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Technological Innovation in the Maritime Industry:  

The Case of Remote Pilotage and Enhanced Navigational Assistance 
 

 

 
ABSTRACT 

 
 

Advances in technological innovation have been deployed to support autonomous or semi-

autonomous vehicles in many industries. A question that remains unanswered is why very little 

progress has been made in remote pilotage over the past 15 years. This paper draws together 

theories from innovation management and the high reliability organisation literatures to shed 

light on this question. Using a case study of two Australian ports, we examine a business case 

for remote pilotage demonstrating that despite positive cost benefit models, ambiguities in 

benefits exist throughout the ecosystem. The discussion sheds light on unique challenges that 

Port executives face where it is necessary to simultaneously develop a strategy to: (1) manage 

the internal innovation process, and (2) manage the external consequences of the innovation by 

mobilizing allies, managing opponents, and converting those who are indifferent to the 

innovation. The main contribution of this paper is to show that any assessment of the innovation 

challenge facing remote pilotage and enhanced navigational assistance requires the maritime 

industry to ask new questions not previously considered. 

 

Keywords 

 

Remote pilotage, enhanced navigation, e-navigation, technology and innovation management.  
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1. INTRODUCTION 

 

Several years ago, in this journal, Hadley (1999) defined Remote Pilotage as “an act of pilotage 

carried out in a designated area by a pilot licensed for that area from a position other than on 

board the vessel concerned…” (p.3). In a follow up global survey of the technologies, issues 

and usage of technology to support shore-based roles, Hadley (2000) concluded that: 
 

 “The required technology is either available or can be seen as a realistic prospect...  

However, technology alone will not suffice to make change practicable.  The non-

technological issues are more intractable but capable of solution.  Progress, if realised, 

can be expected to be slow; the current assessment for the spread of [remote pilotage] is 

10-15 years” (p. xi). 

 

Given we are now 15 years post this assessment it would seem useful to revisit the issue and 

assess the degree of spread that has occurred. A recent European survey of the practice across 

23 countries found very little increase in the use of remote pilotage (PWC, 2012). Beyond the 

maritime industry autonomous or semi-autonomous vehicles are leveraging advances in global 

positioning technologies and being employed in a wide variety of other industries such as 

mining (Fiscor, 2012). Robotics and automation are transforming some aspects of surgical 

practice (Broeders, and Ruurda 2001), driverless trains are common (Valderrama 

and Jørgensen 2008). Systems for control of space-based automated systems (e.g., for Mars 

missions) continue to progress in complexity (Straub, 2014).  Each of these environments has 

faced and continues to face their own unique, complex challenges. The maritime industry is 

arguably no less unique or complex. However the limited progress around automation (as 

indicated by Arnsdorf 2014) is curious, and worthy of further examination, and not just from 

the context of whether the technology itself is mature enough. Although we highlight some 

issues associated with the technology itself in the following section, it is not the focus of this 

paper to examine that particular issue. 

 

The question we pose in this paper is why has the maritime industry been slow to move on 

remote pilotage? To answer this question we draw insight from the innovation management 

literature where the management of complex innovations is a key strategic issue (Schumpter, 

1950). Much ink has been devoted to the internal and external factors that determine whether 

promising initiatives will succeed or not (Hayashi, 2013). An internal focus on innovation 

asserts that familiar drivers of innovation success are leadership, implementation 

competencies and company culture (Tellis, 2013; Adner 2012). An external focus requires 

explicit consideration of the delays and challenges inherent in the innovation environment or 

ecosystem (Adner, 2012). Far less attention has been given to the management of these 

internal and external perspectives and the obstacles or barriers that arise in an innovation 

ecosystem when they are not considered early in the innovation life cycle.  

 

It can be tempting for managers to apply a narrow lens and focus attention on simplifying a 

complex innovation initiative by concentrating their efforts on getting things right, one 

operational capability at a time (Coltman et al. 2011; Coltman & Devinney, 2013). For 

example, anecdotal reports and our own interview work reveal that the first bottleneck 

managers chose to confront is whether technologies are sufficiently advanced to proceed with 

the innovation. This approach, however, would seem to be flawed, as technological advances 

http://www.emeraldinsight.com/action/doSearch?ContribStored=Broeders%2C+I+A
http://www.emeraldinsight.com/action/doSearch?ContribStored=Ruurda%2C+J
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in isolation are rarely sufficient for an innovation to succeed.1 In the specific case of remote 

pilotage, technological advances are nested within an intricate ecosystem of interrelated 

stakeholders and interdependent resources that include, but are not limited to how pilotage is 

defined in law; vulnerability of associated technologies (Harati-Mokhtari et al., (2007); a 

range of operational issues; challenges around insuring ships during remote pilotage; and cost 

of associated technologies (e.g., dynamic positioning systems). 

 

This paper does not seek to address all the individual challenges facing remote pilotage as prior 

work sheds light on some of these issues. For example, Bruno and Lützhöft (2009) examined 

the issue of remote pilotage and argued that the issue should not be characterised as a 

technological problem. They assert that a better way to understand the lack of progress is to 

first consider pilotage as the control of a complex socio-technical system. This led Bruno and 

Lützhöft (2009) to describe the fundamental problem of remote pilotage as a less effective and 

inferior means of providing feedback to the pilot. The authors proceed to identify reasonable 

and relatively inexpensive solutions to mitigate, if not resolve the control problem. However, 

if solving the control problem is possible, and inexpensive, why have the relevant stakeholders 

in the maritime industry been slow to move on this issue? Control can only be part of the 

answer. 

 

In this paper, we argue that the complex challenges facing remote pilotage are unlikely to be 

solved with a narrow lens that identifies singular innovation challenges.  Rather, remote 

pilotage is an example of an innovation management challenge that requires consideration of 

the links between multiple parties in the innovation ecosystem. An ecosystem approach 

requires managers to ask new questions such as: Who sets the rules for how stakeholders in the 

innovation network will interact? Who hands off to whom in a complex innovation network? 

What decisions rights are retained when components are built by others? Who else needs to 

use the innovation in order for it to be successful?  These questions are increasingly relevant 

to large and complex innovation initiatives and any failure to consider them can lead to blind 

spots that hinder the pace of innovation.  

 

We illustrate the innovation management challenges facing remote pilotage with a case study 

of two Australian port operators. To evaluate the business case for remote pilotage, we consider 

the shipping movements in two ports and the cost-benefit modelling that was performed with 

respect to implementation of remote pilotage. We argue that an innovation ecosystem 

perspective provides a more complete assessment for why the maritime industry has been slow 

to move on remote pilotage.   

2. THEORETICAL BACKGROUND  

 

It is well understood that innovation is, by its very nature, a highly unpredictable process. A 

core reason for this is that any given innovation does not stand alone. Rather, it depends on two 

areas of focus: internal focus and external focus (Hayashi, 2013). An internal focus asserts that 

resources and capabilities are important to develop customer insight, building capabilities to 

execute effectively on the project (Adner 2012). An external focus suggests that 

interdependencies in the firm’s innovation ecosystem predict innovation success. 

                                            

1 Innovation is defined in this paper as the process that moves an invention of a new product, process or service 

forward to successful commercial exploitation (Freeman 1982) 
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Interdependencies reflect the contemporary nature of innovation where parts of the innovation 

are dependent upon other actors or partners to co-create or adopt the innovation (Adner, 2012).  

2.1 Internal Execution Focus on Innovation and its Barriers 

 

Expert opinion tends to explain the sources of innovation failure based on two schools of 

thought: a shortfall in customer insight, and shortcomings in leadership and implementation. 

This body of research asserts that the key to innovation success lies with evaluating the 

financial feasibility, identifying the likely benefit to customers, assessing the competition, the 

appropriateness of the supply chain and developing the capabilities to execute the task of 

building the new product, process or service. For example, Hadjimanolis (1999) used resource-

based theory to show that differences in innovation outcomes can be attributed to the 

differences in resource and capability.  Several internal barriers can act on one or more points 

of the innovation process such as lack of appropriate technical capabilities and HR resources 

(Hadjimanolis, 1999), excessive perceived risk of innovation (Galia & Legros, 2004), and lack 

of motivation (Hadjimanolis, 1999).  

 

In a two-decade study in innovation Tellis (2013) concludes that the most important driver of 

innovation in an organisation is its culture. He argues that "...the cause of failure and success 

of innovation lies not in hard formulae, models, technologies, buildings or money, but in a soft 

mushy, difficult-to-grasp, and tough-to-master thing called culture". Innovation culture within 

an organization is the best form of insurance an organisation can have in a dynamic 

environment (Hidalgo and Albors, 2008).  Even though nothing is guaranteed, organisations 

continue to invest in developing an innovation culture to enhance long term competitiveness. 

 

However, the success rate of innovation is low and managers are all too familiar with the 

challenges of delivering a project on time and to specification. For example, in a review of 19 

peer-reviewed research studies Castellion and Markham (2013) reported new product failure 

rates of between 30–49 percent for the 1945 and 2004 period. This implies that a focus on 

internal execution and culture may create blind spots that hide critical inter and intra-

dependencies that are equally important to innovation success. We discuss these next.  

 

2.2 External Focus on Innovation and its Barriers 

 

Organisations are increasingly recognising that new value propositions are possible when 

suppliers, business partners, and customers work together to co-produce value (Ordanini and 

Parasuraman 2011;). In other words, innovation frequently takes place within an "innovation 

ecosystem" and a key distinction between a standard ‘competitive strategy’ and an ‘ecosystem 

strategy’ lies in consideration of actors who lie off the critical path to the end consumer (Adner 

2012). This approach to innovation explicitly accounts for the interdependency risks associated 

with coordinating complementary innovators (co-innovation risk) and the need to assess the 

integration risks of having the solution adopted across the value chain (adoption chain risk). 

Integration or adoption chain risk refers to “the extent to which partners will need to adopt your 

innovation before end consumers have a chance to assess the full value proposition” (p.34) and 

the assessment of interdependency or co-innovation risks is defined as “the extent to which the 

successful commercialisation of your innovation depends on the successful commercialisation 

of other innovations” (p.33) as equally important to understand and control.  

 

Studies focusing on innovation ecosystems allow organisations to create value that no single 

organisation could have created on their own.  Not surprisingly, the benefits of these innovation 
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ecosystems – discussed under labels such as open innovation, platform leadership, value 

networks − have become central to both business strategy and practice. Several studies have 

also investigated the external barriers to innovation. For example, Madrid‐Guijarro, Garcia, & 

Van Auken, (2009) summarize these barriers including insufficient government support 

(Hadjimanolis, 1999), economic turbulence (Katila & Shane, 2005), lack of market information 

(Galia & Legros, 2004), lack of information about technologies (Galia & Legros, 2004), lack 

of external partners possibilities (Mohen & Roller, 2005). These external barriers are related to 

the focal firm and its partners, which will make the innovation difficult to implement. 

 

Figure 1 provides a graphical illustration of an approach to analysing the risks in an ecosystem.  

Due diligence requires that once an innovation strategy is developed, organisations consider 

three risk areas: (1) assess the interdependence risks of coordinating with external partners, (2) 

assess the internal project execution risks, and (3) assess the integration risks that a solution 

will be adopted by stakeholders. It is also the case that innovation strategy is likely to be more 

difficult in complex, highly reliable organisations where multi-layered regulatory barriers can 

apply. We examine these contextual challenges facing innovation next. 

 

 

Figure 1 - Three Risks of Innovation Ecosystem (adopted from Adner 2012) 

2.3 Innovation in Highly Reliable Organisations 

 

An increasing number of organisations are engaged in innovative products, processes or 

services in hazardous (in the engineering sense) environments where failure can lead to harmful 

consequences for the organisation and/or a larger public.  Highly Reliable Organisations 

(HROs) is a term used to denote organisations that devote extraordinary attention to avoiding 

major errors and dangers because the consequences of failure can be harmful to people, 

organisations and/or the environment (Bierly, 1995). Typical examples of HROs include 

nuclear power plants, genetic engineering, air-traffic control, dangerous drugs and the use of 

pesticides in agriculture. Despite a high number of organizations that might be classified as 

HRO the literature has not considered the challenges facing innovation in this context. We 

assert that high operational reliability is at least an aspirational goal in the maritime industry, 

and a proportion of organisations are likely to meet the criteria for HRO status, including a 

percentage of ports.  
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A feature of HROs is that they are complex and tightly coupled. Perrow (2011) assert that 

accidents or organisational failures will inevitably result within tightly coupled organisations. 

Roberts (1990b) argues that HROs use four strategies to increase operational reliability and 

therefore avoid these failures. These strategies are redundancy, accountability, responsibility 

and a culture of reliability. Time dependent processes can be responded to with redundancy 

making it possible to find errors that may otherwise be overlooked. Variance in accountability 

and responsibility across jobs in HROs can be managed by building in flexibility to counter the 

negative effects (i.e. holding up aircrafts at point of departure when too many are scheduled to 

land at the same time at the destination). HROs manage singular goal processes by building 

layers within the organisation (a form of redundancy) that allow changes in the way that the 

goals are reached (Roberts, 1990a).  

 

La Porte (1996) notes that HROs not only have complex systems with error free expectations, 

but they often are required to operate continuously at or near peak capacity. Due to this 

expectation of error free, HROs are unlikely to embrace trial and error approaches to innovation 

where organisations are encouraged to experiment, prototype and 'pivot' as described by 

Schrage (2000). Bierly, Gallagher and Spender, (2008) assert that a platform approach to 

innovation assists during the innovation process in HROs. The platform provides a foundation 

for organisation wide business systems that can be used to support modular processes, and to 

allow managers to understand interdependencies among various core transactions.  Platforms 

enable HROs to stabilise core technology (i.e. nuclear reactors) to maintain reliability.  

 

HROs are therefore not exempt from the innovation challenge. In the sections that follow we 

begin to address this challenge by investigating technological innovation in a two-site case 

study of the maritime industry. 

3. CASE STUDY 

A two-site case study design was used that focuses on understanding the dynamics present 

within both settings (Eisenhardt, 1989) using an in depth data collection process (Yin 1994). A 

triangulation process was used for the case study based on multiple levels of analysis, and 

multiple data sources such as financial analysis, interviews, focus groups, ship movement data 

and document analysis. The authors assert that all procedures contributing to this work comply 

with the ethical standards of the relevant national and institutional committees on human 

experimentation and with the Helsinki Declaration of 1975, as revised in 2008 

The case study provides a general overview of the ports and their trade characteristics. Second, 

we report on a financial calculus to identify whether remote pilotage is viable. Finally, this data 

is discussed in the context of the socio-technical system that moves ships within ports, 

regulatory advances and also with respect to the innovation literature.  

 

3.1 Port A 

 

Port A is predominantly a bulk-cargo export port.  Analysis was performed on vessel movement 

data between 1 January 2012 and 23 May 2013 for this port.  In total, there were 5,956 vessel 

movements (2,978 visits) recorded, excluding transfers between one berth to another. By trade 

tonnage, bulk commodities represented ~95% of trades through the Port. However, bulk 

carriers only represent 70% of total movements.  This is mostly due to the sheer size and 
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tonnage of the bulk cargo vessels visiting the port. Due to the port characteristics and types of 

ships being moved, the port typically uses three and sometimes four tugs.  

 

Analysis of vessel Length Overall (LOA)2, shows that approximately two-thirds of the 

movements involved vessels with an LOA greater than 200 meters, and 20% involved vessels 

with an LOA between 150–200 meters. Forty three percent of the vessels that visited the port 

accounted for 76% of the total visits to the port.  The percentage of total ship visits is 

summarized in Table 1. Twenty four percent of ships had a single visit and 10% of ships visited 

the port more than 10 times. The greatest number of ships (41%) visited the port 2-5 times per 

year. 

Table 1: Vessel Visits to Port A 

Number of 

Visits 

Number of 

Vessels 

Total Visits by 

Vessels in this 

Category 

Percentage of 

Total Visits 

Single visit 714 714.0 24% 
2–5 visits 428 1,214.0 41% 
6–10 visits 106 754.5 25% 
> 10 visits 18 295.5 10% 

3.2 Port B 

 

Analysis for Port B was performed on vessel movement data for one calendar year post 2010. 

In total, there were 1,001 visits recorded. Data were provided on visit levels, not on movement 

levels. The percentage of total ship visits is summarized in Table 2. 

 

Analysis of cargo types indicates that the profile of the visiting vessel is distributed across 

several vessel types. Bulk and general cargo makes up approximately 55% of the vessels, and 

37% is made up of PCC/PCTC (pure car carrier / pure car and truck carrier).  

 

Analysis of LOA shows that 55% of visits involved vessels with an LOA of below 200m, and 

another 37% with an LOA of between 200–250 meters. Choosing to target vessels below 150m 

LOA first means that less than 15% of vessel movements would be covered. However, 

targeting vessels below 200m LOA means that more than triple the number of target vessel 

movements can be covered. 
Table 2: Vessel Visits to Port A 

 
Number of 

Visits 
Number of 

Vessels 
Total Visits by Vessels 

in this Category 
% of Total 

Visits 
Single visit 465 465 32% 

2–5 visits 152 760 52% 

6–10 visits 14 140 10% 

> 10 visits 6 90 6% 

 

The analysis in the previous section identifies that 70% of ships entering Port A are bulk 

carriers and 21% are bulk, general cargo and container ships. In Port B, 43% are bulk carriers 

and 37% are car carriers.  

                                            

2 Vessel movement data provided do not contain vessel beam. 
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4. CASE STUDY ANALYSIS 

The analysis was based on an iterative process.  First, an assessment of the cost and benefits 

of remote pilotage was undertaken based on actual pilotage and ship movement data obtained 

from the case study ports.  Second, interviews and publically available data (on issues such as 

accident costs) were collected to support the analysis.  

 

The benefits in port utilisation are unlikely to be driven by faster movement of vessels, but by 

improved utilisation of port resources.  Project benefits were modelled and quantified around 

the following: 

 Navigational performance / safety (25% of total benefit). Data indicates that claims 

for pilot error related claims made to P&I Clubs by pilots cost over $1.36 million 

(adjusted to 2013 Australian dollars) (International Group of P&I Clubs, 2004) and on 

average, there is one error for every 15,543 vessel movements in Australia. Significant 

improvements are likely to have been made in pilot performance since this data was 

collected, however the cited document is the most comprehensive international analyses 

available. The aim of implementing a remote system of pilotage would be to use 

technology to reduce the number of errors to one for every 95,000 vessel movements to 

be achieved over a 5 year period.  This error rate is still well above that experienced in 

countries such as Germany and Netherlands (International Group of P&I Clubs, 2004). 

 Pilot safety.  (10% of total benefit). Injury costs were modelled based on Australian 

historical injury data using an annual cost of injury of $AUD 70,000 (SafeWork 

Australia, 2012) in 2009 was adjusted for inflation in the model. Injury data for the 2 

ports was reviewed and for Port A we determined that there were 1.40 pilot injuries per 

1,000 hours of pilotage; this figure was 1.62 for Port B.  

 Pilot utilisation. (20% of total benefit). Removal of pilot transfers will reduce the time 

needed for pilot transfers, which depend on distance, mode of transfer and other 

conditions. Benefits in pilot utilisation were modelled by estimating the amount of time 

saved by removing pilot transfers. Analysis of pilotage duration was performed on 

vessel movement data between 1 January 2012 and 23 May 2013. (Port A pilotage 

duration =77 minutes; pilotage transfer =34 minutes. Port B pilotage duration =70 

minutes, pilotage transfer =55 minutes. 

 Reduced requirements for pilotage support services such as pilot cutters, helicopter 

and the associated crew.  (45% of total benefit). These were modelled based upon costs 

in the 2012-13 financial year provided by the port and included payroll costs and 

overhead, asset maintenance and depreciation. 

 

The benefits reported above do not imply that these are the only contributions from 

implementing remote pilotage. Bigger ports with busier vessel traffic have the potential to 

move more vessels under shore-based pilotage, and are expected to reap greater benefits from 

the innovation. For the two reference ports, project benefits are estimated at between $3–6 

million for the five years modelled, assuming the ability to achieve 900–2,000 vessel 

movements by Year 5. As a comparison, the numbers of vessel movements at the two reference 

ports in 2018 are estimated at 6,500 for Port A and 3,000 for Port B. 

 

Total costs of port investment required are not markedly influenced by the volume of vessel 

traffic in the particular port. For each of the reference ports, the total costs in initial investments 

and in operating costs for five years was estimated at approximately $AUS1.8–2.0 million 

each. This includes both initial investment and annual maintenance costs for the technology 

during the five years modelled. This model also assumes that the port will not need to install a 
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laser berthing system, or that such a system already exists, because the technology is 

understood to be critical for certain cargo only, such as liquefied gas, and the decision to install 

such a system is assumed to be independent of the considerations for shore-based pilotage. 

 

The cost analysis model shows that the bulk (75%) of the investment will be incurred in what 

might be described as a development or ‘improvement’ stage. This is driven by the fact that 

the initiatives in the improvement stage will also lay the foundation and infrastructure for 

shore-based pilotage. The overall financial analysis for the two reference port scenarios are 

shown in Table 3. 

 
Table 3. Distribution of Investments Costs (in Australian dollars in 2013) 

 
 Port A or Similar Ports Port B or Similar Ports 

Estimated Net Present Value (5 

years)3 

$2.5 million $0.7 million 

Estimated Net Cash Flow at Year 5 

and Beyond 

$3 million per year $1.5 million per year 

Estimated Payback Period 3.3 years 4 years 

Estimated Int. Rate of Return (IRR) 65% 31% 

Estimated Return on Investment 230% 88% 

 

Break-even point (zero NPV) for a particular port is estimated when it achieves 300-500 vessel 

movements per year under remote pilotage by year 5.4 The actual number of vessel movements 

required will depend on the actual pilotage cost structure, and the elasticity of costs for pilotage 

support services, i.e. how quick can it be adjusted to follow demand. Results of Break-Even 

(zero NPV) analysis for the two reference port scenarios are shown in Table 4.  

 
Table 4. Break even (zero NPV) analysis  

 

Conditions at Break-Even Port A or similar ports Port B or similar ports 

Percentage remote pilotage vessel 

movement by Year 5  

4-5% 16-17% 

Number of remote pilotage vessel 

movements / year 

~300 ~500 

 

This data suggests that remote pilotage is financially viable and that the percentage of vessels 

that would be required to break-even is typically making 6-10 return visits a year to the ports, 

If we accept this information and the assumptions that underpin the financial model, this 

removes a further impediment to remote pilotage.  If the financial model breaks-even, and the 

technology exists why is remote pilotage still absent in a vast majority of pilotage events?  Part 

of the answer may be found by examining the internal and external factors influencing 

innovation in ports.   

                                            
3 Estimated at 10% WACC for both ports, which does not include the perpetual value of cash-flow in 
Year 6 and beyond. 
4 Assumes progression of the remote pilotage adoption as follows: half of the Year 5 volume in Year 
4, and a third of Year 4 volume in Year 3. 
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5. DISCUSSION 
 

We began this paper by posing the question "Why has the maritime industry been slow to move 

on remote pilotage?" Our review of the literature indicates that although remote pilotage can 

be found in places such as the Netherlands and Italy, execution is limited and typically 

supported by ‘older’ technologies such as VHF radio and radar (Koester, 2007).  

 

The only exception to this limited execution seems to be in Italy, where shore-based pilotage 

is practised more frequently as an alternative to on-board pilotage (30% of total pilotage 

service). The service is provided through VHF radio by a pilot licensed for the port, and is often 

referred to as VHF pilotage. It is generally applied to ferries that frequently visit the port and 

to smaller vessels, with the master carrying a special permit to do so. No accidents related to 

VHF pilotage have been reported in Italy. We summarise the global state of remote pilotage in 

Appendix A. This does not however lead to the conclusion that this practice is risk-free. Indeed 

a range of technical/technological issues remain to be solved, including the integrity of 

positional, navigation and timing systems, COLREG (Collision Regulation) compliance and 

hacking and jamming immunity/protection. Beyond this, are the human factors issues 

associated with the possible removal of standard cues mariners use to build and maintain 

situational awareness (such as vibrations of the ship due to engine performance). 

  

The focus on reducing and managing risks and dangers in the maritime industry implies that 

any innovation will be challenging. This is consistent with the literature on HROs (Bourrier 

2011) where research indicates that HROs mitigate the potential for unexpected consequences 

and complex technologies through multiple sources of direct and indirect information.  

However, these are largely internally focussed and can lead to blind spots in the innovation 

ecosystem, as shown in Figure 2. This Figure directs attention to interdependence risks 

associated with e-navigation platforms and the integration risks associated with maritime 

equipment manufacturers, port authorities and ship owners. 

 

Figure 2 – Three Risks of Innovation Ecosystem for Enhanced Navigational Assistance 
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As shown in Figure 2, we suggest that an ecosystem-perspective should be considered when 

facing the innovation challenges. Remote pilotage is a typical example of such innovation 

management challenge.  A narrow lens would not be able to solve the challenge as we discussed 

in two case studies, rather it requires the consideration of the links between multiple roles in 

the innovation ecosystem. We argue that managers with ecosystem-perspective will ask 

different questions to have more correct assessment of innovation challenge such as: “Who else 

needs to use the innovation in order for it to be successful?” instead of asking: “How does my 

company make the innovation to be successful?” Different questions are increasingly relevant 

to large and complex innovation initiatives. Without asking those new questions can lead to the 

innovation failure or at least hinder the pace of innovation. We discuss the ecosystem-

perspective in details next. 

5.1  Assessing the Interdependence with Complementary Innovators 

One major role in supporting innovation is that of complementary innovators.  In order to 

understand current progress around remote pilotage and enhanced navigational assistance, the 

discussion needs to include external interdependencies.  International development in the area 

of maritime regulation provides a platform for discussing co-innovation work.  The most 

obvious of these developments is the IMO-led e-navigation initiative.  

   

E-navigation has been defined as “The harmonized collection, integration, exchange, 

presentation and analysis of marine information on board and ashore by electronic means to 

enhance berth-to-berth navigation and related services for safety and security at sea and 

protection of the marine environment.” (International Maritime Organisation, 2014a) The ‘e’ 

therefore is not simply electronic but refers to “the overall conceptual, functional and technical 

architecture" that includes "process description, data structures, information systems, 

communications technology and regulations” (International Maritime Organisation, 2014b).  

 

The IMO initiative on e-navigation is an important co-innovation for Enhanced Navigational 

Assistance for two key reasons: 

 

 The e-navigation initiative provides a platform based on the overarching e-navigation 

architecture that includes standard-based innovations (i.e., Common Maritime Data 

Structure, the Maritime Service Portfolios and the International Hydrographic Office’s 

S-100 standard).  

 

 The e-navigation initiative directs attention towards addressing several important 

deficiencies in the current maritime systems that would support enhanced navigational 

assistance (i.e., Improved, harmonized and user-friendly bridge design, standardised 

reporting, improved Vessel Traffic Service communication), (IMO, 2014a) This includes 

addressing deficiencies in equipment design “A clear need has been identified for the 

application of good ergonomic principles in a well-structured human machine interface 

as part of the e-navigation strategy” (IMO, 2014a, p.2). This also led to the development 

of the (currently draft) guideline on the development of e-navigation systems associated 

with Software Quality, and Human Centred Design (HCD) (see IMO, 2013).  

 

Regulatory efforts such as the e-navigation initiative are but one piece of the ecosystem 

approach to innovation. Successful innovation also requires an understanding of the external 

adoption chain, and in order to address this we need to ‘widen the lens’ through which we view 

the related technologies.   
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5.2 Assessing Integration Risks in the Adoption Chain 
 

The case study illustrates the importance of the wider ecosystem when considering innovation 

such as remote pilotage or ENA-related technology. In the case of the movement of ships within 

a port environment the list of stakeholders includes: port authorities, vessel traffic services, 

pilotage organisations, towage providers and independent companies or technology providers. 

In the case of the authority, it might be privatised, quasi-privatised or publically owned. 

 

For any innovation it is important to ask a very simple question for each stakeholder in the 

adoption chain – What is the value of the innovation when transition costs are considered? Do 

they stand to gain or lose from the innovation? Table 5 applies this approach for Remote 

Pilotage technologies, identifying whether the value is positive (+) ambiguous (?) or negative 

(-). Our analysis suggests that there is still a large degree of ambiguity in the value proposition.  

This is not unresolvable, but would require a detailed and potentially port specific evaluation 

in order to confirm the value proposition along the adoption chain. 

 

Table 5 The External Adoption Chain for Remote Pilotage Technologies 

 

<Insert Table 5> 

 

5.3 Case Study and Paper Limitations 

The case study as represented suffers from several limitations that are worth highlighting. 

First, the two case study ports are not ‘representative’ of all ports around the world.  Ports 

have different mixes of ‘trades’ and these are associated with different ship types.  The two 

ports used in this case study do not, for example, currently attract cruise ships. It would not 

be appropriate to compare the risks of remotely piloting a bulk carrier with the remote 

piloting of a cruise ship with 7000 people onboard. Having said this, the cruise ship is likely 

to have vastly superior navigational and manoeuvring technologies, more highly trained 

crews, and a larger number of officers. One could imply from this argument that cruise ships 

are more 'technically appropriate’ candidates for remote pilotage.  

Despite the appeal of cost-analysis and net present value calculations in industry there are 

limitations associated with these calculations.  Specifically, the calculations rest on an 

assumption that there is a single future (when many different scenarios emerge in any 

innovation lifecycle) and while this approach is considered the standard for business cases, 

they typically underestimate the true costs of technological innovation. In fact work by 

Flyvbjerg, Garbuio and Lovallo (2009) demonstrates that this ‘base-rate neglect’ occurs 

regularly in large infrastructure projects; that are typically ‘over budget, or time, over and 

over again’. Port operators might benefit from further research that assesses the extent to 

which previous technological innovations (e.g., Dynamic Under-Keel Clearance, Port 

Management or Vessel Arrival systems) have met cost, time and scope predictions. 

We note that the case study asserted that 80% of the benefits are associated with 

improvements in navigational safety, pilot safety and pilot utilization and pilotage support 

services.  We also acknowledge that the assertion is based on operational data and interviews 

from a limited sample of ports, and may not be generalizable to other ports. The derived 

results suffer from the general limitations of case study interviews including recall bias, the 

representativeness and generalizability of the selected population, and the accuracy of self-

reported information, and estimations of improvements in navigational safety that cannot yet 
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be tested. To be fair, however, all benefit modelling is limited by factors such as these, and 

no benefit modelling exists without an associated set of assumptions.  

It is possible that technology might bypass remote pilotage altogether and leap to completely 

unmanned ships. Current research in this area still presumes that a pilot would embark the 

vessel “The ships will be manned while departing and entering port and unmanned during 

ocean-passage” Porathe, Prison and Man (2014, p.1). Further, we acknowledge that a range 

of technological, legal and operational issues place a ‘drag’ on the implementation of remote 

pilotage. A ready, off-the-shelf remote pilotage system is not currently on the market and 

from this perspective it could be argued that the technology is yet to fully mature.  Covering 

all possible operational issues is beyond the scope of this paper and we direct readers to 

Hadley (1999; 2000) and to Bruno and Lützhöft (2009) where more detailed explanation of 

these issues are explored.  

5.4 Precautionary Innovation  
 

The case study has explored remote pilotage as an example of an innovation where outcomes 

are uncertain and the consequences of innovation are potentially harmful and unacceptable. We 

have considered this as a challenge of innovation in Highly Reliable Organizations (HROs). 

 

In such environment, deep engagement within the ‘ecosystem’ is necessary.  We refer to this 

type of innovation as ‘precautionary innovation’. It differs from traditional forms of innovation 

because in HROs the primary innovation strategy is one that must take a precautionary 

approach to deal with hazards and risk.  

In these contexts, traditional decision making approaches that rely on cost, benefit and discount 

rate calculations to build a business case for innovation can break down because the 

consequences of failure often generate quite different world views among the decision makers 

involved in the innovation ecosystem.  This leads to a lack of consensus on what parameters 

should be used to support a rational decision making calculus. It also generates concerns 

regarding the extent to which cost and benefit numbers can be believed, undermining any 

approach to support an evidence-based approach to innovation decision making.  

In the case of remote pilotage a wider innovation management lens is required because it is 

often not possible to separate internal innovation from the external consequences of the 

innovation on society and the environment. The case of remote pilotage illustrates an example 

of precautionary innovation and the pace of technological innovation will be dependent upon 

clear design rules that can be used to guide component development.  This is an important 

contribution to the maritime literature, to the current debate around e-navigation, and 

innovation management literature more broadly.  Little is known about the decision processes 

that underpin such innovation where managers are required to simultaneously manage both (1) 

the process from idea to development and ultimately to commercialization, and (2) the potential 

consequences of the innovation on the wider ecosystem.  

The two port case study builds upon work by others on the issue of remote pilotage (Hadley 

2000; Bruno & Lützhöft 2009). Hadley (2000) identified the range of technical and non-

technical issues that would need to be addressed. Bruno & Lützhöft (2009) demonstrated that 

any technology that aims to implement remote pilotage must be able to resolve the challenge 

of providing effective and superior feedback to the pilot when ashore.  This paper adds further 

dimensions to this debate.  It has shown that while cost-benefit modelling might demonstrate 

positive results, an innovation that seeks to resolve the various technological, legal, operational 
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and insurance issues will need to do so from an ‘ecosystems perspective’. In other words, the 

innovation management challenge has as much to do with technology as it does with the way 

proponents of remote pilotage mobilize co-innovators, manage opponents in the adoption 

change, and convert those who are indifferent to the innovation. Because these efforts occur 

within organizations that cannot accept system failure we’ve identified the need for 

‘precautionary innovation’, pointing to the tension between the risk seeking of innovation and 

the risk avoidance (management) that goes with high reliability. We have posed the question: 

Why has the maritime industry been slow to move on remote pilotage? Our contribution in this 

paper has been to frame this debate in a broader management context and to recognise that the 

success of any innovation in commercial navigational technology should ask new questions 

about the way stakeholders in the innovation ecosystem interact, to maximise the likelihood of 

success.   
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Appendix A: Global Application of Remote Pilotage 

 

 

      Belgium    Netherlands      Germany         Italy       Norway 

Nature of 
Shore-Based 
Pilotage 
Service 

Used in bad weather 

Bring a vessel to a 
location where it is safer 
for a pilot to board 

Used in bad weather 

Bring a vessel to a 
location inside the 
port where it is safer 
for a pilot to board 

About 5% of total 
pilotage mission 
(2011)  

Two scenarios:5 

radar assistance 
complementing on-
board pilots (or masters 
holding PEC) 

remote pilotage in bad 
weather to bring vessel 
to safer location 

 

VHF pilotage as an 
alternative to on-board 
pilotage 

In good weather only 

30% of all pilotage 
missions 

No shore-based pilotage 
in place 

In bad weather, pilot may 
guide vessel from pilot 
boat to a place where 
pilots can board safely 

Criteria and 
Considerations 

Applies to Incoming 
vessels only 

Based on list of vessels 
that can participate 

LOA and draft 

Frequency of past visits 
by the master 

Incoming and 
outgoing 

Consider size and 
cargo 

Radar assistance: 

justification on the 
additional service 

 

Remote pilotage: 

limit on size and draft 

Applies to ferries and small 
vessels 

Generally outgoing 
vessels, but may apply to 
incoming 

Frequency of visits 

Favourable weather 

 

 

Provider Performed by licensed 
pilots 

From traffic/radar centre 

Performed by 
licensed pilots 

From VTS centre 

Performed by licensed 
pilots 

From VTS centre 

Performed by licensed 
pilots 

Not necessarily from VTS 
centre 

 

 

                                            

5 Source: team consultation with contacts in the Faculty of Maritime Studies, Jade University 
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