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Simple method for measuring the linewidth enhancement factor of
semiconductor lasers

Abstract
A simple method for measuring the linewidth enhancement factor (LEF) of semiconductor lasers (SLs) is
proposed and demonstrated in this paper. This method is based on the self-mixing effect when a small portion
of optical signal intensity emitted by the SL reflected by the moving target re-enters the SL cavity, leading to a
modulation in the SL's output power intensity, in which the modulated envelope shape depends on the optical
feedback strength as well as the LEF. By investigating the relationship between the light phase and power from
the well-known Lang and Kobayashi equations, it was found that the LEF can be simply measured from the
power value overlapped by two SLs' output power under two different optical feedback strengths. Our
proposed method is verified by both simulations and experiments. (C) 2015 Optical Society of America
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A simple method for measuring the linewidth enhancement factor (LEF) of semiconductor lasers (SLs) is proposed 
and demonstrated in this paper. This method is based on the self-mixing effect when a small portion of optical 
signal intensity emitted by the SL reflected by the moving target re-enters the SL cavity, leading to a modulation in 
the SL’s output power intensity, in which the modulated envelope shape depends on the optical feedback strength 
as well as the LEF. By investigating the relationship between the light phase and power from the well known Lang 
and Kobayashi (L-K) equations, it was found that the LEF can be simply measured from the power value overlapped 
by two SLs’ output power under two different optical feedback strengths. Our proposed method is verified by both 
simulations and experiments. © 2015 Optical Society of America 

OCIS codes: (120.3930) Metrological instrumentation, (120.7280) Vibration analysis, (140.5960) Semiconductor lasers, (280.3420) Laser sensors.   
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1. INTRODUCTION 
It is well known that semiconductor lasers (SLs) play a key role in 

the emerging field of optoelectronics, such as optical sensors, optical 
communication and optical disc system. For these applications the 
linewidth enhancement factor (LEF), also called as the alpha factor or 
 -parameter, is a fundamental descriptive parameter of the SL that 

describes  the characteristics of SLs, such as the spectral effects, the 
modulation response, the injection locking and the response to the 
external optical feedback [1, 2]. Therefore, the knowledge of the value 
of the LEF is of great importance for SL based applications. 

It is been proved that LEF exhibits a strong dependence between the 

refractive index  , gain G  and the injected carrier density N , and is 

defined as following [3-6]: 
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where    is the complex electric susceptibility. Superscripts “R” and “I” 

denote the real and imaginary parts of  .    and c  are the angular 

optical frequency of the SL and the speed of light respectively.  
In the past three decades, various techniques [2-4, 7-17] are 

developed for measuring the LEF, and these techniques can be mainly 
classified into two categories based on the amount of injection current 
to the SL. For the first category, the injection current is below the 
threshold and in this situation, the LEF is regarded as a material 

parameter and is measured according to the definition of the LEF in Eq. 
(1). In the second category the injection current is above or close to the 
threshold and a mathematical model for measuring the LEF was 
developed from the rate equations of the SL. In this situation, the LEF is 
considered as a model parameter or effective parameter which is 
detached from its physical origin to a certain extent [4, 18]. Among the 
techniques in the second category, optical feedback method is an 
emerging and promising technique which does not require high radio 
frequency or optical spectrum measurements, thus providing an ease 
of implementation and simplicity in system structure [3, 19].  

The optical feedback technique is based on the self-mixing effect 
that occurs when a small fraction of light emitted by the SL reflected by 
the moving target re-enters the SL cavity, leading to both modulated 
amplitude and frequency of the SL power [20]. The modulated SL 
optical power is known as the self-mixing signal (SMS) which carries 
the information associated with the SLs’ parameters.  

Based on the optical feedback technique, various methods were 
proposed for measuring the LEF. In 2004, Yu et al. [3] proposed an 
approach which can obtain LEF by geometrically measuring the SMSs’ 
waveform. However, this approach requires the SMS to have zero 
crossing points, which means the optical feedback level (denoted as  C

) falls within a small range, i.e.,  1 3C   which is difficult to achieve 

for some types of lasers. Additionally, the movement trace of the target 
must be away from and back to the SL at a constant speed, which is 
also difficult in practice. Later, in the following years, several 
approaches [13-15, 21] for measuring the LEF were developed, and 
these approaches are mainly based on the numerical optimization for 
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minimizing the cost functions in parameters. Similar to [3], these 
methods are also restricted to certain feedback levels, e.g., approaches 
in [13-15] requires a weak feedback level, i.e., 0 1C   , and method 

in [21] requires a moderate feedback level. Furthermore, these 
methods are quite time consuming due to large data samples to be 
processed. Recently, two different approaches [16, 17] were developed 
for measuring the LEF over a large range of C  but they still face the 

problem of large amount of computation time.  
In this letter, by investigating the relationship between the light 

phase and output power from the Lang and Kobayashi (L-K) equation, 
a simple method based on the optical feedback technique for 
measuring the LEF is proposed in order to lift the above mentioned 
limitations. 

2. THEORY 
Optical feedback technique for LEF measurement relies on a 
theoretical model based on the stationary solutions of the well known 
Lang and Kobayashi (L-K) rate equations [22] which describes the 
dynamics of an SL with optical feedback. The model mainly consists of 
the following two equations [20]: 

 0 sin arctan( )F FC                    (2) 

0( ) cos( )Fg                              (3) 

where 
F  and 

0   are the phase corresponding to the perturbed and 

unperturbed laser frequency respectively and 
0( )g    is the SMS. 

0   is 

associated with the target movement trace L  and is given as 

0 04 L    , where  
0   is the unperturbed laser wavelength. 

Clearly, there is a straightforward procedure to establish 
0( )g   when   

L  varies, i.e., 
0 F g    . During the establishment, another 

important parameter i.e., optical feedback level C , determines the 

shape of 
0( )g  . For a target subjected to a simple harmonic vibration,  

0( )g   is symmetric with a sinusoidal-like fringes when  0 1C  . 

When  1C  , 
0( )g   shows asymmetric hysteresis sawtooth-like 

fringes. Figure 1 shows the relationship between  
0  and  

F  as well 

as 
0   and  

0( )g   for three different values of  C , whereas    is fixed 

to 4.0. The mechanism behind the relationship between 
0( )g    and C   

has been well-established and presented in [23, 24].  
From Eq. (2), it is interesting to notice that when  

0 arctan( )m    , where m   is an integer,  
F  always equals to 

0    no matter what value of  C  is, i.e.: 

0 arctan( )F m                         (4) 

The red solid line with circles in Fig. 1(a) shows the relationship of 

0 F  .  Fig. 1(a) also shows the relationship between 
0  and 

F  for 

different C  values, namely 0.5,  2.0,  4.0C  .  It can be seen that these 

curves always intersect at the points corresponding to 

0 arctan( )F m      . Consequently, the SMSs 
0( )g   with 

different C  values also intersect at these points, as shown in Fig. 1(b).  

Note that the points of  
0 arctan( )F k      , where k   is an odd 

number, corresponds to the unstable mode as it does not meet the 

condition of   
0 0Fd d    [24], and this mode does not involve in the 

process of constitution of  
0( )g   . Therefore, for the points  

0 2 arctan( )F m      , according to Eq. (3), we have: 
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or 

2

1
1

g
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Thus equation (6) provides us a simple approach to measure the 

LEF.  For example, with two SMSs (denoted as 
1 0( )g   and 

2 0( )g  ) of 

different C  values available, we can work out the intersect point by 

checking the zero-crossing point of 
1 0 2 0( ) ( )g g  , and use the 

corresponding g  to calculate   according to Eq. (6) .    

Note that the accuracy of the proposed method depends on the level 
of noise in the SMS.  In order to reduce the noise, we can perform the 
following two ways to obtain the value of the LEF: 

(1) When two sets of SMSs are available, we may obtain multiple 

zero-crossing points of 
1 0 2 0( ) ( )g g  , each will yield an   

value, and we take the average of them as the final result.  This 
will lead to a better estimation of the  .  

(2) When more than two sets of SMSs of different C  values are 

available, e.g., 
0 0( )g  , 

1 0( )g  , …, 1 0( )pg  , where p  is an 

even number.  We can divide the SMSs into pairs, each of which 
can give the value of   from the intersect point, and the 

average of them will lead to a more accurate estimation of the 
 .  This can be done by checking the zero-crossing point of 

the following: 
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Fig. 1.  The relationship between (a) 
0  and 

F  as well as (b) 
0  

and 
0( )g   for a fixed value of 4.0  . 

3. SIMULATION 
To verify our proposed approach, we firstly carry out the computer 

simulations to generate SMSs. Without loss of generality, 
0  is set to be 

830nm, and the external target is assumed to be subjected to a simple 

harmonic vibration, i.e.,  0
0 0( ) ( ) cos(2 )

s

f
L n L L n L L n

f
      , 

where  
0 0.25L m ,  1.18L m  ,  

0 200f Hz  and 100sf kHz  

are respectively the initial external cavity length, vibration amplitude, 
vibration frequency and sampling frequency. n   is the discrete time 

series. Thus  
0( )n  can be obtained as 

6

0( ) 3.8 10 5.7 cos(0.0126 )n n    . Then the SMS can be obtained 

from Eqs. (2) and (3) [24] for a given set values of  C  and  . 

Assuming two sets of the SMSs are available, Fig. 2 shows the vibration 
trace as well as two SMSs for two different values of C  when    is 



preset to 4.0. Note that the SMSs are superposed by a noise signal with 
SNR=20dB.  

From Fig. 2(b), we can see that there are ten intersect points 
between the two SMSs, as indicated by the large black dots which 

correspond to the condition of  
0 2 arctan( )F m      . Then the 

value of   can be obtained using the first option mentioned in the 

Section 2. The accuracy is considered as the standard deviation 
(denoted as  ) of all the calculated data. The calculated results of  ̂  

and    are respectively 3.81 and 6.5%. 

 

 

Fig. 2.  Simulation results of SMSs for two different C  values when 

4.0  . (a) the vibration trace (b) two SMSs for 0.5C   (solid line) 

and 2.0C  (dotted line). 

Similarly to the above case, computer simulations have been 
performed for various preset values of   and the corresponding 

estimated values of ̂  are presented in Table I. In Table I, we also 

present the ̂  values calculated using the approach in [3]. Note that 

the approach in [3] is only valid when the feedback level is moderate, 
i.e.,  1 3C   and the value we choose for the results in Table I is 

2.5C   . Also from Table I, we can see that even for the value of C   

falling in the range of  1 3C  , the approach in [3] is still not valid 

when    is equal or less than 1.0 because there is no zero crossing 

points of SMSs, which is essential for utilizing the approach in [3].  
From Table I, it can be seen that our proposed method is more 
accurate and has wider practical utility. 

4. EXPERIMENT 
The experimental set-up for verifying our proposed approach is 

presented in Fig. 3. The light emitted by the SL is focused by a lens and 
then hits on the target which is a loudspeaker vibrating harmonically. 
The SMS is detected by the Photo Diode (PD) packaged at the back of 

the SL and is acquired by a data acquisition unit (DAU). The optical 
feedback level is adjusted by the attenuator inserted between the lens 
and loudspeaker. The attenuator we used is NDC-50C-2M-B (provided 
by the Thorlabs) which is continuously variable density filter with 
angular graduations mounted on a rotating axle. 
 

 

Fig. 3.  Experimental set-up for measuring the LEF. 

In the experiment, the SL is a single mode quantum well laser from 
Hitachi (HL8325G). The SL is biased with a DC current of 70mA and its 

temperature is stabilized at 
025 0.1 C  which corresponds to a 

threshold current of 45mA and a wavelength of 830nm. The 
loudspeaker is placed 0.25m away from the SL and driven by a 
sinusoidal signal with a frequency of 200Hz and peak-peak voltage of 
200mV.  

Figure 4 shows the two SMSs acquired by the experimental set-up 
shown in Fig. 3. The C   values of the two SMSs are respectively 0.82 

(solid line in Fig. 4) and 2.94 (dashed line in Fig. 4). Note that the value 
of C   can be obtained from the waveform of an SMS using the method 

reported in [24, 25]. Using the first way described in section 2, we are 

able to obtain ̂  as 3.19 and   as 4.05%, whereas ̂  and   are 

respectively calculated as 3.01 and 6.80% using the approach in [3]. 
 

 

Fig. 4.  Experimental signals of SMSs for two different  C  values. 

 
 
 

 
Table I. Simulation results of the LEF obtained using the first way 

described in Section 2 where the SMSs are superposed a noise signal with 

SNR=20dB 

Preset   0.1 0.5 1.0 2.0 4.0 6.0 8.0 

Estimated ̂ /  using 

the approach in   

this paper 0.19/7.8% 0.37/6.9% 0.78/7.1% 1.83/5.1% 3.81/6.5% 6.14/4.1% 7.91/3.8% 

[3] N.A N.A N.A 1.78/4.5% 3.71/7.1% 5.81/5.6% 8.21/5.1% 

5. CONCLUSION 
A new and simple method for measuring the LEF based on the 

optical feedback technique by investigating the relationship between 
the light phase and power is demonstrated. The proposed method is 
superior over the existing methods due to the following two aspects: 
(i) the proposed method eliminates the feedback level restrictions 
used in previous methods, thus allowing the experimental design 

simpler, (ii). the LEF can be simply determined from the intersect point 
of two different SMSs’ waveforms, thus providing a fast and easy 
measurement technique for the LEF. 
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