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Abstract 

The breakaway oxidation behaviour of ferritic stainless steels 430, 443 and 445 has 

been investigated at 1150 °C in humid air. The oxidation kinetics exhibited significant 

differences among the three ferritic stainless steels. A uniform and steady growing 

oxide scale was developed on the 430 steel with an even steel/oxide interface. Local 

breakdown of the initially protective oxide scale occurred and oxide nodules were 

developed on the 443 and 445 stainless steels, resulting in irregular and rough 

steel/oxide interfaces. The breakaway oxidation behaviour was significantly 

influenced by the microstructure and the composition of the oxide scale. The Mn-Cr 

spinel oxide formed on top of the Cr2O3 scale in Mo alloying 445 steel can greatly 

minimise the Cr depletion.  
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1. Introduction 

Ferritic stainless steels without nickel appear to be a promising candidate material for 

use in solid oxide fuel cell (SOFC) stacks and automobile exhaust pipes. They are 

cheap and have a lower thermal expansion coefficient than that of austenitic steels [1], 

which is clearly an advantage when the temperature cycling resistance is needed. 

Ferritic stainless steels have a body-centred-cubic (bcc) crystal structure, which is 

beneficial to Cr diffusion in the steel matrix [2]. The start of the breakaway oxidation 

of the stainless steel leads to a period of more rapid oxidation at elevated temperature 

and indicates the failure of the protective chromia scale and the formation of non-

protective iron-rich oxide scale. The oxidation temperature, the oxygen partial 

pressure, the oxidation time, the water vapour content of the atmosphere and the Cr 

content of the alloy all have significant effects on breakaway oxidation [2-5]. The 

oxidation rate increases with increasing oxygen partial pressure and decreasing 

chromium concentration [6]. The oxidation rate in the wet gas is three to five orders 

of magnitude higher than that in the dry gas [7]. Long-term oxidation of ferritic 

stainless steels has been extensively investigated at temperature ranges below 1000 °C 

[8-11], in which the breakaway oxidation might take place but the process is slow due 

to the relatively slow chemical reaction and the low solid-state diffusion rates [12].   

 

A large amount of Cr2O3 evaporation will occur in a mixed atmosphere of O2 and 

H2O.  Cr2O3 evaporates linearly with time, depending on the concentration of O2 and 

H2O vapour [13, 14] [15-18]. Asteman et al. [12, 19-21] showed that Cr vaporization  

between 600 and 900 °C can lead to a depletion of Cr in the outer oxide scales of 

austenitic steels and to the formation of fast-growing Fe-rich oxides at high air-flow 

rates. Continuous evaporation eventually causes the loss of chromia, if its growth 
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cannot be maintained by the supply of Cr from the underlying steel, or the overall Cr 

level underneath the oxide scale reaches a level below the required concentration. 

This will cause the formation of poorly protective Fe-rich oxide scale and thus an 

increased oxidation rate [19, 22].  

 

In hot rolling, stainless steel slabs are placed in a reheating furnace at a temperature 

up to 1250 °C where the atmosphere generally contains moisture due to the natural 

gas combustion and/or humid conditions. In most stainless steel grades, breakaway 

oxidation and the Cr depletion occurs during the heating process [23-25]. The 

oxidation behaviour of stainless steels during reheating plays a role in their 

deformation behaviour during the process of hot rolling [26, 27]. The aim of the 

present paper is to analyse the breakaway oxidation behaviour of three commercial 

ferritic stainless steels in the presence of H2O+O2+N2 at 1150 °C. Three different 

breakaway oxidation behaviours occurred. Investigation into oxidation kinetics, 

microstructure and composition of the oxide scales was carried out. 

2. Experimental method 

2.1. Materials 

Three ferritic stainless steel grades, 430, 443 and 445, were investigated in this study. 

Their chemical compositions are given in Table 1. Samples were tempered for 5 min 

at 980 °C and then machined to a size of 20 × 10 × 1 mm
3
 with a small hole of 2 mm 

in diameter near one edge. Prior to the oxidation experiments, all the samples were 

ground on all sides with 1200 grit SiC sandpaper, then cleaned in acetone and rinsed 

with alcohol. Stainless steel 430 was chemically etched in Villella’s etchant [28] 

(picric acid 1 g + hydrochloric acid 10 ml + ethanol 100 ml) and 443 and 445 steels 

were electrolytically etched in 10% aqueous oxalic acid at 15 V for 60 s. The 
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microstructures of the ferritic stainless steels are shown in Fig. 1. The optical 

micrographs in Fig. 1 show that the grain size of the 430 steel was 114±45 µm 

without counting recrystallised grains, while the grain size of the 443 steel was 81±73 

µm, which was smaller than the grain size of the 445 steel, 98±80 µm.  

 

2.2. Oxidation experiments 

The oxidation kinetics of stainless steels was investigated using a thermogravimetric 

analyser (TGA). The temperature of the steel sample was calibrated by attaching a 

Type-R thermocouple to a representative sample. Samples were put in a vertical tube 

furnace and isothermally heated for 7200 s. The mass change of a sample during the 

TGA experiment was measured using a Sartorius CP124S microbalance with a 

resolution of 10
-4

 g, and a computer recorded the value automatically. A simulated 

humid atmosphere with 18% water vapour was generated by bubbling 1000 ml/min of 

synthetic air through a water bath heated to 58.4 °C. The gas inlet line was heated to 

prevent water vapour condensation. The total gas pressure was 1 atm. 

 

The furnace was heated to 1150 °C at a heating rate of 20 °C/min, and then humid air 

was made to flow through the furnace. The furnace was held at the set temperature for 

30 minutes, then the steel sample was lowered into the hot zone of the furnace and the 

weight change logged. After the set time of 7200 s, the experiment was ended by 

removing the sample from the furnace and cooling it to room temperature. 

 

2.3. Analysis of oxide scale 

Oxide scales formed on the samples were surface scanned using X-ray diffraction 

(XRD) for phase identification. After surface analysis, all the samples were cold 
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mounted in epoxy resin, then sectioned and polished. The microstructures, 

compositions and thickness of the oxide scale were examined by a JEOL JSM 6490 

scanning electron microscope (SEM) equipped with an energy dispersive 

spectrometer (EDS). Back-scattered electrons (BSE) were employed for imaging the 

steel/oxide interface. A KEYENCE 3D laser-scanning microscope examined the 

etched oxidised samples.   

3. Results 

3.1. Oxidation kinetics in humid air 

The isothermal oxidation kinetics, represented by the mass-gain curve vs. time for the 

stainless steel specimens oxidised at 1150 °C for 7200 s in humid air containing 18% 

water vapour are presented in Fig. 2a. Fig. 2b shows the parabolic plot of mass gain 

squared as a function of time, while Fig. 2c shows the incubation period to the onset 

of breakaway oxidation from Fig. 2b in more detail.  Fig. 2a shows that for the 430 

and the 443 steel samples, the oxidation rate had an obvious abrupt increase. For the 

445 steel, the increase in the oxidation rate was much less and no abrupt increase in 

oxidation was observed during the experiment. The initial period of oxidation can be 

indicated by the time required for a mass gain of 1 mg/cm
2
.  As shown in Fig. 2c, it 

took approximately 300 s for the 443 and the 445 steels to obtain a mass gain of 1 

mg/cm
2
, indicating that the initial period of oxidation of the 443 and the 445 steels is 

similar. For the 430 steel, 160 s was required to achieve the same gain in mass.  

 

Compliance to the parabolic law indicates that the reaction is of a diffusion-controlled 

character [29]. High temperature oxidation kinetics of metals or alloys is commonly 

controlled by the diffusion of cationic or anionic species through the oxide scale [30]. 
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Such a control leads to a parabolic rate constant, kp expressed in mg2
·cm-4

·s-1, and 

defined by [30]: 

 

(Δm/s)
2
 =A+kpt                                                                      (1) 

 

where Δm/s is the specific mass gain per area unit in mg/cm2, t is the oxidation time, 

and A is a constant. Table 2 shows the parabolic rate constants before and after 

breakaway oxidation for the ferritic stainless steels in humid air. R
2
 was used to 

quantify the fit of the model to the data. kp values and associated R
2
 values were 

calculated for fits of Eq. (1) to the data in Fig. 2b.  The parabolic growth rate constant 

kp values of the 443 and the 445 steels are 3.75×10
-3

 and 3.91 ×10
-3

 mg2
·cm-4

·s-1, 
, 

respectively, using the initial time of 300 s. A significant difference, however, took 

place after 600 s. The iron oxides or oxide nodules were developed at this stage, in 

which the kp value of the 443 steel was 191 times greater than that of the 445 steel.  

 

3.2 Oxide scale microstructure 

The surface morphology of the oxide scale formed on three ferritic stainless steels 

oxidised for 7200 s in humid air is presented in Fig. 3a-c. No oxide scale spallation 

was observed. On the 430 steel, the oxide scale appeared thick, even and 

homogeneous. On the 443 steel, the thick oxide scale covered a majority of the 

surface but there were still some small regions having a thin oxide scale. On the 445 

steel, the oxidised surface was very coarse and localised oxide nodules appeared 

either merged or isolated. Fig. 3d-f shows the cross section of oxide scale for the 

corresponding steels. On the 430 steel, an even surface and steel/oxide interface was 

observed and the thickness fraction of iron oxides to Fe-Cr spinel was roughly 1:1. On 
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the 443 steel, an irregular and wavy steel/oxide interface was  observed. The thickness 

fraction of iron oxides was less than that of the Fe-Cr spinel where there was a multi-

layer oxide scale. On the 445 steel, a very rough and irregular steel/oxide interface 

was observed. Fe-Cr spinel formed underneath the original Cr2O3 scale.   

 

Fig. 4 is the results of a scan of the surfaces showing the XRD patterns of the oxidised 

stainless steel specimens. XRD analysis revealed that the surface layers of oxide scale 

of the 430 and the 443 steels were mainly Fe2O3, but the 430 steel showed a higher 

intensity. On the 445 steel, Cr2O3, Fe2O3 and spinel M3O4 were detected. M might be 

Cr, Mn, and/or Fe because of the similar ionic radii of Cr, Mn, and Fe [4]. The spinel 

may not have stoichiometric compositions as diffraction peaks shift slightly to the 

lower angle. The spinel oxides might contain alloying elements Cr, Fe, Mn, Nb, and 

Mo.  With the aid of EDS spot, line and map element analysis on the cross section of 

the oxide scale, the composition of the spinel was identified. 

 

3.3 Steel/oxide interface of the multi-layer oxide scale 

The Fe-Cr spinel oxides with a higher Cr content appear darker in the images. Fig. 5 

shows the BSE image and EDS element maps of the cross section of steel/oxide 

interface on the 430 steel. Table 3 shows the chemical compositions of the points 

identified in Fig. 5 as measured by EDS quantitative analysis. Internal Cr enriched 

oxides were formed. The oxides have a (Fe1-xCrx)3O4 spinel structure. The paler 

oxides were found to contain more Fe than Cr, but the darker Fe-Cr spinel oxides 

have roughly a 1:1 atom ratio of Fe to Cr. The interfacial concentration of Cr, where 

the spectrum 1 is located, is 8.8 wt. %.  This is only half the amount of Cr in the steel 

substrate. Si is distributed randomly in the oxides but appears more where there is a 
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high intensity of Cr. 

 

Fig. 6 shows the BSE image and EDS element maps of the cross section of the 

steel/oxide interface on the 443 steel. Internal Cr enriched oxides were observed to be 

like tree roots. Table 4 shows the chemical compositions of the points identified in 

Fig. 6 as measured by EDS quantitative analysis. The oxides mainly consist of a (Fe1-

xCrx)3O4 spinel structure. The paler oxides were found to contain more Fe than Cr. 

The darker Fe-Cr spinel oxides have roughly an atomic ratio of Fe to Cr of 1:1.5. The 

interfacial concentration of Cr, where the spectrum 1 is located, is 7.9 wt. %.  This is 

far less than the amount of Cr in the steel substrate. Si is distributed more at the 

steel/oxide interface and at the site where the internal oxides are. 

 

Fig. 7 shows the BSE image and EDS element maps of the cross section of the 

steel/oxide interface on the 445 steel. Table 5 shows the chemical compositions of the 

points identified in Fig. 7 as measured by EDS quantitative analysis. Internal Si 

enriched oxides were observed, which were discontinuous at the steel/oxide interface. 

The spinel oxide appeared darker than that on the 430 and 443 steels. At the 

steel/oxide interface, the oxide structure is Cr2O3 with a thickness of 4.3±0.9 µm. The 

interfacial concentration of Cr, where spectrum 1 is located is 20.5 wt. %.  This is 

nearly the same amount of Cr in the steel substrate, indicating that there is no Cr 

depletion at the steel/oxide interface. Mo is also found having 1.0 wt.% at the 

steel/oxide interface, which is higher than the amount of Mo in the steel substrate. 
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4. Discussion 

Three stainless steel grades 430, 443 and 445 displayed different breakaway oxidation 

behaviour at 1150 ˚C in humid air. 430 steel has a Cr content of 16.20 wt.%, which is 

less than the other two grades. Si and Mn are present in the 430 steel, but they had 

little effect on the oxidation behaviour because breakaway oxidation took place 

quickly at 1150 ˚C.  Saeki et al. [31-33] have intensively studied the initial oxidation 

of 430 stainless steel. Cheng et al.[34] have investigated the oxidation kinetics of 430 

stainless steel at high temperature. They concluded that the chemical failure model 

best described the oxide change during breakaway oxidation. This mechanism of 

chemical failure is caused by a chromium concentration gradient across the specimen 

section to a level below that needed to generate a healing chromia layer [35]. There 

was more Fe-enriched spinel (Fe1-xCrx)3O4 in the oxidised 430 sample (Fig. 5), which 

was beneficial for Fe cations to migrate outwards [29]. Compared with the 430 steel, 

the 443 and 445 steels had longer incubation times. Ferritic stainless steel 445 has 

shown high oxidation resistance in the reheating environment before hot rolling [36]. 

The breakaway oxidation phenomenon of the 445 steel, however, was significantly 

different from that of the 443 steel (Fig. 2). The mass change curve of the 443 steel 

showed an abrupt increase in the oxide scale growth rate when the chromia transits to 

iron oxides. The slow oxide growth rate of the 445 steel may be attributed to the 

regeneration of the Cr2O3 underneath the iron oxide (Fig. 7). This is referred as a 

“healing” layer [37] . The interfacial chromium activity is high to stabilise Cr2O3. 

 

 

BSE examination was carried out on the cross-section of the thin oxide scale where 

the oxide nodules had not grown on the 443 steel. The steel grains can be seen in Fig. 
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8a. They became large during oxidation in the experiment. The grain size was 

228±146 µm. Fig. 8b shows the cross-section of oxidised 443 steel. The EDS element 

maps and Fig.9 show a very strong intensity of Cr in the oxide scale, indicating that 

the thin oxide scale constituted mainly of Cr2O3. Si was accumulated at the steel/oxide 

interface, but the silica layer was porous and discontinuous. The oxide was a 

corundum structure M2O3 at the oxide/gas interface. The oxide scale was 7.3±1.1 µm 

thick and this oxide scale was less adherent to the steel substrate because large voids 

existed at the steel/oxide interface. Nb appears at the top of the oxide scale along with 

very small amounts of Mn, Ti and Fe.  Internal Ti-enriched oxides were formed in the 

subscale. 

 

BSE examination was carried out on the cross-section of the thin oxide scale where 

the oxide nodules have not grown on the 445 steel. The steel grains can be seen in 

Fig. 10a. They became large during oxidation just like those in the 443 steel, and the 

grain size was 272±170 µm. Fig. 10b shows the cross-section of oxidised 445 steel. 

The EDS element maps and Fig. 11 show a very strong intensity of Cr in the oxide 

scale, indicating a thin oxide scale mainly constituted of Cr2O3. Si accumulated at the 

steel/oxide interface, and the silica layer was still discontinuous. The oxide scale was 

8.8±0.9 µm thick and this oxide scale was thicker and exhibited better adherence to 

the steel substrate than that on the 443 steel. The voids at the steel/oxide interface of 

the 445 steel were smaller than those of the 443 steel. The oxide was a spinel structure 

M3O4 at the oxide/gas interface. Mo, Nb, Fe and Ti appeared on the top of the oxide 

scale. Mn had very strong intensity on the top and was present in the thin oxide scale. 

The spinel was mainly (Mn, Cr)3O4 doped with a small amount of the alloying 

elements Mo, Nb, Fe and Ti.  Internal Ti-enriched oxides were formed in the subscale. 
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An interesting phenomenon of the oxidised 445 sample is shown in Fig. 10c, where 

the oxide nodules appeared more on the flat surface but less on the edges. It is 

commonly accepted that  extra stresses are generated within the oxide scale grown 

near the edges of the specimen, so oxide scale cracks will tend to be formed near or 

on the edges, and this will result in breakaway oxidation, and Fe-enriched oxide 

nodules will appear more in these regions [29, 38, 39]. The explanation for this 

phenomenon is that there is not much Cr depletion in this steel during oxidation, even 

underneath the Cr2O3 scale having a mechanical failure.  

 

In order to develop and maintain the Cr2O3 scale, the interfacial concentration of Cr, 

𝑁𝐶𝑟
(𝑖)

, is determined by the rates at which Cr is being consumed by the Cr2O3 scale 

growth and replenished by Cr diffusion in the alloy. Wagner’s diffusion analysis [40] 

leads to [41]: 

 

𝑁𝐶𝑟
(𝑖)

=𝑁𝐶𝑟
(0)

- 
𝑉𝐴

𝑉𝐶𝑟𝑂1.5

(
𝜋𝑘𝑐

2𝐷̃
)
1/2

        (2) 

  

𝑁𝐶𝑟
(0)

is the original alloy chromium concentration. There is only a small difference in 

the amount of Cr in the 443 and the 445 steels. VA and VCrO1.5 are the molar volumes 

of alloy and oxide scale, respectively, 𝐷̃ is the alloy interdiffusion coefficient, and kc 

is the parabolic rate constant for growth of the external scale that is measured in terms 

of the oxide scale thickness.  

 

kc can also be calculated from  kp, the parabolic rate constant from mass gain, using 

MaOb for an oxide film which can be expressed as [30]: 
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kc= (
∆𝑀×𝑀𝑜𝑥

𝑆𝑏𝑀𝑜𝜌𝑜𝑥
)
2 

kp         (3) 

 

where ΔM is the mass gain, S is the surface area, Mox is the molar mass of the oxide, 

Mo is the molar mass of the oxygen atom, ρox is the volumic mass of the oxide. In our 

study, MaOb is Cr2O3 so that b=3. From Table 2, the formation of Cr2O3 of the 443 

and the 445 steels has similar kp values at the initial stage. 

 

𝐷̃, the diffusion coefficient of Cr in the alloy, can be calculated by: 

𝐷̃ = (1 − 𝑓)𝐷𝐿+ fDGB         (4) 

 

where DL is a summation of lattice diffusivity and DGB is grain boundaries diffusion 

of Cr in the metal. f is the area proportion of grain boundary. If the grains are cubic, 

then f = 2δ/d (δ is the grain boundary width and d the grain size). By considering DGB 

>> DL, Eq. (4) can be simplified as:  

 

𝐷̃ = 𝐷𝐿+ 
2δ

d
DGB            (5) 

 

Hence, 𝐷̃ increases with decreasing d. The 443 and 445 stainless steels have roughly 

the same steel structures (Fig. 1). The remaining Cr2O3 scale on the 445 steel (Fig. 9b) 

is thicker than that on the 443 steel (Fig. 8b). The growth of the Cr2O3 scale on the 

445 steel will not cause more Cr depletion than that on the 443 steel. Moreover, from 

the experimental results, Cr is preserved soundly in 445 steel. The growth of the 

Cr2O3 scale at the initial stage is obviously not the reason to cause severe depletion of 
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Cr in the 443 steel. The oxidation atmosphere and the composition of the oxide scale 

need to be considered.  

 

It is well known that the oxidation behaviour of alloys in environments that contain 

water vapour differs strongly from that in ‘dry’ atmospheres e.g. oxygen or air. 

However, there is still not a complete understanding of the mechanism behind these 

observations. Generally, the exposure of Fe-Cr alloys to O2/H2O mixtures can result 

in Cr depletion of the protective oxide by evaporation of chromium species by the 

following reactions [3, 19, 29, 39, 42-44]: 

 

Cr2O3 (s) +3/2 O2 (g) =2 CrO3 (g)    (6) 

 

1/2Cr2O3 (s) + H2O (g) + 3/4O2 (g) = CrO2 (OH) 2 (g)    (7) 

 

In oxygen-water vapour atmospheres, chromium (VI) oxo-hydroxide CrO2(OH)2 

exhibits much higher partial pressure than CrO3 [45]. The content of water vapour in 

air, at which the transition from CrO3 to CrO2(OH)2 occurs at 850 °C, was determined 

by Gindorf et al. [46, 47]. 

 

Then, the equilibrium partial pressure of the volatile oxy-hydroxide is given by: 

 

PCrO2(OH)2 (g) = KPH2O(g) ·PO2
3/4

 (g) (8) 

 

where K, the equilibrium constant,  is given by: 
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ln(K) = B/T +C (9) 

 

Here B and C are constants. The calculated equilibrium constants according to the 

thermodynamic databases in Ebbinghaus [48], Stanislowski et al. [49], Opila et al. 

[50], and Gindorf et al. [47], are shown in Fig. 12. The data of the equilibrium 

vaporization experiments was derived from pure Cr2O3(s) but when the Cr2O3 scale 

formed on alloys had an outer layer of well-adhered (Mn, Cr)3O4 spinel, Al2O3 or 

Co3O4, the Cr vaporization rates were greatly reduced [49].  

 

Our study was carried out in humid air with 18% water vapour at 1 atm. The partial 

pressure for O2 and H2O is 0.164 and 0.18 atm, respectively. The value of K is high at 

1150 °C so volatile Cr species will form at such an atmosphere. The high oxide 

growth rate of the 443 steel is in accordance with this phenomenon after the 

incubation period. This is caused by the Cr depletion in the subscale zone [29, 51]. 

Generally, the greater the extent of the Cr depletion, the less likely it will be for the 

Cr2O3 scale to be healed or reformed [35, 52]. This is not applicable, however, to the 

oxidation behavior of the 445 steel (Fig. 2). The regenerated Cr2O3 (Fig. 7) was 

formed and a discontinuous network of silica particles were present at and beneath the 

steel/oxide interface (Fig. 7). Bamba et al. [53] found that the latter phenomenon 

impedes the counter flow of Cr vacancies to the bulk of the steel by providing sinks, 

thus reducing the flux of Cr atoms entering the scale. On the 445 steel, a continuous 

and compact (Mn,Cr)3O4 spinel layer doped with a small amount of alloying elements 

Mo, Nb, Fe and Ti on top of the Cr2O3 scale (Fig.9) may help prevent Cr evaporation. 

However, Nb, Fe and Ti were also present on top of the Cr2O3 scale on the 443 steel, 

therefore an effect of Nb, Fe and Ti on Cr evaporation seems unlikely. Mo was 
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present in the Mn-Cr spinel, and it showed intensity at steel/oxide interface (Table 2) 

without depletion. Many researchers have found that Mn-Cr spinel can strongly 

reduce CrO2(OH)2 volatilisation when it is present at the external interface [54-58].  

 

Sachitanand et al. [59] and Stanislowski et al. [60] showed that the Cr vaporization of 

chromia-forming steels can be reduced by more than 90% by alloying.  Stainless 

steels containing Mn 0.3–0.5 wt.% develop a well adherent (Cr,Mn)3O4 spinel top 

layer above the Cr2O3-layer at 800 and 850 °C, and that the rate of Cr vaporization for 

those alloys is 2–3 times lower than alloys that form pure Cr2O3 scales or a non-

continuous (Mn,Cr)3O4 top layer.   

 

The build-up of oxide scale on alloys is determined by thermodynamics and kinetics 

[29]. Thermodynamics, particularly the Gibbs free energy of formation of oxides, 

plays the major role in selective oxidation. Huttunen-Saarivirta et al. [61] found that 

the elements of Ti, Si, Nb and Mo were related to the oxidation performance of alloys 

with Cr content >11.5 wt. %. The alloy elements are preferentially oxidised in an 

order: Ti >Si>Nb>Mn>Cr>Fe>Mo [39, 61] . Humid air in our study is an atmosphere 

located in a high oxygen partial pressure region, which is high enough to form various 

oxides. For the ferritic stainless steels,   the amount of the alloying element, e.g. Ti, 

Si, Nb, Mn, Mo, is minor. TiO2 and (Mn,Cr)3O4 were found on the outer side of the 

Cr2O3 layer, and SiO2 was located below the Cr2O3 layer in different atmospheres  [6, 

24, 61-67].  In a Fe-based alloy containing Cr as a solute, an outer layer of Cr oxide 

Cr2O3 will preferentially form during the early stages of oxidation prior to the 

formation of any Fe oxides. At elevated temperature, however, Fe ions will dissolve 

in and diffuse rapidly through the Cr2O3 scale and eventually an outer layer of Fe 
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oxides will result although Fe thermodynamically has much less affinity for O2 than 

Cr [68].  Water vapour accelerates oxide nodule nucleation and growth [37, 69]. The 

phase stability and oxidation behavior of the Fe-Cr-O ternary system were assessed 

using thermodynamic calculation [29, 39] [70, 71]. Fe-Cr alloys with changing 

compositions exist in equilibrium with different oxides at increasing oxygen pressure. 

Considering the Cr content of ferritic stainless steels is around 20 wt.%,  at the high 

oxygen partial pressure region at the oxide surface, the phase stability predicts Fe2O3. 

In the intermediate oxygen partial pressure region, several oxides may present, 

including Fe3O4, FeO, and FeCr2O4 spinel. At the low oxygen partial pressure region 

at the steel/oxide interface, the Fe-Cr alloy exists in equilibrium with a corundum 

phase, which is almost identical to Cr2O3 [38, 72]. Thermodynamic calculations 

suggest that higher Cr content results in an oxide with a higher fraction of corundum 

(Cr, Fe)2O3 compared to the spinel (Fe,Cr)3O4 phase. The difference in Cr 

concentration may affect not only the fraction of oxides formed, but also the ratio of 

Cr/Fe in each phase [70], which is in agreement with our study (Fig.3).  

 

During oxidation, the Cr depletion of the 443 steel below the Cr2O3 scale prevailed in 

the sample due to the volatile Cr species, and this resulted in the formation of more 

and more Fe-rich oxide nodules and overall Cr loss in the steel. A thick and banded 

scale occurred (Figs. 3 and 6), and the oxidation rate was accelerated by alternating 

external and internal oxidation [18].  Töpfer et al. [73] showed that the Fe tracer 

diffusion coefficient was about 3 orders of magnitude higher than that of Cr over a 

range of oxygen activity in (Fe,Cr)3O4 spinels at 1200 °C. It has also been seen that 

the spinel at the steel/oxide interface at low oxygen partial pressure region is not 

stable at 1150 °C. More and more localised Fe-rich nodules formed and spread 
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quickly and this can account for the high oxidation rate of the 443 steel after 

breakaway oxidation.    

 

In our study, the largest difference in the alloying elements between the 445 and the 

443 steels are Mn and Mo, although the Mn content in the 445 steel is only 0.15 wt.%. 

These two alloying elements, however, can affect the composition of the oxide scale 

and cause significant difference in breakaway oxidation of the two steels at 1150 °C 

in humid air.  Because negligible Mn was in the oxide scale of the 443 steel at the end 

of the test, the amount of Mn at  the top of the oxide film was limited by the small 

amount of Mn in the steel [74]. Mo is added to steels mainly to enhance their 

mechanical properties and can slightly improve their oxidation resistance at moderate 

amount but its effect varies with the amount of Cr content and the test environment 

[75]. The addition of 0.1–2 wt.% Mo reduces the oxidation rate of the Fe–22Cr–

0.5Mn steel [76],  but more than 4 wt.% Mo added can cause the evaporation of 

volatile Mo species which reduces the stability of the protective chromia, resulting in 

a high oxidation rate. Long term passivation in wet air was achieved by adding 2.2 

wt.% Mo to 9Cr-3W ferritic steel [77]. Yun et al. [76] found that Mo addition did not 

have a significant effect on the evaporation of Cr at 800 °C. Mo can be concentrated 

at the steel/oxide interface or a Mo -rich second phase may form at the steel/oxide 

interface and the metal grain boundary, and thus improve adhesion of the Cr2O3 scale 

to  the steel [76, 78, 79]. 

 

Our study showed distinct silica particles forming along and accumulating at the 

oxide/metal interface (Figs. 8 and 10) before breakaway oxidation on the 443 and the 

445 steels. On the 445 steel, underneath the oxide nodule a discontinuous network of 
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silica particles reappeared but this characterisation of Si only existed when there was 

no Cr depletion (Fig. 7) in the steel. This phenomenon did not take place in the 430 or 

the 443 steels with similar amounts of Si (Figs. 5 and 6).  

5. Conclusions 

The isothermal oxidation behaviour of ferritic stainless steel grades 430, 443 and 445 

was studied at 1150 °C in humid air. The breakaway oxidation of three steels took 

place quickly (430 and 443 steels) or slowly (445 steel) during the test time. 

 

1. Multi-layer oxide scale formed on the 430 steel showed a uniform thickness and 

an even steel/oxide interface due to the complete Cr depletion in the steel.  

 

2. (Fe ,Cr)3O4 with different ratios of Fe to Cr from steel to steel was found in the 

multi-layer oxide scale with a spinel structure.  

 

3. Grain sizes of the three stainless steels had little effect on their oxidation 

behaviour at 1150 °C in the experiment. 

 

4. Oxide nodules did not appear more on or near the edges of the 445 steel because 

of less Cr depletion in this steel. 

 

5. The extent of Cr depletion in the steel affects the breakaway oxidation behaviour 

of two similar stainless steels 443 and 445. The alloying elements Mn and Mo in 

the 445 steel have effects on the composition and microstructure of the oxide 

scale. The formation of compact and continuous Mn-Cr spinel on top of the 
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Cr2O3 scale on Mo alloying 445 steel greatly reduce the evaporation of chromium 

species.  
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Table captions 

Table 1 Chemical compositions of ferritic stainless steels 430, 443 and 445 (wt.%). 

Table 2 kp values obtained at 1150 °C for three ferritic stainless steels oxidised in 

humid air. 

Table 3 EDS quantitative analysis data of spectra in Fig. 5 (at. %) of the 430 steel 

oxidised for 7200 s at 1150 °C in humid air. 

Table 4 EDS quantitative analysis data of spectra in Fig. 6 (at. %) of the 443 steel 

oxidised for 7200 s at 1150 °C in humid air. 

Table 5 EDS quantitative analysis data of spectra in Fig. 7 (at. %) of the 445 steel 

oxidised for 7200 s at 1150 °C in humid air. 

 

 

  



25 

 

Figure captions 

Fig. 1 Optical micrograph of etched ferritic stainless steel samples (a) 430, (b) 443, 

and (c) 445. 

Fig. 2 Oxidation kinetics of three ferritic stainless steels in humid air. (a) Δm/s–t plots, 

(b) (Δm/s)
2
 –t

 
plots, and (c) (Δm/s)

2
 –t

 
plots during the initial stage.  

Fig. 3 SEM micrographs of the oxidised surfaces oxidised for 7200 s at 1150 °C in 

humid air: (a) 430, (b) 443, (c) 445 and BSE micrographs of the cross sections of the 

oxide scales (d) 430, (e) 443, and (f) 445. 

Fig. 4 XRD patterns of the surface scan after the steels oxidised for 7200 s at 1150 °C 

in humid air. 

Fig. 5 The BSE micrograph of the cross section of steel/oxide interface and EDS 

element maps of 430 steel oxidised for 7200 s at 1150 °C in humid air. 

Fig. 6 The BSE micrograph of the cross section of steel/oxide interface and EDS 

element maps of 443 steel oxidised for 7200 s at 1150 °C in humid air. 

Fig. 7 The BSE micrograph of the cross section of steel/oxide interface and EDS 

element maps of 445 steel oxidised for 7200 s at 1150 °C in humid air. 

Fig. 8 (a) Optical micrograph of the cross section showing steel grains of oxidised 

443 steel, and (b) the BSE micrograph of the cross section of thin oxide scale and 

EDS element maps of 443 steel oxidised for 7200 s at 1150 °C in humid air. 

Fig. 9 The result of a EDS linescan along A-B in Fig.8b of thin oxide scale formed on 

443 steel oxidised for 7200 s at 1150 °C in humid air. The oxide was a corundum 

structure M2O3 at the oxide/gas interface.  

Fig. 10 (a) Optical micrograph of the cross section showing steel grains of oxidised 

445 steel, (b) the BSE micrograph of the cross section of thin oxide scale and EDS 
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element maps of 445 steel, and (c) image of oxidised surface of 445 steel oxidised for 

7200 s at 1150 °C in humid air. 

Fig. 11 The result of a EDS linescan along A-B in Fig.10b of the thin oxide scale 

formed on 445 steel oxidised for 7200 s at 1150 °C in humid air. The oxide was a 

spinel structure M3O4 at the oxide/gas interface.    

Fig. 12 Equilibrium constant K  as a function of the inverse temperature for the 

reaction 1/2Cr2O3 (s) + H2O (g) + 3/4O2 (g) = CrO2 (OH) 2 (g) according to in 

Ebbinghaus [48], Stanislowski et al. [49], Opila et al. [50], and Gindorf et al. [47]. 

Pure Cr2O3 was used for the reaction. 
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Table 1 Chemical compositions of ferritic stainless steels 430, 443 and 445 (wt.%). 

 

 C Si Mn P Cr Cu Mo Ti Nb 

S430 0.04  0.30  0.40  <0.02  16.20  0.03  0.00  <0.01  <0.01 

B443 ≤0.01  0.35 <0.10  0.00  21.00  0.40  0.00  0.14  0.20 

B445 ≤0.01 0.30  0.15  0.03  21.50  0.10  0.60  ≤0.20  0.12  
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Table 2 kp values obtained at 1150 °C for three ferritic stainless steels oxidised in 

humid air 

 

Steel grades kp values (mg
2
·cm

-4
·s

-1
) R

2
 

430 (before 100 s) Cannot be obtained 

 
430 (after 300 s) 1.69 0.99 

443 (before 300 s) 3.75×10
-3

 0.80 

443 (after 600 s) 6.40×10
-1

 0.99 

445 (before 300 s) 3.91×10
-3

 0.81 

445 (after 600 s) 3.35×10
-3

 0.97 
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Table 3 EDS quantitative analysis data of spectra in Fig. 5 (at. %) of the 430 steel 

oxidised for 7200 s at 1150 °C in humid air 

 

Spectrum Cr  Fe O Si P 

1 9.4 90.6 
   2 21.5 19.5 57.0 1.8 0.2 

3 5.5 38.9 55.1 0.5 
 4 17.5 18.0 59.9 3.9 0.7 
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Table 4 EDS quantitative analysis data of spectra in Fig. 6 (at. %) of the 443 steel 

oxidised for 7200 s at 1150 °C in humid air 

 

Spectrum Cr Fe O Si Cu 

1 8.4 90.4 
  

1.2 

2 25.4 16.7 57.4 0.5 
 3 4.3 44.8 50.4 0.5 
 4 25.5 17.2 55.7 1.6 
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Table 5 EDS quantitative analysis data of spectra in Fig. 7 (at. %) of the 445 steel 

oxidised for 7200 s at 1150 °C in humid air 

 

Spectrum Cr Fe O Si Cu Mo Ti Nb 

1 21.7 76.6 
 

0.6 0.5 0.6 
  2 34.9 1.3 62.2 0.3 

  
1.3 

 3 13.9 24.6 61.2 
   

0.3 
 4 9.6 27.3 41.9 21.2 

    5 8.6 10.6 56.3 
   

24.3 0.2 
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Fig. 1 Optical micrograph of etched ferritic stainless steel samples: (a) 430, (b) 443, 

and (c) 445. 
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Fig. 2 Oxidation kinetics of three ferritic stainless steels in humid air. (a) Δm/s–t plots, 

(b) (Δm/s)
2
 –t

 
plots, and (c) (Δm/s)

2
 –t

 
plots during the initial stage.  
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Fig. 3 SEM micrographs of the oxidised surfaces oxidised for 7200 s at 1150 °C in 

humid air: (a) 430, (b) 443, (c) 445 and BSE micrographs of the cross sections of the 

oxide scales (d) 430, (e) 443, and (f) 445. 
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Fig. 4 XRD patterns of the surface scan after the steels oxidised for 7200 s at 1150 °C 

in humid air. 
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Fig. 5 The BSE micrograph of the cross section of steel/oxide interface and EDS 

element maps of 430 steel oxidised for 7200 s at 1150 °C in humid air. 
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Fig. 6 The BSE micrograph of the cross section of steel/oxide interface and EDS 

element maps of 443 steel oxidised for 7200 s at 1150 °C in humid air. 
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Fig. 7 The BSE micrograph of the cross section of steel/oxide interface and EDS 

element maps of 445 steel oxidised for 7200 s at 1150 °C in humid air. 
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Fig. 8 (a) Optical micrograph of the cross section showing steel grains of oxidised 

443 steel, and (b) the BSE micrograph of the cross section of thin oxide scale and 

EDS element maps of 443 steel oxidised for 7200 s at 1150 °C in humid air. 
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Fig. 9 The result of a EDS linescan along A-B in Fig.8b of thin oxide scale formed on 

443 steel oxidised for 7200 s at 1150 °C in humid air. The oxide was a corundum 

structure M2O3 at the oxide/gas interface.   
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Fig. 10 (a) Optical micrograph of the cross section showing steel grains of oxidised 

445 steel, (b) the BSE micrograph of the cross section of thin oxide scale and EDS 

element maps of 445 steel, and (c) image of oxidised surface of 445 steel oxidised for 

7200 s at 1150 °C in humid air. 
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Fig. 11 The result of a EDS linescan along A-B in Fig.10b of the thin oxide scale 

formed on 445 steel oxidised for 7200 s at 1150 °C in humid air. The oxide was a 

spinel structure M3O4 at the oxide/gas interface.   
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Fig. 12 Equilibrium constant K  as a function of the inverse temperature for the 

reaction 1/2Cr2O3 (s) + H2O (g) + 3/4O2 (g) = CrO2 (OH) 2 (g) according to in 

Ebbinghaus [48], Stanislowski et al. [49], Opila et al. [50], and Gindorf et al. [47]. 

Pure Cr2O3 was used for the reaction. 
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