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Multi-view indoor scene reconstruction from compressed through-wall
radar measurements using a joint Bayesian sparse representation

Abstract
This paper addresses the problem of scene reconstruction, incorporating wall-clutter mitigation, for
compressed multi-view through-the-wall radar imaging. We consider the problem where the scene is sensed
using different reduced sets of frequencies at different antennas. A joint Bayesian sparse recovery framework is
first employed to estimate the antenna signal coefficients simultaneously, by exploiting the sparsity and
correlations between antenna signals. Following joint signal coefficient estimation, a subspace projection
technique is applied to segregate the target coefficients from the wall contributions. Furthermore, a multitask
linear model is developed to relate the target coefficients to the scene, and a composite scene image is
reconstructed by a joint Bayesian sparse framework, taking into account the inter-view dependencies.
Experimental results show that the proposed approach improves reconstruction accuracy and produces a
composite scene image in which the targets are enhanced and the background clutter is attenuated.
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MULTI-VIEW INDOOR SCENE RECONSTRUCTION FROM COMPRESSED
THROUGH-WALL RADAR MEASUREMENTS USING A JOINT BAYESIAN SPARSE

REPRESENTATION

V. H. Tang, A. Bouzerdoum, S. L. Phung, and F. H. C. Tivive

School of Electrical, Computer and Telecommunications Engineering,
University of Wollongong, NSW, 2522, Australia

ABSTRACT

This paper addresses the problem of scene reconstruction, incorpo-

rating wall-clutter mitigation, for compressed multi-view through-

the-wall radar imaging. We consider the problem where the scene is

sensed using different reduced sets of frequencies at different anten-

nas. A joint Bayesian sparse recovery framework is first employed to

estimate the antenna signal coefficients simultaneously, by exploit-

ing the sparsity and correlations between antenna signals. Following

joint signal coefficient estimation, a subspace projection technique

is applied to segregate the target coefficients from the wall contribu-

tions. Furthermore, a multitask linear model is developed to relate

the target coefficients to the scene, and a composite scene image is

reconstructed by a joint Bayesian sparse framework, taking into ac-

count the inter-view dependencies. Experimental results show that

the proposed approach improves reconstruction accuracy and pro-

duces a composite scene image in which the targets are enhanced

and the background clutter is attenuated.

Index Terms— Multi-view through-the-wall radar imaging,

wall clutter mitigation, compressed sensing, joint Bayesian sparse

recovery.

1. INTRODUCTION

Through-the-wall radar imaging (TWRI) is emerging as a power-

ful technology for numerous civilian and military applications [1,2].

In practice, TWRI faces several interferences, such as layover and

shadow effects, which impede target detection and localization. For

example, when the antenna is placed facing a strong reflective tar-

get with another weak target behind, layover effects occur, render-

ing the detection of the weak target more difficult, or impossible.

Further, the target reflectivity depends highly on the sensing aspect

angle. Target reflections may be strong if sensed from the front

wall, but may be weak when illuminated from the side wall, and

vice versa. These problems can be addressed by using multi-view or

multi-location sensing and then combining the data acquired from

different vantage points to enhance image formation and target de-

tection.

Multi-view TWRI methods typically involve image formation

at individual views, followed by image fusion [2, 3], target image

correction [4], or target detection [5]. These existing methods, how-

ever, are not concerned with the TWRI problem in the compressed

sensing (CS) context [6, 7]. The full data volume at each view is

required to form the images. In the past decade, CS has been used

This work was partially supported by a grant from the Australian Re-
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for TWRI to save data acquisition, reduce computation cost, and im-

prove image formation and fusion [8–11]. More recently, CS-based

techniques have been proposed which combine wall-clutter mitiga-

tion with image formation [12–14]. These methods, however, are

suitable for single-view TWRI problem only; they do not consider

the inter-view correlations in the imaging model.

In this paper, we propose a new approach for unifying wall-

clutter mitigation and compressed multi-view TWRI scene recon-

struction. First, a joint Bayesian sparse model is employed to re-

construct the antenna signal coefficients simultaneously, by exploit-

ing both the sparsity and correlations between antenna signals. This

joint model differs from the single-signal CS recovery model pre-

sented in [12, 14], where each antenna signal is recovered indepen-

dently. This paper demonstrates that the proposed joint Bayesian CS

model requires far fewer measurements and yields higher recovery

accuracy than the single-signal CS model. Furthermore, a subspace

projection technique is applied directly to the estimated signal co-

efficients to segregate the wall reflections from target returns. For

scene reconstruction, a multitask linear model is developed to re-

late the clutter-free signal coefficients to the image of the scene. A

composite image of the scene is finally recovered using joint sparse

Bayesian learning.

The remainder of the paper is organized as follows. Section 2 in-

troduces the multi-view TWRI signal model. Section 3 describes the

proposed approach, including joint Bayesian antenna signal coeffi-

cient estimation, wall-clutter mitigation, and joint Bayesian image

reconstruction. Section 4 presents experimental results and analysis.

Section 5 gives concluding remarks.

2. MULTI-VIEW TWRI SIGNAL MODEL

Consider a monostatic multi-view TWRI system illuminating a

scene behind a wall or inside an enclosed structure. Assume that

the scene containing P targets is imaged at L locations or views,

by shifting the same antenna array to new locations vertically or

horizontally along the front and side walls. At each view, the TWRI

system uses M antenna locations and N narrowband signals to scan

the scene. Let zl(m,n) denote the signal of frequency fn, received

by the m-th antenna from the l-th view. This signal can be expressed

as

zl(m,n) = σwe
−j2πfnτm,w +

P∑

p=1

σpe
−j2πfnτm,p + νl(m,n),

(1)

where σw is the reflectivity of the wall, σp is the reflectivity of the

p-th target, τm,w is the round-trip travel time of the signal from the

m-th antenna to the wall, τm,p is the round-trip travel time of the



signal from the m-th antenna to the p-th target, and νl(m,n) is the

noise term.

Assume that the scene is partitioned into a rectangular grid con-

sisting of Q pixels. Let sl(q) denote a weighted indicator function

defined as

sl(q) =





σw, if the wall occupies the q-th pixel;

σp, if the p-th target occupies the q-th pixel;

0, otherwise.

(2)

We denote by zl,m and νl,m the column vectors containing, respec-

tively, the frequency measurements and the noise samples received

by the m-th antenna at the l-th view, see Eq. (1). Similarly, let sl
be the lexicographically ordered column vector containing the pixel

values of the l-th view. It follows from Eqs. (1) and (2) that

zl,m = Ψ
l,m

sl + νl,m, (3)

where Ψl,m is an N × Q matrix whose nq-th element Ψl,m
nq =

e−j2πfnτm,q , with τm,q being the propagation delay between the m-

th antenna and the q-th pixel. By concatenating the received signals

at all M antennas, we can write

zl = Ψl sl + νl, (4)

where zl = [zTl,0, . . . , z
T
l,M−1]

T , Ψl = [Ψl,0T , . . . ,Ψl,M−1T ]T ,

and νl = [νl,0
T , . . . ,νl,M−1

T ]T .

The image of the scene sl can be recovered from (4) by applying

delay-and-sum (DS) beamforming or backprojection [1]. However,

this approach is suitable for single-view TWRI only where the image

at each view is reconstructed independently, ignoring the inter-view

correlations. Note that before image formation, the wall contribu-

tions need to be removed or significantly reduced. In the next sec-

tion, we present a new approach for compressed multi-view TWRI

which incorporates wall clutter mitigation and takes into account the

correlations between antenna signals and inter-view dependencies.

3. JOINT BAYESIAN MULTI-VIEW TWRI MODEL

This section presents the proposed approach for compressed multi-

view TWRI. First, the antenna signals are represented by a sparsi-

fying dictionary. Then, the signal coefficients are simultaneously

estimated using a joint Bayesian sparse framework. A subspace pro-

jection technique is applied to the estimated coefficients to segre-

gate the wall returns from the target coefficients. Finally, a multitask

linear model is developed which combines the single view scenes

with a composite scene. All the scenes are recovered jointly using a

Bayesian approach.

3.1. Joint Signal Coefficient Estimation

The received signal zl,m can be sparsely represented using a dictio-

nary W ∈ R
N×R containing R (R ≥ N ) basis functions or atoms,

zl,m = W θl,m + ǫl,m, (5)

where θl,m is a vector of signal coefficients and ǫl,m is an error

vector. In compressed multi-view TWRI, the reduced measurements

yl,m collected at the m-th antenna can be modeled as

yl,m = Φl,m zl,m = Dl,m θl,m + ǫ̃l,m, (6)

where Φl,m is a K × N selection matrix (K ≪ N ) containing a

single unit value in each row and each column, Dl,m = Φl,m W,

and ǫ̃l,m = Φl,m ǫl,m.

Given the measurement vectors yl,m and the dictionaries Dl,m,

the coefficient vectors θl,m can be recovered using different ap-

proaches. In [9, 12], the vector θl,m is recovered independently at

each antenna. These methods, however, do not consider the corre-

lations between antenna signals. In contrast, here we consider the

multitask problem (6) as a joint sparsity model, which assumes the

coefficient vectors θl,m have overlapping support. The Bayesian

sparse recovery framework is employed for jointly estimating the

coefficient vectors θl,m since it is more suitable for the TWRI prob-

lem than other simultaneous recovery algorithms [13].

Assuming that the noise term in (6) is zero-mean Gaussian with

independent and identically distributed (i.i.d) components, the prob-

ability density function (pdf) of ǫ̃l,m is given by

p(ǫ̃l,m) =

K∏

k=1

N (ǫ̃l,m(k)|0, β−1), (7)

where β is the noise precision (variance = 1/β). Therefore, the like-

lihood of θl,m is a multivariate Gaussian function,

p(yl,m|θl,m, β) = (2π/β)−K/2e−
β
2
||yl,m−Dl,mθl,m||2 . (8)

The joint sparsity of the coefficient vectors is enforced using a shared

prior imposed on θl,m [15],

p(θl,m|α) =
R∏

i=1

N (θl,m(i)|0, α−1
i ). (9)

Given the hyper-parameter vector α = [α1, . . . , αR], the posterior

of θl,m is a multivariate Student-t distribution with mean and covari-

ance given by

µl,m = Σl,m D
T
l,m yl,m, (10)

Σl,m = (DT
l,m Dl,m +A)−1, (11)

where A = diag(α). The problem now becomes searching for

the hyper-parameter vector α, which can obtain by maximizing the

logarithm of the marginal likelihood L(α),

α̂ = argmax
α

L(α) = argmax
α

M−1∑

m=0

log p(yl,m|α). (12)

The optimization problem in (12) is solved using a fast marginal

likelihood maximization method [15–17]. Once the hyper-parameter

vector α̂ has been obtained, the coefficient vector θl,m is estimated

by the mean of the posterior given by

θ̂l,m = µl,m|α=α̂ = (Σl,m D
T
l,m yl,m)|α=α̂. (13)

The reconstructed vector θ̂l,m contains coefficients associated with

wall returns that usually dominate the target signal. Therefore, be-

fore image reconstruction, we need to suppress or remove the coef-

ficients related to the wall returns.

3.2. Wall Coefficient Mitigation

Usually, wall-clutter mitigation techniques are applied to the radar

signals [18–21], which can be estimated from the recovered coef-

ficients θ̂l,m as ẑl,m ≈ W θ̂l,m, see Eq. (5). Here, however, we

apply a subspace projection method directly to the estimated coef-

ficients to segregate the wall contributions from the target returns.



Let Θ̂ denote a matrix comprising in its columns the antenna coef-

ficients θ̂l,m obtained from all views. Using singular value decom-

position, the matrix Θ̂ can be expressed as Θ̂ = U Σ VH , where

U = [u1, . . . ,uR] and V = [v1, . . . ,vML] are unitary matrices

containing the left and right singular vectors, respectively; Σ is a

matrix containing the singular values arranged in descending order

along the main diagonal.

In TWRI, the wall returns are relatively stronger than the target

reflections. Hence, the wall contributions are captured by the first

few singular vectors associated with the dominant singular values.

The wall subspace can be defined as

Pw =
∑

i∈W

ui v
H
i , (14)

where W denotes the index set of the singular vectors spanning the

wall subspace [20]. To suppress the wall coefficients, the matrix

Θ̂ is projected onto a subspace orthogonal to the wall subspace:

Θ̃ = (I−PwP
H
w ) Θ̂, where I denotes the identity matrix. Now the

wall-clutter free coefficients Θ̃ can be used for image reconstruction.

3.3. Joint Bayesian Sparse Scene Reconstruction

The scene can be formed by first reconstructing the radar signal

from the target coefficients θ̃l,m, see Eq. (5), and then applying

DS beamforming [9], or ℓ1 minimization [12, 14]. However, these

methods are designed for single-view image formation, which ignore

the inter-view dependencies. Here, we formulate a multitask linear

model that maps the clutter-free coefficients to the corresponding

images of the scene and incorporates a composite coefficient vector

representing the fused image of the scene. Using (3) and (5), we can

relate the target coefficients to the scene as

θ̃l,m = W
−1(Ψl,m s̃l + νl,m − ǫl,m) = Ψ̃l,m s̃l + η̃l,m, (15)

where s̃l is the l-th view target scene, Ψ̃l,m = W−1 Ψl,m, and

η̃l,m = W−1(νl,m − ǫl,m). By stacking the coefficients belonging

to the l-th view, we can rewrite

θ̃l = Ψ̃l s̃l + η̃l, (16)

where θ̃l = [θ̃
T

l,0, . . . , θ̃
T

l,M−1]
T , Ψ̃l = [Ψ̃

T

l,0, . . . , Ψ̃
T

l,M−1]
T , and

η̃l = [η̃T
l,0, . . . , η̃

T
l,M−1]

T .

Because the vectors s̃l represent images of the same scene, a

final composite image of the scene can be obtained by using im-

age fusion techniques after each single-view image has been recon-

structed and aligned [2, 22]. Here instead we propose to first com-

bine the coefficient vectors from different views, then perform fu-

sion using joint Bayesian sparse learning. Since the imaging coor-

dinates are different between views, we need to adopt a pixel scan-

ning scheme in which all the vectors s̃l have the same sparsity sup-

port [23]. Therefore, a linear imaging model relating a composite

coefficient vector θ̃ to the fused image of the scene s̃ can be formu-

lated as a linear combination of the coefficient vectors of different

views:

θ̃ =

L∑

l=1

wl θ̃l = Ψ̃ s̃+ η̃, (17)

where wl’s are positive weights (
∑L

l=1
wl = 1) computed based

on mutual information (MI) [11], Ψ̃ =
∑L

l=1
wl Ψ̃l, and η̃ =∑L

l=1
wl η̃l. By combining this composite linear model with (16),

we obtain an overall multitask model for the multi-view TWRI prob-

lem:

θ̃l = Ψ̃l s̃l + η̃l, l = 1, . . . , (L+ 1) (18)

where θ̃L+1 = θ̃, Ψ̃L+1 = Ψ̃, s̃L+1 = s̃, and η̃L+1 = η̃. The so-

lution of (18) yields L+1 images corresponding to the L individual

views plus a composite image of the scene. This multitask prob-

lem can be solved efficiently using the joint Bayesian sparse model

which exploits inter-view correlations.

4. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present the experimental results obtained using

simulated EM data. Experimental analysis and comparison with ex-

isting compressed TWRI models are also provided.

4.1. Experimental Setup

Electromagnetic (EM) simulations were performed to generate radar

signals using XFDTD, a full-wave EM simulator. The scene behind

a concrete wall containing two dihedral targets is illuminated from

two different aspect angles: 0◦ view (from the front wall) and 90◦

view (through the side wall of the enclosed structure), see Fig. 1. At

each view, the transceiver is placed at 51 positions parallel to the

wall at a standoff distance of 1 m, to synthesize an array aperture of

length 1.2 m. The transmitted frequency range is 1 GHz, centered at

2.5 GHz, with a step frequency of 3 MHz (i.e. 334 frequency bins).

For sparsifying the signals, the dictionary W is constructed using

Daubechies wavelet of order 4, with 3 decomposition levels.

The normalized mean squared error is used to measure the accu-

racy of the signal recovery:

NMSE = ||z− ẑ||2/||z||2, (19)

where ẑ and z are the reconstructed and true signals, respectively.

The image quality is measured using the target-to-clutter ratio (in

dB):

TCR = 10 log10(Ptarget/Pclutter), (20)

where Ptarget and Pclutter are the average power in the target and

clutter regions, respectively. The receiver operating characteristic

(ROC) curve is used to measure the probability of target detection

for a given false alarm rate. The probability of detection, or detec-

tion rate, denotes the percentage of pixels in target regions that are

correctly detected. By contrast, the probability of false alarm, or

false alarm rate, is the percentage of pixels in the clutter region that

are incorrectly detected as targets.
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Fig. 1. Multi-view TWRI data acquisition for an enclosed structure

target scene. Left: a photo of the scene; Right: a top-view of the

behind-the-wall scene.
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wall image by DS, (b) side wall image by DS, (c) composite DS

image; (d) front wall image by CS, (e) side wall image by CS, (f)

composite CS image; (g)-(i) font wall, side wall, and composite im-

ages by the joint Bayesian sparse reconstruction.

4.2. Results and Analysis

In the first experiment, we used only 40% of the antennas and varied

the number of frequencies from 10% to 60% at each view. For each

set of measurements, the signals were recovered by the single-signal

CS and joint Bayesian models; the NMSE was recorded for 50 trials.

Figure 2 shows the average NMSE for both models. Compared to

the separate CS model, the joint Bayesian model produces a consid-

erably lower reconstruction error, especially when the measurements

are drastically reduced. Moreover, to obtain the same reconstruction

accuracy, the proposed approach requires far fewer measurements

than does the single-signal CS model. For example, to obtain an

NMSE = 0.027, the joint Bayesian sparse approach requires only

10% of the frequency measurements, whereas the single-signal CS

model uses 30%. The superiority of the reconstruction by the joint

Bayesian sparse signal model is due to the fact that this model ex-

ploits the signal sparsity and the correlations among the signals.
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Fig. 4. ROC curves of the thresholding of composite images formed

by different imaging approaches. See electronic color figure.

In the second experiment, the signals recovered with the joint

Bayesian sparse model using 12% of the total measurements

are used for scene reconstruction, after wall clutter mitigation.

Figures 3(a)-(b) show the single-view images formed using DS

beamforming; they contain sidelobes and heavy clutter. Further-

more, these single-view images do not provide a complete picture

of the scene content because the signal returns of dihedral 1 are

weak in the frontal view and the returns of dihedral 2 are weak in

the side view. Figure 3(c) presents the image fused by MI-based

method using these two DS formed images as input. This image

still contains heavy clutter. Figures 3(d)-(f) present images obtained

separately from the front view, side view, and their fused image,

respectively, using the conventional CS reconstruction. We can

observe the appearance of outliers in these images. By contrast,

Figs. 3(g)-(i) show the images formed by the joint Bayesian sparse

model, which contain much less clutter and reveal all the targets.

The TCRs of the composite scene images formed by DS beamform-

ing, the conventional CS, and the proposed Bayesian approach are

26.53 dB, 53.37 dB, and 75.45 dB, respectively. Figure 4 illustrates

the ROC curves of the different imaging models. This figure shows

that by jointly reconstructing multiple images target detection is

significantly enhanced, compared with the methods that form the

images individually at each view.

5. CONCLUSION

This paper presented a new approach for compressed multi-view

TWRI using joint Bayesian sparse representation. In the proposed

approach, a joint Bayesian sparse approximation is employed for es-

timating simultaneously the signal coefficients of different antennas

from a reduced set of measurements. This joint Bayesian estima-

tion exploits the sparsity and correlation among antenna signals. A

subspace projection technique is applied directly to the recovered

coefficients to segregate wall reflections from the target returns. Fur-

thermore, a multitask imaging model is developed which combines

the filtered coefficients for scene image formation. Individual im-

ages from each view and a composite image of the scene are recon-

structed using joint Bayesian sparse learning, taking into account the

inter-view dependencies. Experimental results show that the pro-

posed approach enhances the scene image, compared with methods

forming images separately for each view.
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