced the notion of signer-admission

ring signature, which is a combination of designated confirmer signatures and designated verifier proofs. In

most practical applications, the description of the ring is linear to the number of members but Dodis et al.

[9] proposed a scheme that is independent of the size of the ring in the random oracle model. Chow et al.
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[7] constructed a scheme proved secure against adaptive chosen message attack without random oracles. In

the same way, Bender et al. [4] suggested a scheme using generic ZAPs for NP in the standard model, but

it seems impractical. In addition, Shacham and Waters [18] gave a linear size ring signature, whose secu-

rity relies on the computational setting of the new definitions of [4], without random oracles. Namely, they

proposed a scheme anonymous against full key exposure and unforgeable with respect to insider corruption

attacks. Finally, Boyen [5] proposed a construction of linear size in the common random string model with

everlasting perfect anonymity. Schäge and Schwenk [17] constructed another ring signature scheme in the

standard model using basic assumptions.

2 Preliminaries and Definitions

2.1 Negligible Function

Let negl(k) be a function in the security parameter k. We say that negl(k) is a negligible function if for all

polynomials p(k), for all sufficiently large k, negl(k)< 1/p(k).

2.2 Bilinear Composite Order Groups

Let BMGen be a randomized algorithm that outputs (p,q,G,GT ,e,g) as follows:

– G and GT are multiplicative cyclic groups of order n= pq,

– g is a generator of G,

– e : G×G→GT is an efficiently computable map such that:

• Bilinearity: ∀u,v ∈G, ∀a,b ∈ Zn, e(ua,vb) = e(u,v)ab,

• Non-degeneracy: e(g,g) is a generator of GT whenever g is a generator of G,

– the group operations on G and GT can be performed efficiently.

Let Gp and Gq be the unique subgroups of G of orders p and q respectively. We recall that u 7→ uq maps u

into Gp.

2.3 Boneh-Boyen Signature Scheme

Our approach is inspired by [8], where the main ingredient of the construction is Boneh-Boyen signature

scheme [2], proved existentially unforgeable under weak chosen message attack based on the Strong Diffie-

Hellman assumption.



6

As in [8], one can translate the Boneh-Boyen’s scheme into one in the composite group order model

such that forging a signature in Gp under weak chosen message attack is infeasible, based on the Strong

Diffie-Hellman assumption in Gp. The Boneh-Boyen signature scheme consists of three algorithms:

– KeyGen: given a tuple (p,q,G,GT ,e,g), pick at random sk ∈R Z∗n and compute v = gsk. The key pair

is (v,sk).

– Sign: given a secret key sk ∈ Z∗n and a message M ∈ {0,1}l, output the signature δ = g
1

sk+M . By

convention, 1/0 is defined to be 0, thus sk+M = 0⇒ δ = 1. We have l < |p|.

– Verify: given a public key v, a message M ∈ {0,1}l and a signature δ ∈G, verify that e(δ,vgM ) = e(g,g).

If equality holds, output “Accept”; otherwise “Reject”.

2.4 Commitment and Encryption Schemes

The commitment/encryption scheme based on the Subgroup Decision assumption proposed in [3] is employed

in our construction. The assumption is defined in the next section.

We construct a scheme where a public key v and an element h are description of the composite order

group G. This element h is random and of order either n for perfect hiding commitment or q for encryption.

It implies that perfect hiding commitment keys look exactly the same as encryption keys.

2.5 Ring Signature Scheme

We define a ring signature scheme following [4, 8].

Definition 1 (Ring Signature). A ring signature comprises four PPT algorithms as follows:

– Gen(1k): on input the security parameter k, outputs a common reference string λ.

– KeyGen(λ) is run by the user: on input a common reference string λ, outputs a public verification key

v and a private signing key sk.

– Sign(λ,sk,M,S): on input a message M and the ring S = {v1, · · · ,vN}, outputs a signature δ along with

(M,S). We require that (v,sk) is a valid key pair output by KeyGen and that v ∈ S.

– Verify(λ,S,M,δ): on input a purported signature δ on a message M with respect to the ring of public

keys S, outputs “Accept” if the signature is correctly verified, otherwise “Reject”.
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Perfect Correctness: A ring signature (Gen,KeyGen,Sign,Verify) has perfect correctness if for all

probabilistic polynomial-time (PPT) adversary A, the probability of:

λ←Gen(1k); (v,sk)←KeyGen(λ); (M,S,δ)← Sign(λ,sk,M,S) : Verify(λ,S,M,δ) = 1∨v /∈ S

is equal to 1.

3 Security

3.1 Security Properties

Intuitively, we require that a ring signature (Gen,KeyGen,Sign,Verify) has perfect anonymity if a

signature on message M under ring S and key vi0 is indistinguishable from a signature on message M under

ring S and key vi1 . The formal definition is as follows.

Definition 2 (Perfect Anonymity). Given a ring signature (Gen,KeyGen,Sign,Verify), a polynomial

N( ), and a PPT adversary A, we consider the following game:

1. A chooses the ring of verification keys S = {v1, · · · ,vN(k)}, such that λ ← Gen(1k) and (vi,ski) ←

KeyGen(λ), where i ∈ {1, · · · ,N(k)}.

2. A is given access (throughout the entire game) to an oracle OSign, such that OSign(α,M,S) returns

Sign(λ,skα,M,S), where vα ∈ S.

3. A outputs a message M , distinct indices i0, i1, and a ring S for which vi0 ,vi1 ∈ S (i.e. (vi0 ,ski0) and

(vi1 ,ski1) have been generated by the oracle KeyGen(λ)). A random bit b is chosen, and A is given the

signature δ← Sign(λ,skib ,M,S).

4. The adversary outputs a bit b′, and succeeds if b′ = b.

A ring signature scheme achieves perfect anonymity, if for any PPT adversary A and any polynomial N( ),

the success probability of A in the above game is equal to 1/2.

We also require that a ring signature (Gen,KeyGen,Sign,Verify) is unforgeable (regarding insider

corruption) if it is not feasible to forge a ring signature on a message without controlling one of the members

in the ring.
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Definition 3 (Computational Unforgeability). A ring signature (Gen,KeyGen,Sign,Verify) is com-

putationally unforgeable if for any PPT adversary A and any polynomial N( ), the probability that A succeeds

in the following game is negligible:

1. A is given the ring of verification keys S = {v1, · · · ,vN(k)}, such that λ← Gen(1k) and (vi,ski)←

KeyGen(λ), where i ∈ {1, · · · ,N(k)}.

2. A is given access to a generator oracle VKGen, where VKGen(α,wα) runs (vα,skα)←KeyGen(λ,wα),

such that wα is randomly selected by the oracle, and outputs vα.

3. A is given access to a signing oracle OSign, where OSign(α,M,S) outputs Sign(λ,skα,M,S), such

that (vα,skα) has been generated by VKGen.

4. A is given access to a corrupt oracle Corrupt, where Corrupt(α) outputs skα.

5. A outputs (S∗,M∗, δ∗), and succeeds if Verify(λ,S∗,M∗, δ∗) = 1. We require that A never queried

( ,M∗,S∗), and S∗ only contains verification keys vα generated by VKGen, where α has not been

corrupted.

3.2 Assumptions

Definition 4 (Subgroup Decision Assumption). Given the generator BMGen, we define the following

distribution:

(p,q,G,GT ,e,g)←BMGen(1k), D = (n= pq,G,GT ,e,g).

The Subgroup Decision assumption holds if there is a negligible function ε (in the security parameter k) so

for any non-uniform polynomial time adversary A, we have:

Pr[r← Z∗n;h= gr :A(D,h) = 1]−Pr[r← Z∗q ;h= gpr :A(D,h) = 1]≤ ε(k).

Definition 5 (Strong Diffie-Hellman Assumption). Given the generator BMGen, we define the fol-

lowing distribution:

(p,q,G,GT ,e,g)←BMGen(1k), D = (p,q,G,GT ,e,g).
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The Strong Diffie-Hellman assumption holds in Gp if there is a negligible function ε (in the security parameter

k) so for any non-uniform polynomial time adversary A, we have:

Pr[x← Z∗p :A(D,gq,gqx,gqx
2
, · · ·) = (c,g

q
x+c ) ∈ Zp×Gp]< ε(k).

3.3 Non-Interactive Zero-Knowledge Proof

To prove that a statement is true, we can use a non-interactive zero-knowledge (NIZK) proof which is

complete and sound, such that no interaction is needed between the prover and the verifier.

Using results in [11] providing short common reference string and non-interactive zero-knowledge (NIZK)

proofs for any NP language, Boyen and Waters [6] gave a NIZK proof for the statement γ = (g2M−1hr)r

verified by e(c,g−1) ?= e(h,γ). For h of order n, the proof has perfect zero-knowledge as γ is determined from

the verification equation and thus, no information is leaked from the proof. For h of order q, the verification

enables us to show that e(c,g−1) has order q, that implies M = 0 mod p or M = 1 mod p.

In [12], general methods are presented for constructing simple and efficient NIZK proofs over bilinear

groups.

4 Logarithmic-size Ring Signature Scheme

Let ring S = {v1, · · · ,vN} be fixed and public. A signer knows ska corresponding to one of the verification

keys in the ring S and wants to sign message M . The verification keys are issued as the ones in Boneh-Boyen

signature scheme. The signer creates a signature as follows:

1. The signer selects one-time signature keys (vkOT ,skOT )←OTGen(1k). The message M is signed follow-

ing the one-time signature scheme. The verification key vkOT and the one-time signature are published.

The signer certifies vkOT by signing it with Boneh-Boyen signature under va.

2. The signer needs to hide va and the certifying signature on vkOT . Therefore, he/she makes two perfectly

hiding commitments to va and the signature respectively. Then, the signer makes a NIZK proof that the

commitments contain the aforementioned elements.

3. The signer proves that the committed verification key is an element of ring S. The innovation in the

scheme is the logarithmic size proof. The signer arranges S in a d-dimensional hypercube, where N = 2d

(we carefully explain the process below). For i ∈ {1, · · · ,d}, he/she commits from the first bit b1 to the
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last bit bd of the string a of the hypercube that contains va and makes a NIZK proof that the committed

verification key appears in this vertex vb1···bd
.

4.1 Construction

Gen generates a common reference string that contains the description of a composite order group and a

public key for the perfectly hiding commitment scheme.

Gen(1k): Let the perfectly hiding commitment scheme be as follows. Run (p,q,G,GT ,e,g)←BMGen(1k).

Set n= pq, pick at random x ∈R Z∗n and compute h= gx. Output (n,G,GT ,e,g,h).

The users’ key generation algorithm KeyGen takes as input a common reference string and outputs a

signing public-private key pair (v,sk). In this case, it will output keys for the Boneh-Boyen signature scheme

that is secure against weak message attack.

KeyGen(n,G,GT ,e,g,h): Let the Boneh-Boyen signature scheme with public key (g,v) be as follows. Pick

at random sk ∈R Z∗n, and compute v = gsk. Output (v,sk).

A user with keys (va,ska) wants to sign message M under the ring S = {v1, · · · ,vN} of size N . Then,

a is mapped to a d-bit binary string as follows: a f7→ b1b2 · · ·bd such that f : S → {b1b2 · · ·bd;bi ∈ {0,1}, i ∈

{1, · · · ,d}} is public and bijective. It is useful to think S as a d-dimensional hypercube: we assume the ex-

istence of a public map from S onto a d-dimensional hypercube that identifies each vka with exactly one

vertex of the hypercube, labelled with a d-bit binary string. For instance, for a f7→ b1b2 · · ·bd, va corresponds

to the vertex defined as b1b2 · · ·bd. The verification key v is seen as a point in a d-dimensional space, where

d= log2(N). A ring S contains N elements v indexed by log2(N) bits.

Informally, we construct the commitments using the followong idea. From the vertex vb1b2···bd
, there are

d edges that reach d different vertices. These vertices differ from the vertex vb1b2···bd
in exactly one bit.

For instance, from v000···000, we can reach v000···001, v000···010, · · · , v010···000 and v100···000. In particular,

from vb1b2···bi···bd
, we can reach the vertex vb1b2···b̄i···bd

such that b̄i = |bi−1| ∈ {0,1}. Let ∗ denote the se-

quence of bits from the j-th position until the d-th position such that 1≤ j ≤ d and for j ≤ i≤ d, the bit is
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equal to either bi or b̄i (we only consider strings of bit-length d). Thus, we can retrieve the verification key

va = vb1b2···bd
following the path formed by the vertices vb1∗, vb1b2∗, · · · , vb1b2···bd−1∗ and vb1b2···bd−1bd

. More

precisely, from the verification key va such that a f7→ b1b2 · · ·bd, we can reach either vb̄1b2···bd
, vb1b̄2···bd

, · · · , or

vb1b2···b̄d
. Therefore, when we want to reach va, we first access the first bit b1 of a, i.e. vb1∗. If we find vb̄1∗,

then we know that one of the direct neighbors is vb1∗ that we decide to reach. We then access the second bit

b2 of a, i.e. vb1b2∗. We have already found vb1∗, thus we may meet either vb1b2∗ or vb1b̄2∗. If we find vb1b2∗,

we remain there. If we find vb1b̄2∗, then we know that one of the direct neighbors is vb1b2∗ that we decide to

reach. We apply the same methodology for the other bits b3, · · · , bd. Moroever, if we see the hypercube as a

graph whose diameter is the smallest for a given number of points, then the resulting signature is of length

of the path between two points of the graph. We illustrate the methodology to reach v for hypercubes with

N equal to 4 and 8 in Fig. 4.

Fig. 4. The N -vertex hypercube for N = 4,8. The paths are shown in dashed lines to reach v11 and v011. We arbitrary
start from v00 and v000 respectively, but we can start anywhere.

v00 v10

v01 v11

v100

v101

v001

v000 v010

v011

v111

N=4 N=8

v110

target v11 target v011

change the 1st bit

change the 2nd bit

change the 2nd bit

change the 3rd bit

Sign((n,G,GT ,e,g,h,ska),M,S):

– First, establish a one-time signature on the message and the ring, such that the pair (vkOT , δOT ) is

public. Run (vkOT ,skOT )←OTGen(1k), and δOT ← Sign(skOT ,M,S). The pair (vkOT , δOT ) is made

public.
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– Pick at random r ∈R Zn and compute A = vah
r, δa = g

1
ska+vkOT . Randomly choose s ∈R Zn and B =

δah
s,γB = g

r
ska+vkOT

+(ska+vkOT )s
hrs.

δa is the signer’s certifying signature on vkOT , and A and B are perfectly hiding commitments to va, δa,

respectively. γB is a NIZK proof that A and B contain respectively a verification key and a signature on

vkOT , using results from [11].

The rest of the protocol is a NIZK proof that A contains va ∈ S without revealing which one, using

results from [6, 11].

– For a= b1b2 · · ·bd, start the NIZK proof from the first bit b1 of a, then the second bit b2, and so on until

the last bit bd. Let vbi
= vb1···bi−1bi∗ and vb̄i

= vb1···bi−1b̄i∗, where ∗ denotes the sequence of bits from

the i+ 1-th position until the d-th position such that, for i+ 1 ≤ j ≤ d, the bit is equal to either bj or

b̄j . Randomly choose rbi
∈R Zn, and set Cbi

= ghrbi and γCbi
= (ghrbi )rbi . Set rb̄i

=−rbi
, Cb̄i

= h
rb̄i and

γC
b̄i

= (g−1h
rb̄i )rb̄i .

More precisely, for i ∈ {1, · · · ,d}, the commitments Cbi
,Cb̄i

are chosen so that Cbi
is a commitment to g

whereas Cb̄i
is a commitment to 1, i.e. Cbi

Cb̄i
= g. The proofs γbi

,γb̄i
are NIZK proofs such that each

Cbi
,Cb̄i

contains either g or 1. Cbi
Cb̄i

= g tells the verifier that there is exactly one Cbi
that contains g,

while the other commitment contains 1. Compute Ebi
= e(Cbi

,vbi
)e(Cb̄i

,vb̄i
) = e(g,vbi

)
∏
j∈{bi,b̄i} e(h

rj ,vj),

which is a commitment to e(g,vbi
).

– Pick at random sbi
,sb̄i
∈R Zn, and compute Dbi

= vbi
hsbi , Db̄i

= vb̄i
h
sb̄i and γDbi

= g−sbi v
rbi
bi
v
rb̄i1
b̄i

.

Specifically, the Dbi
are commitments to verification keys vbi

∈ S such that the i-th bit of a is bi, for

i = 1, · · · ,d. In particular, Dbd
is the commitment to verification key va = vbd

. The Ebi
contain the bit

bi of S paired with g. γDb1 , · · · ,γ
D
bd

are NIZK proofs that Db1 , · · · ,Dbd
contain elements that paired with

g give the contents of Eb1 , · · · ,Ebd
. This demonstrates to the verifier that Dbi

contain the bit bi in the

indices of the verification keys in S.

– Compute γA = gsbd
−r∏

j∈{bd,b̄d} v
rj

j h
sjrj for bd as the last bit of a.

Here, E = e(Dbd
,Cbd

)e(Db̄d
,Cb̄d

) is a commitment to e(g,vbd
). We recall that vbd

= va. γA is a NIZK

proof that the content of A paired with g corresponds to the content in E.

– Output the signature δ= (vkOT , δOT ,A,B,γB ,{Cbi
,Cb̄i

: i∈{1, · · · ,d}},{γCbi
,γC
b̄i

: i∈{1, · · · ,d}},{Dbi
,Db̄i

:

i ∈ {1, · · · ,d}},{γDbi
: i ∈ {1, · · · ,d}},γA).
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Verify((n,G,GT ,e,g,h,S),M,δ):

1. Verify that δOT is a one-time signature of M,S under vOT .

2. Verify e(B,AgvkOT ) ?= e(g,g)e(h,γB).

3. Verify e(Cbi
,Cbi

g−1) ?= e(h,γCbi
) and e(Cb̄i

,Cb̄i
g−1) ?= e(h,γC

b̄i
) for all 1≤ i≤ d and Cbi

Cb̄i

?= g.

4. Compute Ebi
= e(Cbi

,vbi
)e(Cb̄i

,vb̄i
). and verify Ebi

?= e(g,Dbi
)e(h,γDbi

) for all 1≤ i≤ d.

5. Compute E = e(Dbd
,Cbd

)e(Db̄d
,Cb̄d

) and verify E ?= e(A,g)e(h,γA).

6. If all the above steps verify correctly, then output “Accept”; otherwise, output “Reject”.

4.2 Security Proofs

Theorem 1. The quadruple (Gen,KeyGen,Sign,Verify) is a ring signature scheme with perfect correct-

ness, perfect anonymity and computational unforgeability under the Subgroup Decision assumption, the Strong

Diffie-Hellman assumption and given that the one-time signature is unforgeable.

Proof. Perfect correctness For λ←Gen(1k), for (v,sk)←KeyGen(λ), for any message M with respect

to a ring S, we prove the perfect correctness by showing that the equalities in the algorithm Verify hold.

– Point 2. Verify the following equality e(B,AgvkOT ) ?= e(g,g)e(h,γB).

e(B,AgvkOT ) = e(δahs,vahrgvkOT ) = e(g
1

ska+vkOT hs,gskahrgvkOT )

= e(g
1

ska+vkOT h,gska+vkOT h)rs = e(g
1

ska+vkOT ,gska+vkOT )rse(h,h)rs

= e(g
r

ska+vkOT ,g(ska+vkOT )s)e(hrs,h) = e(g
r

ska+vkOT hrs,g(ska+vkOT )sh)e(g,g)

= e(g,g)e(h,γB).

– Point 3. For i ∈ {1, · · · ,d},

e(Cbi
,Cbi

g−1) = e(ghrbi ,ghrbi g−1) = e(ghrbi ,hrbi ) = e((ghrbi )rbi ,h) = e(h,γCbi
)

e(Cb̄i
,Cb̄i

g−1) = e(hrb̄i ,h
rb̄i g−1) = e(g−1h

rb̄i ,h
rb̄i ) = e((g−1h

rb̄i )rb̄i ,h) = e(h,γC
b̄i

).
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– Point 4. Verify the following equality Ebi

?= e(g,Dbi
)e(h,γDbi

) for all i ∈ {1, · · · ,d}.

e(g,Dbi
)e(h,γDbi

) = e(g,vbi
hsbi )e(h,g−sbi )e(h,v

rbi
bi
v
rb̄i

b̄i
)

= e(g,vbi
)e(h,v

rbi
bi

)e(h,v
rb̄i

b̄i
)

= e(g,vbi
)

∏
j∈{bi,b̄i}

e(hrj ,vj) = Ebi
.

– Point 5. Verify the following equality E ?= e(A,g)e(h,γA).

e(A,g)e(h,γA) = e(vahr,g)e(h,gsbd
−r ∏

j∈{bd,b̄d}

v
rj

j h
sjrj )

= e(vahr,g)e(h,gsbd
−r)e(h,

∏
j∈{bd,b̄d}

v
rj

j h
sjrj )

= e(vahr,g)e(h,gsbd
−r)

∏
j∈{bd,b̄d}

e(vrj

j h
sjrj ,h)

= e(vbd
hsbd ,g)e(vbd

hsbd ,hrbd )e(vb̄d
h
sb̄d ,h

rb̄d )

= e(vbd
hsbd ,ghrbd )e(vb̄d

h
sb̄d ,h

rb̄d ) = E. ut

Perfect anonymity. Following [6, 11, 12], we will prove that our scheme is secure in the anonymity

game against adaptively chosen message attacks. Informally, the perfect anonymity comes from two in-

tuitive arguments. First, for skOT ∈R Z∗n, vkOT = gskOT , and for some message M , δOT = g
1

skOT +M ,

meaning that vkOT and δOT are similarly generated, regardless which signing key is used. Second, all

the commitments are perfectly hiding and the proofs are perfectly zero-knowledge, when h has order n.

In addition, an adversary can tell whether h is a random generator of Gq or G with negligible probability

using a reduction proof based on the Subgroup Decision problem.

We assume there exist a simulator B that plays the Subgroup Decision problem with probability AdvB

and an adversary A that wants to break the anonymity of the above ring signature scheme. In the game

G0, the simulator computes h as an element in G and in the game G1, it computes h as an element in

Gq. We denote the adversary’s advantage in these games as AdvA and AdvA,G1 , respectively.

We consider a simulator B receiving the Subgroup Decision challenge λ= (n,G,GT ,e,g,h). It then creates

the public parameters as in the real scheme, and sends the parameters to an adversary A and plays the
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anonymity game with it. If h ∈G, then A plays the normal game G0. If h ∈Gq, then A plays the hybrid

game G1. We assume that B is able to reply all the adaptively chosen message queries, i.e. it is able to

issue the signing keys for any user and to sign any message by any user, since it knows the challenge λ.

At some point, A chooses one message M and two identities i0 and i1 it wishes to be challenged on.

We assume that the adversary had not previously made a signing key query on ix. B creates a challenge

signature on M , and A guesses the identity of the signer. If A answers correctly, then the simulator

outputs b = 1, meaning that h is guessed to be in G. Otherwise, it outputs b = 0, meaning that h is

guessed to be in Gq.

We denote the simulator’s advantage as AdvB in the Subgroup Decision game. Since Pr[h ∈G] = Pr[h ∈

Gq] = 1
2 , we obtain that:

AdvA−AdvA,G1 =Pr[b= 1|h∈G]−Pr[b= 1|h∈Gq] = 2Pr[b= 1∧h∈G]−2Pr[b= 1∧h∈Gq] = 2AdvB ≤ 2ε.

The result comes from that AdvB must be smaller than ε due to the hardness of the assumption.

Next, in the real scheme, when h belongs to Gq instead of G, the challenge signature is statistically

independent of the signer’s identity in the adversary’s view: we will determine what the adversary may

deduce from δ.

First, we observe that vkOT , δOT ,A,B,γB do not depend on the signer identity. However, since A is com-

putationally unbounded, we assume that these values reveal some information relative to the exponents.

Second, we consider Cbi
,Cb̄i

, and the corresponding γCbi
,γC
b̄i

for each i∈ {1, · · · ,d}. There are two hypothe-

ses that may be formulated by A: bi = 0 or bi = 1. For either hypothesis, there is a solution. Since h is a

generator of Gq, there are ηi,0,ηi,1 ∈ Zq for each i ∈ {1, · · · ,d}, such that Cbi=1 = ghηi,1 = hηi,0 = Cbi=0.

Thus, we obtain that γCbi=0 = (ghηi,1)ηi,1 = (hηi,0)ηi,1 = (hηi,1)ηi,0 = (g−1hηi,0)ηi,0 = γCbi=1. This means

that the knowledge of Cbi
,Cb̄i

, γCbi
,γC
b̄i

for each i ∈ {1, · · · ,d} does not reveal no information about the

bit bi, and therefore, it does not reveal the identity of the signer.

Finally, we focus on Dbi
,Db̄i

,γDbi
for i∈ {1, · · · ,d}, and γA. These values are redundant in the adversary’s

view since the A already knows all the values that determine them.

Therefore, the identity is statistically independent of the entire signature δ, that means AdvA,G1 = 0.

Thus, we obtain that AdvA ≤ 2ε. ut



16

Computational unforgeability. Following [6, 11, 12], our scheme is proved computationally unforge-

able with relation to insider corruption. Informally, under the Subgroup Decision assumption, the prob-

ability that the forgery happens when we switch from h of order n in a common reference string to h of

order q is negligible. The commitments are now perfectly binding in Gp and the NIZK proofs are per-

fectly sound in Gp, and therefore some uncorrupted va ∈ S is contained in A and a signature δa on vkOT

under va is contained in B. We carefully develop this part in the proof below. Next, by the properties of

the one-time signature scheme, vkOT has not been used in any other signature and thus, δa is a forged

Boneh-Boyen signature on vkOT . We omit this part since the proof is quite straightforward: Boneh and

Boyen [2] showed that this probability is negligible under the Strong Diffie-Hellman assumption.

We assume there exists a simulator B that plays the Subgroup Decision problem with probability AdvB

and an adversary A that wants to break the unforgeability of the above ring signature scheme. B receives

the Subgroup Decision challenge λ= (n= pq,G,GT ,e,g,h), where (p,q,G,GT ,e,g)←BMGen(1k) and

h is either equal to gr for r ∈ Zn or to gpr for r ∈ Zq. More precisely, in the game G0, B computes

h as an element in G and in the game G1, it computes h as an element in Gq. B runs A with input

the verification keys S = {v1, · · · ,vN} that B generates as in the real scheme. B also selects a user

ã ∈ {1, · · · ,N} at random. If h ∈ G, then A plays the normal game G0. Otherwise, if h ∈ Gq, then A

plays the hybrid game G1.

B proceeds to simulate the oracle queries of A as follows.

– When A requests a signature on a message M , with respect to ring S (S might contain some

verification keys generated in an arbitrary manner by A), to be signed by user a 6= ã, then B can

easily generate the response to this query by running the Sign algorithm in a honest manner.

– When A requests a signature on message M , with respect to ring S (S might contain some verification

keys generated in an arbitrary manner by A), to be signed by user ã, then B cannot directly respond

to this query since it does not have the appropriate secret key for ã (we recall that vã = gskã for

some unknown skã). Instead, B submits M to its signing oracle and obtains in return a signature for

ã. The remainder of the signature is calcultated as in the real scheme using h.
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– Any corruption query made by A for user a 6= ã can be accurately answered by B. However, if A ever

makes a corruption query for ã, then B simply aborts.

At some point, A outputs a forgery δ∗ = (vkOT , δOT ,A∗,B∗,γ∗B ,{C∗bi
,C∗
b̄i

: i ∈ {1, · · · ,d}},{γC∗bi
, γC∗

b̄i
:

i ∈ {1, · · · ,d}},{D∗bi
,D∗

b̄i
: i ∈ {1, · · · ,d}},{γD∗bi

: i ∈ {1, · · · ,d}},γ∗A) on a message M∗ regarding some ring

of honest user verification keys S′ ⊆ S. If vã /∈ S′, then B aborts. If Verify((n,G,GT ,e,g,h,S),M,δ)→

“Accept”, then the adversary wins the game. We denote the adversary’s advantage in the games G0 and

G1 as AdvA and AdvA,G1 , respectively.

If h ∈G as in the game G0, then B provides a perfect simulation for the adversary A since the signature

given to B is as in the real game. Otherwise (i.e. h∈Gq as in the game G1), then the forgery is uniformly

distributed in Gq and independent of the random choices made by B. We recall that the simulator’s

advantage is AdvB ≤ ε1 in the Subgroup Decision game. Since Pr[h ∈ G] = Pr[h ∈ Gq] = 1
2 , we obtain

the following.

AdvA−AdvA,G1 = Pr[A wins the game G0]−Pr[A wins the game G1]

= Pr[Verify((n,G,GT ,e,g,h,S),M,δ)→ “Accept”|h ∈G]

−Pr[Verify((n,G,GT ,e,g,h,S),M,δ)→ “Accept”|h ∈Gq]

= 2Pr[Verify((n,G,GT ,e,g,h,S),M,δ)→ “Accept“∧h ∈G]

−2Pr[Verify((n,G,GT ,e,g,h,S),M,δ)→ ”Accept”∧h ∈Gq]

= 2AdvB ≤ 2ε1.

Now in the game G1, the commitments are perfectly binding in Gp and the NIZK proofs are perfectly

sound in Gp. We show these results for the commitments Cbi
, the other commitments following a sim-

ilar demonstration. We recall that Cbi
= ghrbi , for i = 1, · · · ,d. The corresponding NIZK proof for the

statement γCbi
= (ghrbi )rbi is verified by checking e(Cbi

,Cbi
g−1) ?= e(h,γCbi

). (When h ∈Gn and since γCbi

is uniquely determined from the verification equation, the proof has perfectly zero-knowledge.) When

h∈Gq, the verification shows that e(Cbi
,Cbi

g−1) has order q. Since this happens for all the commitments

and the corresponding NIZK proofs, there is a honest user a with uncorrupted signing public key vka ∈ S

such that A∗ = vkah
r and so there is a signer’s certifying signature δa on vkOT such that B∗ = δah

s.
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In other words, if A outputs a valid forgery, then with all but negligible probability ε2 by soundness of

NIZK, it holds that δ∗ is a valid signature of M∗ regarding va for some a. From this, with probability

1/N , we get that the event [B did not abort ∧ δ∗ is a valid signature of M∗ regarding vã for ã] occurs.

Therefore, the advantage of the adversary in the game G1 is

AdvA,G1 ≤N ·ε2.

Afterwards, the forgery δ∗ on M∗ implies a forgery of the Boneh-Boyen signature. More precisely, A

contains a verification key that is not corrupted and B contains a signature on vkOT under this verifi-

cation key. We recall that the probability of the event [vkOT has not been used in any other signature]

is negligible based on the properties of the one-time signature scheme and the Strong Diffie-Hellman

assumption. For simplicity, we do not count this part in our security analysis.

We conclude that the adversary succeeds with probability AdvA ≤ ε1 +N ·ε2. ut

4.3 Working in Prime Order Groups

We work in composite order groups in our construction. The anonymity relies on the hardness of the Subgroup

Decision assumption. This assumption is as follows: given a group G of composite order n= pq, it is hard to

decide whether a given element g ∈ G is in the subgroup of order p without knowing p and q. It has to be

infeasible to factor n to achieve this hardness. This results in very large parameter sizes, e.g. log2n = 3072

or 3248 for a 128-bit security level, according to NIST or ECRYPT II recommendations [13].

Extending our scheme in prime order groups would be an interesting challenge to gain in efficiency.

In addition, the pairing computation seems to be much slower in the composite order setting than in the

prime order setting. We reckon that there are useful properties for bilinear composite order models to

design protocols, however the latters are not very competitive compared to the protocols relying on other

assumptions such that prime order models with asymetric pairings.

Recently, Groth et al. [12] have shown that their NIWI and NIZK techniques can be realized in prime

order groups under the Decision Linear problem. We could apply these results in our ring signature protocol

to obtain a scheme in prime order groups.
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5 Conclusion

In this paper, we contructed the first ring signature scheme of logarithmic size in the number of users in

the ring, improving the sub-linear size result obtained in [8]. Inspired by Chandran et al.’s work [8], our

scheme requires a common reference string and the non-interactive zero-knowledge proofs and is proved

secure without relying on random oracles.
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