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Application of saturated core fault current limiters to interconnected
distribution networks

Abstract

There is an increasing need for electricity utilities to limit fault levels in critical locations in power systems so
that existing switchgear can continue to function as expected. This is particularly true in electrical distribution
systems, where the increased penetration of renewable and decentralised generation is forcing the network to
be highly interconnected in order to allow for higher integration capacity and reliable operation.
Consequently, the short-circuit currents in distribution systems have increased significantly. In this
background, application of fault current limiting devices is one of the solutions that is being considered by the
Distribution Network Service Providers (DNSPs). A saturated core Fault Current Limiter (FCL) is one such
device that can be used in existing and future electrical distribution systems to reduce the fault currents to a
manageable level. This paper presents the potential performance of a saturated core FCL, in an interconnected
11KV test system, utilising a new comprehensive time-domain model to represent the FCL. PSCAD/EMTDC
studies and numerical fault analysis are carried out to simulate the efficacy of an FCL when placed on a bus-
Tie of alooped circuit. The effect of the bus-Tie FCL impedance on the network impedance and the
subsequent fault current contributions is investigated. It is demonstrated that in a circuit with complex
interconnections, suppression of fault currents need multiple FCLs in critical feeders.

Keywords
interconnected, distribution, saturated, core, fault, networks, current, application, limiters

Disciplines
Engineering | Science and Technology Studies

Publication Details

S. M. Gunawardana Mudalige, S. Perera & J. W. Moscrop, "Application of saturated core fault current limiters
to interconnected distribution networks," in Power Engineering Conference (AUPEC), 2015 Australasian
Universities, 20185, pp. 1-6.

This conference paper is available at Research Online: http://ro.uow.edu.au/eispapers/S511


http://ro.uow.edu.au/eispapers/5511

Application of Saturated Core Fault Current
Limiters to Interconnected Distribution Networks

S. M. Gunawardana, Graduate Student Member, IEEE, S. Perera, Senior Member, IEEE, and J. W.
Moscrop, Member, IEEE

Abstract—There is an increasing need for electricity utilities
to limit fault levels in critical locations in power systems so that
existing switchgear can continue to function as expected. This
is particularly true in electrical distribution systems, where the
increased penetration of renewable and decentralised generation
is forcing the network to be highly interconnected in order
to allow for higher integration capacity and reliable operation.
Consequently, the short-circuit currents in distribution systems
have increased significantly. In this background, application of
fault current limiting devices is one of the solutions that is
being considered by the Distribution Network Service Providers
(DNSPs). A saturated core Fault Current Limiter (FCL) is one
such device that can be used in existing and future electrical
distribution systems to reduce the fault currents to a manageable
level. This paper presents the potential performance of a satu-
rated core FCL, in an interconnected 11kV test system, utilising
a new comprehensive time-domain model to represent the FCL.
PSCAD/EMTDC studies and numerical fault analysis are carried
out to simulate the efficacy of an FCL when placed on a bus-tie
of a looped circuit. The effect of the bus-tie FCL impedance
on the network impedance and the subsequent fault current
contributions is investigated. It is demonstrated that in a circuit
with complex interconnections, suppression of fault currents need
multiple FCLs in critical feeders.

Index Terms—Distribution networks, electromagnetic tran-
sients, fault current limiter (FCL), interconnected networks,
PSCAD/EMTDC

I. INTRODUCTION

ONVENTIONAL distribution networks have been de-

signed with a radial network configuration to operate
with a unidirectional power flow. The application of a Fault
Current Limiter (FCL) in such a network is quite straightfor-
ward, since the short-circuit current flow is also unidirectional
and could be managed with the insertion of an FCL between
the source and the load in a critical feeder of the network [1],
[2]. However, with the advent of decentralised generation, the
modern electrical distribution systems have become more in-
terconnected to enable higher integration capacity and reliable
operation [1], [3], [4]. Consequently, with these meshed and
looped network configurations, FCL placement in distribution
systems has become a far more complex problem. Installing
an FCL at a bus-tie location in the network, has often been
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preferred by the utilities due to the additional benefits such a
placement offers [5]. A bus-tie FCL typically allows two buses
to be tied without significantly raising the fault current level
of the system while enabling greater network flexibility and
improved reliability. However, in a meshed network the power
flow is not unidirectional and a fault in the system could be
fed from many directions from different sources. In such a
system, application of a single FCL at a bus-tie location may
not provide the desired fault current reduction effect.

In this paper, network simulation studies are undertaken in
PSCAD/EMTDC transient simulation package to analyse the
operational behaviour and performance of a saturated core
FCL in an interconnected distribution network. The saturated
core FCL is a current limiting device that utilises the change
in permeability between saturated and unsaturated states of
the core material to provide a very low impedance during
normal network operation and a relatively higher transient
impedance during fault conditions. A major advantage of this
technology is that it provides instantaneous reaction to a fault
event and instantaneous recovery. A new nonlinear reluctance
model for the saturated core FCL is used to represent the FCL
in a hypothetical 11kV system, with the efficacy of the FCL
placed on a bus-tie location in a looped circuit investigated.
A numerical approach to fault analysis for the test system is
also presented, with expressions for total fault current and fault
contributions from each unfaulted bus derived. The effect of
the bus-tie FCL impedance on the bus impedance matrix of
the system and on the subsequent fault current contributions
are also examined. It is demonstrated that in an interconnected
circuit to achieve the desired fault current reduction multiple
FCLs, placed on critical sources and feeders, are required.

II. SATURATED CORE FCLS
A. Operating Principle

A number of studies on the subject of saturated core FCLs,
ranging from operational behaviour, material aspects, core
designs, prototypes and testing, have been reported in the
literature [6]—[8]. The saturated core FCL, essentially utilises
the dynamic and nonlinear magnetic behaviour of steel cores
to operate as a variable inductance reactor. The device consists
of steel cores placed inside two coils carrying AC current
and connected in series with the circuit to be protected. Each
AC coil is wound and connected in such a way that the
flux is set up in opposite directions in each coil. A DC coil,
encompassing both the AC coils and the associated steel cores,
is used to initially bias the cores into saturation.



During normal operation, the AC current is not large enough
to drive the cores out of saturation and hence the FCL operates
completely within the saturated region of the B-H curve. The
device, under such conditions, has a very low impedance and
is almost transparent to the grid. During a fault event, the
increased current in the AC coils generates an AC magnetic
flux sufficient to drive each core out of saturation alternately
(during each half cycle) and the FCL operates in a region
of much higher permeability. Hence, the impedance of the
AC coils increases significantly during a fault, consequently
limiting the fault current.

B. Modelling Saturated Core Fault Current Limiter

When modelling electromagnetic systems, the magnetic cir-
cuit concept [9] has often been used to derive analytical models
with adequate accuracy [10], [11]. Recently, this concept was
extended to saturated core FCLs in [12], where the magnetic
field of the device was represented by a magnetic circuit of
lumped reluctances. A PSCAD/EMTDC model of the saturated
core FCL [13], developed based on this magnetic reluctance
circuit, is used to represent the FCL in this paper. The model is
implemented in PSCAD/EMTDC as a page module, containing
three mutually dependent circuits: (1) the AC circuit, consist-
ing of the two AC windings and the interconnection to the
grid side network (illustrated in Fig. la) (2) the DC circuit
consisting of the biasing arrangement of the FCL (illustrated
in Fig. 1b) and (3) the magnetic reluctance circuit (illustrated
in Fig. 1c). The coupling between the electric circuits and
the magnetic circuit is achieved through an iterative process,
where the parameters derived from solving the magnetic circuit
are used to solve the electric circuits and vice versa [13].

III. APPLICATION OF AN FCL
A. 11kV Test Network

To study the current limiting behaviour of an FCL when
inserted into the bus-tie of an interconnected distribution
network, a simple representative test network (as shown in
Fig. 2) was chosen. The test network under consideration, has
two interconnected substations, with each substation having
a fault current in-feed, modelled as voltage sources. Each of
the sources shown in Fig. 2 could represent a grid in-feed, a
distributed generation or an incoming feed from another dis-
tribution substation. The system parameters are summarised in
Table I. For simplicity, each substation is assumed to have the
same capacity. Note that these parameters are representative
and do not reflect actual values of a real 11kV system.

B. FCL Model Parameter Determination

The saturated core FCL design process is a multi-variable
optimisation problem that ideally involves the use of both
Finite Element Analysis (FEA) and optimisation software to
determine the optimal FCL design parameters that would meet
given performance specifications. Following this process, an
FCL design that was best suited for the the test network
illustrated in Fig. 2 was determined. The parameters of the
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reluctance circuit of the FCL (shown in Fig. 1c) were ob-
tained from flux measurements using FEA [12], [13]. Table II
summarises the model parameters including the values of
the leakage reluctance elements derived for this particular
saturated core FCL device. A characteristic reluctance curve,
developed using the methodology set out in [12], was used to
estimate the core reluctances R.; and R.s.
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C. Initial PSCAD/EMTDC Network Simulations

The test system was modelled in PSCAD/EMTDC using the
system parameters specified in Table I. Subsequent simulations
were carried out in PSCAD/EMTDC with and without the
saturated core FCL model inserted to the bus-tie.

During normal operation, both busbars are fed approxi-
mately the same current and a very small current passes
through the bus tie. When a three-phase to ground fault was
applied at Bus 3, without the FCL in the network, the fault
current contribution fed from each source was approximately
the same with a steady-state current of 24.5kA rms, as
illustrated in Fig. 3a and Fig. 3b (red dashed waveforms). The
fault current contribution from each source when the bus-tie
FCL is in service is also shown in Fig. 3a and Fig. 3b (blue
solid waveforms). Note that, the current contribution from Bus
2, which flows through the bus-tie FCL, has been limited to
3.8kA rms (84% reduction). However, the contribution from
Bus 3 is directly fed and is approximately 40.46kA rms, a
77% increase when compared to the case without the FCL.

contribution fed from Bus 2 (b) contribution fed from Bus 1 (¢) total fault
current

Consequently, the total fault current clipping achieved by
the FCL for this particular fault scenario was 7% as shown in
Fig. 3c.

IV. NUMERICAL CALCULATIONS

A. Derivation of Bus Impedance Matrices

To understand and theoretically verify the PSCAD/EMTDC
simulation results in Section III, a fault analysis of the 11kV
test system using a bus impedance matrix approach was carried
out. For the network shown in Fig. 2, without the bus-tie FCL,
the bus impedance matrix Z;, s derived using the impedance
values in Table I is given by,



Zbus =

1.5549.93 1.55+4;9.93 1.55+ ;9.93
155+ 79.93 1.68+3710.78 1.68+510.78 | (1)
155+ 79.93 1.68 + j10.78 1.68 + j10.78

0.01

where each element Z;; on the principal diagonal represents
the Thevenin impedance at Bus 7 and the off-diagonal elements
represent the transfer impedances of the buses.

When modifying a bus impedance matrix by adding a new
branch impedance Z,, between buses m and n, each original
element of Z;; can be modified as [14],

(Zim — Zin)(Zmj — Znj)

Zi‘ —
me + Znn - QZmn + Zo

Zij (new) — (2
The effect of inserting an FCL with a fault impedance of

Zpcyr into the bus-tie can be considered as adding a new

branch with the following impedance to the system [15]:

Zc(Zc + ZFCL)

Zr =(=2.)/(Ze + Zpcr) = — ZroL

3)

where Z. is the original line impedance of the bus-tie
(before inserting the FCL).

Therefore the modification to the entries of Z;,s when the
bus-tie FCL is active (during a fault) in the bus-tie between
Buses 2 and 3 is given by,

(Zia — Ziz)(Zaj — Z3;)
Log + L3z — 2493 + L

Zij (new) — Zi’ - (4)

Similar to most FCL technologies, the actual FCL
impedance during a fault event is not a constant for saturated
core FCLs. Hence, the fault impedance of an FCL is typically
defined as the equivalent steady-state impedance that would
result in the same fault current limiting effect [6]. Based on this
definition the fault impedance of the FCL device in Section
II-B can be estimated to be, Zpcp = 0.267€2. Using this
Zpcr estimation, the modified bus impedance matrix with
the bus-tie FCL in service is,

Zyus, FCL =
1.55479.93 1.55+ 759.93 1.55 + 79.93
0.01 | 1.55+79.93 179+ j11.55 1.58+;10.03 | (5)

1.55+79.93 1.58 4 710.03 1.79+ 511.55

As can be seen from (5), the Thevenin’s impedance of the
network at Bus 2 (Z22, por) and Bus 3 (Z33, 1) increase,
while the transfer impedance elements Z53 and Zs5 decrease,
when the bus-tie FCL in service.

B. Fault Current Calculations

Assuming a three-phase to ground fault was applied at Bus
3, the short-circuit currents for the test system shown in Fig.
2 were calculated with and without the FCL inserted to the
system. The expressions derived to calculate the total fault

current at Bus 3, and the fault currents contributed to Bus 3
by the adjacent unfaulted buses (Bus 1 and Bus 2) are given
in Table III. Note that, in deriving these equations, the faulted
network was assumed to be without load before the fault
occurred and hence with no pre-fault current flow. Following
that assumption, all bus voltages in the test system were then
assumed to be the same as the pre-fault voltage at the faulted
bus (V;).

Table III
FAULT CURRENT CALCULATIONS - WITH AND WITHOUT THE BUS-TIE FCL
Without FCL With FCL
Total fault
current at Bus 3, Vi Vi
I3 ¢ Z33 233, FCL
Current
contribution V; (1 Z13) Vi (1 Z13, FCL)
from Bus 1, Zy Z33 Zy Z33,FCL
LEN
Current
contribution Vi (1 Z23) Vi (1 Z23, FCL )
fror}l Bus 2, Ze Z33 )| Ze+ ZrcoL Z33, FCL
23, f

where the pre-fault voltage at Bus 3 is given by V;, the elements of the
original bus impedance matrix in (1) are denoted by Z;;, and elements of the
modified bus impedance matrix (with the bus-tie FCL in service) are denoted
by Zi;, ForL-

Using the expressions derived for the fault current contribu-
tions (given in Table III) and the bus impedance matrices of
the system (Zy,s and Zyys, peor,), the fault current magnitudes
were calculated over a range of FCL impedance values.
Note that, the pre-fault voltage at the faulted bus (Bus 3)
was assumed to be V; = 1.0pu and the FCL impedance
values were varied from O to 0.4 pu. Fig. 4a shows how the
Thevenin’s impedance of the network at the faulted Bus 3
varies with the FCL impedance. The Thevenin’s impedance
of the network increases rapidly as the magnitude of the FCL
impedance is increased, and subsequently plateaus at higher
FCL impedance values. The resulting variation of total fault
current (I3 ¢) at Bus 3, with the FCL impedance is shown
in Fig. 4b. As expected, the total fault current decreases with
the addition of the FCL. However the decay is exponential
and hence, the additional clipping offered by higher values of
FCL impedance is marginal. The fault current contributed to
Bus 3 by adjacent unfaulted Bus 2 and Bus 1 are shown in
Fig. 4c and Fig. 4d respectively. While the fault current that
flows through the FCL from Bus 2 side is reduced by the
FCL action, the fault current that is directly fed to Bus 3 from
Bus 1 increases when the bus-tie FCL is in service. Note that,
these calculated bus impedance matrices and the behaviour of
the resulting fault current contributions, corroborate with the
PSCAD/EMTDC simulated results presented in Section III-C.
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V. DISCUSSION

In Sections III and IV it was shown that installing a single
FCL at a bus-tie location, in an interconnected circuit, may
not provide the desired fault current reduction. In such cases,
multiple FCLs may need to be applied at critical locations
of the circuit to achieve the necessary fault current reduction.
For the 11kV test system, installation of two identical FCLs,
one in each incoming feeder, was considered as a possible
solution, as illustrated in Fig. 5. Each FCL was modelled
with the design parameters given in Table II. When a three-
phase to ground fault was applied at Bus 3, the total fault
current at Bus 3 and the fault currents contributed to Bus
3 by the adjacent unfaulted buses (Bus 1 and Bus 2), with
and without the FCLs, are shown in Fig 6. The fault current
contribution fed from each source, with the in feeder FCLs
in service, was approximately 9.95 kA rms at the steady-
state (58% reduction), as illustrated in Fig. 6a and Fig. 6b.
Consequently for this particular fault scenario, the total fault
current at Bus 3 with the in feeder FCLs, was approximately
19.88 kA rms (58% reduction).

In a large power system with complex interconnections,
suppression of fault currents may need many FCLs. However,
installation of multiple FCL devices (one or two FCLs per
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Fig. 5. 11KV test distribution system with multiple FCLs



circuit) may not be an economically viable solution. Several
methods have been proposed to determine the optimum num-
ber and the best placement of FCLs (for S/N transition-type
superconducting FCLs [15] and rectifier-type superconducting
FCL [16]) for a meshed system. A technique similar to those
in [15], [16] may need to be adopted when determining opti-
mum placement for saturated core FCLs in a meshed/looped
network.
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VI. CONCLUSIONS

The potential performance of a saturated core FCL in an
interconnected 11kV distribution system was analysed in this
paper, utilising a new comprehensive time-domain model of
the FCL. A potential FCL design was presented for the test
network, and the efficacy of an FCL device placed on a
bus-tie location, in a looped circuit, was investigated using
PSCAD/EMTDC simulations. It was shown that while the bus-
tie FCL limits the current that flows through it, the current

contribution that is directly fed to the fault from the opposite
side significantly rises. Hence, the total effective current limit-
ing achieved by the FCL was shown to be marginal. Through
a numerical approach to fault analysis, the simulation results
were theoretically verified, with the effects of the bus-tie FCL
impedance on the fault current contributions by the adjacent
unfaulted buses demonstrated. It was also shown that, in such
an interconnected system, in order to to achieve the desired
fault current reduction effect, application of multiple FCLs
at critical locations of the circuit is necessary. However, cost
might be a prohibitive factor in implementing this commer-
cially and hence a suitable FCL placement technique may
need to be adopted when determining optimum placement for
saturated core FCLs in interconnected systems.
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