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Isolation and reversible dimerization of a
selenium–selenium three-electron s-bond
Senwang Zhang1, Xingyong Wang1, Yuanting Su1, Yunfan Qiu1, Zaichao Zhang2 & Xinping Wang1

Three-electron s-bonding that was proposed by Linus Pauling in 1931 has been recognized as

important in intermediates encountered in many areas. A number of three-electron bonding

systems have been spectroscopically investigated in the gas phase, solution and solid matrix.

However, X-ray diffraction studies have only been possible on simple noble gas dimer Xe‘Xe

and cyclic framework-constrained N‘N radical cations. Here, we show that a diselena

species modified with a naphthalene scaffold can undergo one-electron oxidation using a

large and weakly coordinating anion, to afford a room-temperature-stable radical cation

containing a Se‘Se three-electron s-bond. When a small anion is used, a reversible

dimerization with phase and marked colour changes is observed: radical cation in solution

(blue) but diamagnetic dimer in the solid state (brown). These findings suggest that more

examples of three-electron s-bonds may be stabilized and isolated by using naphthalene

scaffolds together with large and weakly coordinating anions.
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O
dd-electron species exist as intermediates in many
chemical reactions and play an important role in bond
formation and cleavage processes1–7. Odd-electron

bonding is of both fundamental and practical interest8–13.
Three-electron s-bonding was first proposed by Linus Pauling
in 1931 (ref. 14) and has been recognized as important in major
intermediates encountered in many areas such as radical
chemistry, biochemistry, organic reactions and radiation
studies15–22. Three-electron s-bonds are most frequently
observed in radical cations (Fig. 1a), where they are formed by
the interaction of an unpaired electron in a p-orbital of a radical
cation with a free p-electron pair from an unoxidized atom,
featuring a long weak 2c–3e bond with an antibonding orbital
occupied by a single electron and a bond order of 0.5 (hemi-
bond). Structure determination and analysis is one of the most
useful and direct methods for studies of odd-electron bonds.
Although many three-electron s-bonding systems X‘X and
X‘Y (X, Y¼He, N, S, P, halogen and so on) have been
investigated in the gas phase, solution and solid matrix, and
characterized by various spectroscopic techniques in conjunction
with theoretical calculations23–31, few of them are room-
temperature stable because they are either too reactive or
dimerize in the solid state. Only three examples have been
isolated and structurally characterized by single-crystal X-ray
diffraction (Fig. 1b). Gerson et al.32 and Alder et al.33 reported
cyclic framework-constrained N‘N three-electron s-bonds
almost 30 years ago. In 1997, Drews and Seppelt34 isolated
and structurally characterized the Xe2

þ ion containing a Xe‘Xe
three-electron s-bond.

We recently have succeeded in stabilization of a number of
interesting radical cations35–40 by using the weakly coordinating
anion [Al(ORF)4]� (ORF¼OC(CF3)3)41. Inspired by those
previous results, we herein report the isolation and structure of
a Se‘Se three-electron s-bond, as well as its reversible
dimerization. The products were consequently investigated by

ultraviolet–visible, electron paramagnetic resonance (EPR),
single-crystal X-ray diffraction and superconducting quantum
interference device (SQUID) measurements, in conjunction with
density functional theory (DFT) calculations.

Results
Isolation of radical cation 1�þ . 1,8-Dichalcogen naphthalene
derivatives have been shown to undergo one- and two-electron
oxidations by concentrated H2SO4 to form radical cations and
dications42–44. The unstable radical cations are suggested to
contain a Se‘Se three-electron s-bond42. Cyclic voltammetry
(CV) of 1,8-bis(phenylselenyl)naphthalene (NapSe2Ph2, 1)45 in
CH2Cl2 at room temperature with n-Bu4NPF6 as a supporting
electrolyte revealed reversible oxidation peaks at oxidation
potentials of þ 0.94 and þ 1.15 V (Supplementary Fig. 1). In
the light of these CV data, 1 was treated with one equiv
NO[Al(ORF)4]46 in CH2Cl2 to afford blue radical cation 1�þ in a
high yield. The resulting cation is thermally stable under nitrogen
atmosphere and can be stored for several months at room
temperature.

Crystals suitable for X-ray crystallographic studies were
obtained by cooling a solution of 1�þ [Al(ORF)4]� in CH2Cl2.
Radical cation 1�þ is stacked as a dimeric pair (Supplementary
Fig. 2) by four Se–Cnaphthalene contacts (3.55 Å, 2� ; 3.60 Å, 2� )
that are close to the sum (3.60 Å) of van der Waals radii of
selenium and carbon. In the structure of radical cation 1�þ , the
naphthalene skeleton is essentially coplanar with two selenium
atoms (Fig. 2). This is different from neutral 1 where considerable
displacement of the selenium atoms from the naphthyl plane is
observed (Supplementary Fig. 3). In 1�þ , the phenyl rings
overlap in a face-to-face offset arrangement with centroid�
centroid distance (3.651(1) Å) within the range for typical p� p
stacking (3.3� 3.8 Å). Both Se�CPh bonds are aligning ‘perpen-
dicular’ to the naphthyl plane. The average C–Se bond lengths are
shorter while +C–Se–C angles are slightly larger than those in
neutral 1. The Se–Se separation (2.942(1) Å) is shorter than that
(3.135(2) Å) in 1, but much longer than the Seþ–Seþ single-
bond length (2.382(2) Å) in 1,5-diselenoniabicyclo[3.3.0]octane
dication47. The planarity of the naphthalene-Se–Se backbone,
increase of +C–Se–C angle and decrease of Se–Se distance
compared with neutral 1 indicate the presence of a weak Se–Se
bonding interaction in 1�þ .

To rationalize the experimental results and get further insights
into their electronic structures, we carried out DFT calculations
for species 1 and 1�þ , along with dication 12þ . The calculated
energy DE for the reaction 2 1�þ-1þ 12þ in the solution of
CH2Cl2 is þ 24.1 kcal mol� 1, which indicates it is unlikely for
the radical cation (1�þ ) to disproportionate to neutral 1 and
dication 12þ . X-ray crystal structures of 1 and 1�þ were well

N N
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Figure 1 | Orbital interaction diagram and crystallographically

characterized three-electron r-bonds. (a) Interaction diagram for the

formation of a three-electron s-bond between a radical cation and a neutral

atom. (b) Crystallographically characterized three-electron s-bonds.

C27 C33

Se2Se1

C17 C24

Figure 2 | Structure, spin-density map and SOMO of 1�þ . (a,b) 50% ellipsoid drawings of 1�þ with different views. Yellow, carbon; red, selenium; white,

hydrogen. Selected bond length (Å) and angle (�): Se1–C17 1.915(2), Se1–C27 1.896(2), Se2–C24 1.923(2), Se2–C33 1.909(2), Se1–Se2 2.942(1),

C17–Se1–C27 100.65(10), C24–Se2–C33 100.13(10). (c,d) Spin-density map (c) and SOMO (d) for 1�þ calculated at the UPBE0/SVP level.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5127

2 NATURE COMMUNICATIONS | 5:4127 | DOI: 10.1038/ncomms5127 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


reproduced by DFT calculations (Table 1; Supplementary Fig. 4).
Consistent with the experimental data, one-electron oxidation of
1 causes a significant decrease of the Se–Se separation by B0.2 Å,
which combined with dominant spin-density distribution
(Fig. 2c; Supplementary Table 2) on Se atoms (0.427, 0.421)
becomes strong evidence for the formation of a 2c–3e hemi-bond
between Se atoms. The calculated Mayer bond order (0.360) for
Se� Se further supports the hemi-bond formation. As shown in
Fig. 2d, both selenium atoms are main contributors to the singly
occupied molecular orbital (SOMO), with Se� Se antibonding
character. To check whether the naphthalene scaffold affects the
Se� Se bonding, model compounds Me2SeSeMe2

�þ and
Ph2SeSePh2

�þ were also calculated, which afforded linear Se� Se
antibonding orbitals with trans configurations (Supplementary
Fig. 5). The slight bending of SOMO of 1�þ is due to the
constraints imposed by the naphthalene scaffold.

The radical and hemi-bond identification was completed by
EPR, nuclear magnetic resonance (NMR), SQUID and
ultraviolet–visible measurements. The solution EPR spectrum
(Fig. 3a) of 1�þ [Al(ORF)4]� at 298 K shows 77Se (spin I¼ 1/2;
natural abundance¼ 7.6) satellite peaks, which is attributed to
Nap77SePhSePh species. The signal for the Nap77SePh77SePh
isotopomer is too weak to observe because of its low

concentration. The ratio of main (even-numbered Se isotopes)
to satellite (77Se) spectrum intensities is in agreement with the
expected value (12.2) and the Aiso (95G) is comparable to that for
Me2SeSeMe2

�þ (108G) observed in the g-irradiated sample48. The
EPR spectrum of crystalline 1�þ [Al(ORF)4]� shows an
anisotropic spectrum with gx¼ 2.0011, gy¼ 2.0255 and
gz¼ 2.0441 (Supplementary Fig. 6). The giso value (2.0236) is
close to that of (Me2SeSeMe2)�þ (giso¼ 2.0344)48 but is
significantly smaller than those (2.0639–2.0644) of the diaryl
diselenide radical cations (ArSeSeAr)�þ stabilized in pentasil
zeolite (Na-ZSM-5)49, where a two-center three-electron p–bond
is suggested (Supplementary Fig. 7). The paramagnetic property
of radical salt 1�þ [Al(ORF)4]� was further confirmed by SQUID
measurement (Supplementary Fig. 8) and broad 1H NMR peaks
(Supplementary Fig. 9). The ultraviolet–visible spectrum with
broad absorption peaks (Fig. 3b) is typical of a three-electron s-
bond and the absorptions are in the range of 370–680 nm for the
reported absorptions of S‘S and Se‘Se bonds in the solution50.
Judging from the time-dependent DFT calculations of 1�þ opt

(Supplementary Fig. 10; Supplementary Table 3), absorptions
around 580 (e 21750) and 465 nm (e 11080) are assigned to
overlapped transitions of HOMO(b)-LUMO(b) (I) and
HOMO-1(b)-LUMO(b) (II) (580 nm: I 84%, II 12%; 465 nm:
I 13%, II 83%).

Dimerization of radical cation 1�þ . Further experimental work
shows that the formation of Se‘Se bonding is anion dependent.
The reaction of 1 with 1 equiv NOSbF6 resulted in a blue solution
of 1�þSbF6

� . The ultraviolet–visible absorption, EPR spectra
(Fig. 3c,d) and broadness of 1H NMR peak (Supplementary
Fig. 11) of the reaction solution are similar to those of
1�þ [Al(ORF)4]� . Compared with the sharp 19F peak (d�
75.22 p.p.m.)51 in the NMR spectrum of 1�þ [Al(ORF)4]� , a very
broad 19F NMR peak is observed in that of 1�þSbF6

� , suggesting
some degree of interaction between ion pairs in the solution of

Table 1 | Structural parameters of 1 and 1�þ .

1 (X-ray)43 1 (DFT) 1�þ (X-ray) 1�þ (DFT)

Se–Se (Å) 3.135(2) 3.115 2.942(1) 2.969
av Se–C (Å) 1.932(2) 1.924 1.911(2) 1.907
av+C–Se–C (�) 98.48(8) 99.9 100.39(10) 102.2

95.87(8) 89.5 92.83(7) 97.2
+Se–Se–CPh (�) 171.32(9) 171.4 100.61(7) 98.1

DFT, density functional theory.
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Figure 3 | Absorption and EPR spectra for 1�þ . (a,c) EPR spectra for 1�þ [Al(ORF)4]� (a) and 1�þSbF6
� (c) in CH2Cl2 (1� 10�4 M, 298 K).

(b,d) Absorption spectra for 1�þ [Al(ORF)4]� (b) and 1�þSbF6
� (d) in CH2Cl2 (1� 10�4 M, 298 K).
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1�þSbF6
� (Supplementary Figs 12 and 13). Concentrating and

cooling the blue solution of 1�þSbF6
� afforded reddish brown

crystals, which were identified as a dimeric complex [1–
1]2þ (SbF6

� )2 by X-ray crystallographic analysis. Redissolving
[1–1]2þ (SbF6

� )2 in CH2Cl2 immediately gave a blue solution

with an identical absorption spectrum to 1�þSbF6
� . The

crystallization and dissolution accompanied with intense colour
change demonstrate a reversible process between radical cation
1�þ and dimer [1–1]2þ , as shown in Fig. 4a. The solid [1–
1]2þ (SbF6

� )2 exhibits an EPR spectrum (Supplementary Fig. 14),

Ph Ph

Se
+

Se

Ph Ph

Se
+

Se

Ph Ph

Se
+

Se2

Solution Crystal

C11 C17

Se2
Se1

C1 C8
Se2′ Se1′

Figure 4 | Reversible dissociation and crystal structure of [1–1]2þ . (a) Reversible dissociation of [1–1]2þ . (b) Crystal structure of [1–1]2þ (in [1–

1]2þ (SbF6
� )2) with 50% ellipsoid drawing. Yellow, carbon; red, selenium; white, hydrogen. Selected bond length (Å) and angle (�):

Se1–C1 1.916(7), Se1–C11 1.912(8), Se2–C8 1.939(7), Se2–C17 1.931(8), Se1–Se2 2.8815(9), Se2–Se2’ 2.9543(13), C1–Se1–C11 101.1(3), C8–Se2–C17

100.2(3), Se1–Se2–Se2’ 174.79(4), Se1–Se2–Se2’–Se1’ � 180.0.
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Figure 5 | Frontier molecular orbital and resonance structures of [1–1]2þ . (a) HOMO of [1–1]2þ showing a s*–s* interaction between two radical

cation SOMOs. (b) Resonance structures.
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which is similar to that observed for 1�þ [Al(ORF)4]� , but a
magnetic susceptibility measurement indicates that the brown
solid is diamagnetic (Supplementary Fig. 15). The EPR signal of
the solid is probably due to trace amounts of radical cation salt
1�þSbF6

� trapped in the solid. A similar reversible process with
colour change from yellow to red was observed during the
oxidation of 1,5-dithiacyclooctane, but has not been identified52.

Single-crystal X-ray diffraction showed that [1–1]2þ is
composed of two asymmetric subunits symmetrically coupled
through a selenium–selenium interaction, giving rise to a linear
Se–Se–Se–Se arrangement (Fig. 4b). Compared with the structure
of radical cation 1�þ , the Se1–C bond distances (Se1–C1, Se1–
C11) basically keep unchanged, while the Se2–C bonds (Se2–C17,
Se2–C8) are lengthened and the intramolecular Se–Se distance
(Se1–Se2) of 2.8815(9) becomes shorter. The Se–Se distance (Se2–
Se20 2.9543 (13) Å) connecting two subunits is quite long. These
Se–Se contacts in [1–1]2þ are comparable to those (2.715(4)–
2.929(2) Å) in donor–acceptor complex cations of selone
derivatives with TCNQ reported by Bigoli et al.53, Devillanova
et al.54, in which the nearly linear arrangement of Se–Se–Se is
viewed as a three-center two-electron bond. The unusual dimeric
structure of [1–1]2þ resembles the dimer of unstable tellurium-
centered (TePiPr2NiPr2PTe)� radical55. It is also worth noting
that dialkyl dichalcogen radical cation (MeSe)2

�þ , containing a
two-center three-electron Se–Se p-bond, dimerizes as a
rectangular species (MeSe)4

2þ by a p*–p* interaction with long
Se–Se bonds (2.974(1) Å)56 that are comparable to those of [1–
1]2þ . However, in these cases reversibility was not observed53–56.

The crystal structure of the dimer [1–1]2þ has been
reproduced as a closed-shell singlet by theoretical calculations.
Of particular note, the calculated Se2–Se20 bond lengths
(2.9236 Å) is comparable to that (2.9543(13) Å) in the X-ray
structure of [1–1]2þ . The HOMO clearly shows a s*–s*
interaction between two radical cation SOMOs (Fig. 5a). Notably
Se2–Se20 bond length of [1–1]2þ is much longer than that
(2.6471(6) Å) of the dicationic dimer by irreversible coupling of
hypothetical 1,5-selenathiamesocycle radical cation57. The long
and weak intermolecular Se–Se bond in [1–1]2þ (SbF6

� )2 thus
accounts for the reversibility of dimerization, and is due to the
multicentered nature of the radical SOMO. However, the
magnitude of the electronic coupling between the radical cation
moieties in the solid state is sufficient to lead to bulk
diamagnetism of [1–1]2þ as proved by SQUID measurements.
In terms of the valence bond theory, the Se–Se–Se–Se fragment in
[1–1]2þ may be viewed as a 4c–6e bonding stabilized by some
resonance structures (Fig. 5b)58.

Discussion
We here have shown that the diselena species (1) modified with a
naphthalene scaffold can undergo one-electron oxidation using a
large and weakly coordinating anion [Al(ORF)4]� , to afford a
room-temperature-stable radical cation (1�þ ) containing a
Se‘Se three-electron s-bond. When a smaller anion SbF6

� is
used, a reversible dimerization with phase and marked colour
changes is observed: radical cation (1�þ ) in blue solution but
brown diamagnetic dimer ([1–1]2þ ) in the solid state. The
energy DE calculated at the (U)PBE0/SVP level for the
dimerization 2 1�þ-[1–1]2þ is þ 37.2 and þ 3.82 kcal mol� 1

in the gas phase and CH2Cl2 solution, respectively, indicating it is
thermodynamically unfavourable for 1�þ to dimerize in the gas
phase or in solution. This is due to the strong electrostatic
repulsion of the two adjacent positive charges in [1–1]2þ , which
is relieved upon dissociation. The unstable dimeric species [1–
1]2þ in the gas phase is lattice stabilized by the formation of the
salt [1–1]2þ (SbF6

� )2 in the solid state, because the lattice energy

for [1–1]2þ (SbF6
� )2 is about three times that of 1�þSbF6

�

assuming ionic radii are similar, as shown by the Kapustiniskii
equation (Fig. 6a)41,59–61, where zx and zy are the charge of the
ions, rx and ry the ionic radii and n is the number of ions per
formula unit (for example, two for XþY� and three for
X2þ (Y� )2). As shown in the Born–Fajans–Haber cycle
(Fig. 6b), replacement of the anion SbF6

� (0.121 nm3) by the
larger anion [Al(ORF)4]� (0.736 nm3) leads to a great reduction
(less negative) in the lattice energy difference {DlattU ([1–
1]2þ (A� )2)�DlattU (21�þA� )}, which would make DE(s)
more positive and thus favours the formation of singly charged
1�þ over the doubly charged [1–1]2þ . Our findings suggest that
more examples of three-electron s-bonds may be stabilized by
using naphthalene scaffolds together with large and weakly
coordinating anions. Isolation of other examples of those elusive
and intriguing three-electron s-bonds X‘X and X‘Y (X, Y¼ S,
Te, P, As, halogen and so on) is under way.

Methods
General. All experiments were carried out under a nitrogen atmosphere by using
standard Schlenk techniques and a glovebox. Solvents were dried before use.
NOSbF6 (Alfa Aesar) was purchased and used upon arrival. 1,8-bis(phenylselanyl)
naphthalene (1)45 and NO[Al(ORF)4]46 were synthesized according to the
literature methods. CV was performed on an IM6ex electrochemical workstation,
with platinum as the working and counter electrodes, Ag/Agþ as the reference
electrode and 0.1 M n-Bu4NPF6 as the supporting electrolyte. EPR spectra were
obtained using the Bruker EMX-10/12 variable-temperature apparatus. ultraviolet–
visible spectra were recorded on the Lambda 750 spectrometer. Element analyses
were performed at Shanghai Institute of Organic Chemistry, the Chinese Academy
of Sciences. Magnetic measurements were performed using a Quantum Design
MPMS XL-7 SQUID magnetometer at a temperature ranging from 5 to 350 K. The
1H NMR spectra were performed using a Bruker DRX-500 spectrometer in p.p.m.
downfield from Me4Si. 19F NMR spectra were performed at ambient temperature
on the Bruker DRX-400 spectrometer using CFCl3 as an external reference. X-ray
crystal structures were obtained by using a Bruker APEX DUO CCD detector.
Crystal data and structure refinement for 1�þ [Al(ORF)4]� and [1–1]2þ (SbF6

� )2

are listed in Supplementary Table 1.

Preparation of 1�þ [Al(ORF)4]� . Under anaerobic and anhydrous conditions, a
mixture of 1 (0.088 g, 0.2 mmol) and NO[Al(ORF)4](0.199 g, 0.2 mmol) in CH2Cl2
(E50 ml) was stirred at room temperature for 1 day. The resulting blue solution
was then concentrated and stored at around � 20 �C for 24 h to afford X-ray-
quality crystals of the radical cation salt 1�þ [Al(ORF)4]� . Isolated yield: 0.124 g,
44% (crystals); mp 135–137 �C; ultraviolet–visible (CH2Cl2): lmax 465 (e 11080,
shoulder), 580 (e 21750) nm; analysis (calcd., found for C38H16AlF36O4Se2) C
(32.48, 32.82), H (1.15, 1.26).

Preparation of 1�þSbF6
� and [1–1]2þ (SbF6

� )2. Under anaerobic and anhydrous
conditions, a mixture of 1 (0.132 g, 0.3 mmol) and NOSbF6(0.080 g, 0.3 mmol) in
CH2Cl2 (E50 ml) was stirred at room temperature for 1 day. The resulting blue
solution of 1�þSbF6

� was then concentrated and stored at around � 20 �C for 24 h

Ulatt =
121.4 zx zy �

(rx + ry)

2 1·+ (g) + 2 A– (g)

ΔE (g)

ΔE (s) = ΔE (g) + {Ulatt ([1–1]2+[A]2
–) – Ulatt (2 1·+A–)}

ΔE (s)

[1–1]2+ (g) + 2 A– (g)

Ulatt ([1–1]2+ [A]–2)Ulatt (2 1·+A–)

2 1·+A– (s) [1–1]2+ (A–)2 (s)

(rx + ry)
1 –

0.0345
kJ mol–1))

Figure 6 | Lattice energy estimation and the energetics of the radical

dimerization. (a) Kapustiniskii equation for lattice energy estimation.

(b) Born–Fajans–Haber cycle rationalizing the formation of the dimer

[1–1]2þ (A�)2.
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to afford X-ray-quality crystals of salt [1–1]2þ (SbF6
� )2. Isolated yield: 0.103 g, 45%

(crystals); mp 153–155 �C; ultraviolet–visible (CH2Cl2): lmax 460 (e 12190,
shoulder), 588 (e 24320) nm; analysis (calcd., found for C44H32F12Sb2Se4

.CH2Cl2):
C (37.72, 38.15), H (2.39, 2.57).

Quantum chemical calculations. Calculations were performed with the Gaussian
09 program suite (Supplementary Note 1; Supplementary Reference 2). Geometries
were optimized and checked as energy minima by frequency calculations at the
(U)PBE0/SVP level of theory. The ultraviolet–visible absorption spectrum was
calculated on the optimized geometry using the time-dependent DFT method at
the UM06-2X/6-31þG(d) level. To consider solvent (CH2Cl2) effects, a polarized
continuum model was adopted in the calculation of the single-point energies
involved in the the disproportionation and dimerization, and ultraviolet–visible
absorption spectrum. Mayer bond order was calculated at the UPBE0/SVP level
with the Multiwfn program62.
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