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ABSTRACT 

Mosses are the key floral component of Antarctic terrestrial ecosystems and provide a model 

system for the in vivo study of freeze tolerance and ultraviolet-B radiation damage in plants. 

Furthermore, in the Windmill Islands region of East Antarctica, these plants form part of a 

long term biodiversity study, using mosses as a proxy for the effects of climate change on 

Antarctic terrestrial ecosystems. However, morphological similarities between Antarctic 

moss species may make biodiversity measurements error prone. Furthermore, the species 

status and phylogenetic relationships of Windmill Islands mosses have not been examined 

using molecular techniques. 

 

To improve the current knowledge of Windmill Islands mosses, phylogenies were 

constructed for the three most common moss species: Bryum pseudotriquetrum, Ceratodon 

purpureus and Schistidium antarctici. Phylogenies were constructed based on the chloroplast 

ribosomal protein subunit 4 (rps4) and nuclear non-coding internal transcribed spacer (ITS) 

genes. Analyses were carried out separately on each species using a Bayesian Markov-chain-

monte-carlo (MCMC) analysis and, where sufficient multilocus data was collected, a 

coalescent-based species delimitation was performed. Additionally, the ability of rps4 and 

ITS to be used for the identification of the three mosses described above, was assessed 

empirically. 

 

Bryum pseudotriquetrum was the only species for which sufficient multilocus data were 

obtained to perform both Bayesian MCMC analysis and coalescent-based species 

delimitation. In B. pseudotriquetrum, these analyses indicated cryptic species in the Bunger 

Hills, Windmill Islands and Prince Charles Mountain regions of Antarctica, when compared 

to the Northern Hemisphere holotype. For the remaining two species sufficient multilocus 
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data were not obtained to perform both analyses. Instead Bayesian MCMC analyses were 

carried out on C. purpureus rps4 data and S. antarctici ITS data. Analyses indicated that 

C. purpureus populations from East Antarctica are most closely related to populations from 

Australia and Heard Island, and that populations from the Antarctic Peninsula are most 

closely related to populations from the Northern Hemisphere. In S. antarctici analysis 

incorporating ITS data from all other Schistidium species, revealed that S. antarctici is a 

distinct species, separate from all other Schistidium species incorporated into the analysis. 

Furthermore, it was revealed that the most closely related taxa to S. antarctici are cold 

climate Northern Hemisphere species. This study established that either rps4 or ITS could be 

used to accurately identify C. purpureus and S. antarctici.  However, insufficient variation in 

the rps4 gene indicated that it could not be used alone to unambiguously identify 

B. pseudotriquetrum.   

 

This study has elucidated  cryptic species, origins and taxonomic groupings for three species 

of Antarctic moss: B. pseudotriquetrum, C. purpureus, and S. antarctici, respectively. In 

addition it has been shown that ITS and rps4 can provide an effective tool for phylogenetic 

reconstructions and identification of Windmill Islands mosses. 
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1 INTRODUCTION 

1.1 Antarctica 

At Earth’s southernmost pole, Antarctica is one of the most isolated continents on the planet, 

containing approximately 70% of the world’s fresh water and covering 14 million km
2
 (Fox 

et al., 1994). Antarctica is a neutral continent containing no permanent human population and 

inhabited by approximately 4,000 researchers from 30 countries, who occupy 40 permanent 

Antarctic bases (Australian Antarctic Division, 2013). Australia currently operates three 

Antarctic stations; Mawson (est. 1954), Davis (est. 1957), and Casey (est. 1988), (Australian 

Antarctic Division, 2013). These stations are located below latitude 60°S and between 

longitudes 160°E and 45°E, in an area known as the Australian Antarctic Territory 

(Australian Antarctic Division, 2013) (Figure 1).  

Figure 1. Location of the Australian Antarctic Territory (shaded), Australian Antarctic Stations and key 

geographical landmarks (stars) (modified from National Aeronautics and Space Administration, 2002). 
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In 1958, twelve nations (Argentina, Australia, Belgium, Chile, France, Japan, New Zealand, 

Norway, South Africa, United Kingdom, United States and the USSR) active in Antarctica 

during the International Geophysical Year signed the Antarctic treaty, which stipulates that 

Antarctica is to be “…a natural reserve, devoted to peace and science” (Hanessian, 1960). 

Since this period Antarctica has provided largely pristine and unique environments which are 

studied by scientists from Australia and around the world. 

1.1.1 Geobiological history 

The geobiological history of Antarctica is characterised by its separation from the super 

continent Gondwana during the late Mesozoic, circa 100 million years ago (MYA). During 

this period, Gondwana experienced a tropical climate (Francis et al., 2002), with flora 

originally dominated by bryophytes, gymnosperms (non-flowering plants; 419-120 MYA) 

and later angiosperms (flowering plants; circa 120 MYA–present) (McLoughlin, 2001). 

Following the subsequent breakup of Gondwana, the flora and fauna diversified 

(McLoughlin, 2001) and the Antarctic land portion moved south over the Southern 

Hemisphere (Convey et al., 2008b). Fossil evidence from this period suggests that the 

terrestrial flora and marine fauna survived this movement (Clarke et al., 1989; Francis and 

Poole, 2002). The movement of Antarctica southwards did not lead to its direct separation 

from other continental land-masses; instead land bridges connected the Antarctic Peninsula to 

South America (Drake Passage) and East Antarctica to Australia (Tasman gateway). The 

presence of these land bridges allowed for the continuous movement of flora and fauna onto 

the Antarctic continent, forming two isolated groups of organisms separated by the 

Transantarctic Mountains (McLoughlin, 2001) (Figure 1). Circa 40 MYA, the opening of 

both the Drake Passage and Tasman Gateway lead to the establishment of the Antarctic 

circumpolar current (ACC), which effectively insulated Antarctica from the surrounding 
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oceans (Convey et al., 2008a). Thermal isolation by the ACC led to the cooling of Antarctica 

and, when combined with shifts in the earth’s orbital parameters and decreasing atmospheric 

CO2 levels, led to the glaciation of Antarctica and global cooling (DeConto et al., 2003; 

Dahms et al., 2012). During this period of global cooling, known as the last glacial maximum 

(LGM), Antarctica was covered in a permanent ice sheet, which is considered to have caused 

the extinction of complex terrestrial flora and fauna between 12 and 14 MYA (Ashworth et 

al., 2007; Lewis et al., 2007). 

1.1.2 Persistence of ancient Antarctic life 

Additional Antarctic fossil evidence suggests extinction events that extend from the Miocene 

(23-5 MYA) to the early-Pleistocene (5-2.5 MYA) (Convey et al., 2008a). However there is a 

growing body of evidence suggesting that isolated relic populations (refugial) may have 

survived the glaciation of Antarctica. These relic populations may not be represented in the 

fossil record due to low population densities or rare fossilization. Nevertheless, such species 

would have survived through the LGM in small isolated communities, restricted to ice-free 

mountains and rocky outcrops known as nunataks (Convey et al., 2008). Evidence from 
10

Be 

and 
26

Al isotope ratios have shown that areas within the Shackleton Range (Fogwill et al., 

2004), the Antarctic Peninsula (Bentley et al., 2006) and Prince Charles Mountains (Fink et 

al., 2006) have remained ice-free during the late Pleistocene and may have provided ice-free 

areas capable of supporting terrestrial life. Presently terrestrial Antarctic fauna consists of 15 

species of springtails (Collembola), 25 species of mites (Acarina) (Hogg et al., 2002), 14 

species of nematodes (Nemathelminthes) (Wharton, 2003) and eight or more species of water 

bears (Tardigrades) (McInnes et al., 1998). Terrestrial flora is limited to 24 species of mosses 

(Bryophyta), 1 species of liverwort (Marchantiophyta), 92 species of lichens 

(Ascomycota and Basidiomycota) and numerous species of algae (reviewed in Bramley-
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Alves et al., in press). Evidence relating to the persistence of these Antarctic terrestrial 

organisms is conflicting. Biogeographical studies suggest that some endemic organisms may 

be refugial, while others, such as tardigrades, mosses and liverworts, appear to show a 

continental distribution, suggesting wide dispersal or recent colonisation (Convey et al., 

2008b). 

 

Evidence of refugial Antarctic life can be seen in the distribution of modern Antarctic 

species. This was first reported for the distribution of the nematode Panagrolaimus 

magnivulvatus, which is found only in soils of isolated nunataks (Sohlenius et al., 1996). This 

same isolation was later observed in endemic mites of the genus Maudheimia, which are also 

present on nunataks throughout the Antarctic continent (Marshall et al., 2000). Survival 

through periods of Antarctic glaciation was corroborated by phylogenetic evidence 

suggesting post-Gondwanan speciation (Marshall and Coetzee, 2000). Furthermore, a study 

of mite biogeography by Pugh and Convey (2000) revealed that maritime and mainland 

endemic species may have descended from Mesozoic (252-66 MYA) ancestors from the 

Antarctic Peninsula. Within East Antarctica two previously unknown populations of 

copepods were discovered with one species suggested to have existed since before the LGM, 

due to its large distribution and endemic status (Bayly et al., 2003). While on the Antarctic 

Peninsula a higher diversity of endemic soil microbes (Lawley et al., 2004) and nematodes 

(Maslen et al., 2006) seems to suggest a recent glacial refuge. In recent years, molecular 

evidence for refugial populations of springtails living in the Transantarctic Mountains has 

provided evidence that these springtails have been present for up to one million years 

(Stevens et al., 2003). This study was later corroborated by evidence of a deep divergence 

(Stevens et al., 2006) and limited shared haplotypes (adjacent alleles with shared inheritance) 

(Stevens et al., 2007a) in springtails found within the Transantarctic Mountains. Molecular 
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studies of cyanobacterial populations near the Transantarctic Mountains also appear to show 

higher levels of endemic species than previously thought (Taton et al., 2006a; Taton et al., 

2006b), suggesting that the Transantarctic Mountains may have provided small ice-free oases 

during glacial periods. 

 

The evidence of refugial invertebrate populations on mainland Antarctica is present in both 

molecular and biogeographic studies. However, the same strong argument cannot be made for 

Antarctic flora. This is in part due to their wide range of dispersal (Longton, 1988), poor 

representation in the fossil record (Miller, 1982), evidence of anthropogenic introduction of 

spores (Clarke et al., 2009) and difficulty in species identification (Ochi, 1979). The 

difficulty in identifying refugial populations of Antarctic flora may be partly due to 

speciation without morphological variation (cryptic speciation), which may confound the use 

of morphology to discover deep divergences. Molecular studies of Antarctic mosses suggest 

differing scenarios in different species. In the cosmopolitan moss Ceratodon purpureus, a 

global study by McDaniel & Shaw (2005) has shown that a single Antarctic population of 

C. purpureus is closely related to Australasian C. purpureus populations. The high genetic 

similarity between Australasian and Antarctic C. purpureus populations suggests the recent 

and possibly continuous re-colonisation of the Antarctic mainland. This is contrasted by low 

levels of variability in Antarctic populations of the moss Bryum argenteum, when compared 

to populations of the same species from non-Antarctic locations (Simon et al., 2010). Overall, 

evidence seems to suggest a combination of both coastal and wind driven introduction of 

Antarctic flora and possible refugial populations restricted to isolated rocky nunataks and 

mountain regions. However, the anthropogenic introduction of genetic diversity may limit the 

identification of such refugial colonies to relatively pristine areas. 
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1.2  Bryophytes lifecycles 

Antarctic terrestrial flora consists primarily of bryophytes, which are a group of non-vascular 

terrestrial plants that includes liverworts (Marchantiophyta), hornworts (Anthrocerophyta) 

and mosses (Bryophyta). Bryophytes are found on every continent on Earth, but form the 

dominant floral components in extremes of cold, in Antarctica, the unique bryophyte lifecycle 

allows for bryophyte (but not vascular plant) survival. The bryophyte lifecycle consists of a 

dominant haploid stage, (known as the gametophyte) and a diploid stage (known as the 

sporophyte). The gametophyte is a photosynthetic leafy or thallus (leaf-less) structure, which 

functions to support both the male (antheridium) and female (archegonium) reproductive 

organs, and is attached to its substrate through a hair like structure known as a rhizoid. 

Bryophytes can reproduce sexually or asexually, both by fragmentation and dispersal by 

wind, water or animals. Sexual reproduction occurs when sperm is transported from the 

antheridium of one gametophyte to the archegonium of another, by either water or 

invertebrates (Cronberg et al., 2006; Rosenstiel et al., 2012). The fertilisation process gives 

rise to a sporophyte. The sporophyte grows attached to the gametophyte by a structure known 

as a foot and is dependent on the parent gametophyte for both water and nutrients. The 

sporophyte structure consists of a protective capsule that produces diploid spores. These 

spores are transported by wind, water or animals to new locations. Upon exposure to the 

appropriate environmental conditions, they germinate to give rise to the next generation 

(Figure 2).  
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The lifecycle of Bryophytes allows for wide dispersal, while the rhizoid allows for 

attachment to substrate poor surfaces. Additionally, the non-vascular nature of bryophytes 

allows for complete desiccation and freezing. It is these features which have allowed 

bryophytes to dominate the Antarctic environment.  

1.2.1 Moss identification 

Of the Antarctic bryophytes, mosses are the most abundant. Mosses are of particular 

importance, as they grow fast enough (unlike lichens) and are permanent enough (unlike 

algae) to serve as good model systems for the in vivo studies of high ultraviolet-B radiation 

and freeze tolerance in plants (Takács et al., 1999; Newsham et al., 2002; Dunn et al., 2006; 

Clarke et al., 2008; Newsham et al., 2009; Turnbull et al., 2009). As mentioned previously, 

Antarctica hosts only a single species of liverwort (Cephaloziella varians), which differs 

Figure 2. Typical bryophyte lifecycle, where n refers to haploid life stages (blue) and 2n refers to diploid life 

stages (pink). Morphological features represent those of a typical moss. (modified from Brotherton et al., 

2008). 
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from mosses both in its macro appearance and the presence of a multicellular rhizoid and 

unique sporophyte structure.  

 

In temperate regions, sporophytes provide the main diagnostic feature for identifying 

bryophytes, and in mosses allow for species level identification (Shaw and Renzaglia, 2004). 

Sporophytes are essentially spore capsules suspended above moss gametophytes by a long 

stalk known as a seta. In particular, it is the capsule that contains the diagnostic 

morphological features. These include the calyptra, (a protective sheath covering the 

capsule), the operculum (a plug-like structure sealing the capsule) and the peristome teeth 

(finger-like projections extending from the capsule) (Figure 3).  

 

The morphological variability in sporophytes has been used to identify the 12,700 moss 

species currently known to science (Crosby et al., 1999). The use of sporophytes for the 

identification of moss species has been carried out since the 1800’s (Hedwig, 1801), although 

it is still problematic. In general, mosses are globally distributed and share highly conserved 

Figure 3. General morphological features of the three bryophyte lineages (left), and a typical moss gametophyte 

and sporophyte (right), with n representing the haploid life stage and 2n representing the diploid life stage 

(modified from Hamel, 2013). 
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morphologies (Shaw et al., 2005). Furthermore, many species rarely produce sporophytes. 

This is particularly evident in cold climates, where mosses rely primarily upon vegetative 

reproduction, making species identification challenging (Convey et al., 1993; Smith et al., 

2002).  

1.2.2 Antarctic mosses and identification 

Antarctic mosses present a prime example of challenging morphological identification. 

Sporophytes have only been recorded in 10% of continental Antarctic mosses, many of which 

produce sporophytes rarely and only within the more temperate Antarctic Peninsula (Convey 

and Smith, 1993; Smith and Convey, 2002). This limited sporophyte production in Antarctic 

mosses is due to a number of factors, including: possible imbalance in sex ratios, large 

degrees of isolation between sexes and most importantly, environmental conditions, which 

may limit gametophyte and sporophyte maturation and hinder sperm transport (Smith and 

Convey, 2002). The lack of sporophyte production initially led to an explosion in moss 

species during Antarctic exploration in the 19
th

 century, based primarily on the assumption 

that isolated populations must represent different species (Shaw, 2001). However, in recent 

years many of these species have been re-classified based upon leaf and cell morphology and 

assumed to be morphological variants of more globally distributed moss species (Ochyra et 

al., 2008).  

1.2.2.1 East Antarctic mosses 

Along the East Antarctic coast, mosses are found in small rocky and protected oases, where 

they commonly grow in nutrient rich strata, deposited by ancient penguin colonies (Emslie et 

al., 2005). These oases occur in a number of locations, but the most commonly observed are 

the Vestfold Hills, Bunger Hills and Windmill Islands. In particular, the Windmill Islands are 

composed of nine ice bound islands and five small peninsulas spread over a distance of 40 



CHAPTER 1  Introduction 

12 

 

km (Figure 4). Located on the Bailey Peninsula within the Windmill Islands is Casey Station 

(a permanent Australian research station), which provides a base of operation for research on 

the surrounding peninsulas. Less than a kilometre from Casey Station is the Antarctic 

specially protected area 135 (ASPA135), an area protected from human impact under the 

Antarctic Treaty (Hanessian, 1960). Within ASPA135, terrestrial flora are studied as part of a 

long term biodiversity study, monitoring the effects of climate change on Antarctic terrestrial 

ecosystems (Australian Antarctic Division, 2013).  

Figure 4. Map of the Windmill Islands region, showing the location of the five ice-bound peninsulas, Casey 

Station and ASPA135. Inset, location of the Windmill Islands with respect to the East Antarctic coast. 

(Australian Antarctic Data Centre, 2013). 
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Within the Windmill Islands region of Antarctica, the most abundant moss species are: 

Bryum pseudotriquetrum, Ceratodon purpureus and Schistidium antarctici (formerly 

Grimmia antarctici), each of which are also found in abundance along the East Antarctic 

coast (Ochyra et al., 2008). In the ASPA135 long term biodiversity study, these species are 

identified exclusively by leaf and cell morphologies, which have been shown to be highly 

variable in response to water and ultraviolet irradiance (Robinson et al., 2000; Robinson et 

al., 2005). With respect to the Windmill Islands mosses, the species B. pseudotriquetrum and 

C. purpureus are globally distributed and morphologically variable. However, both species 

are morphologically distinct from one another, limiting confusion. On the other hand, the 

Antarctic endemic species S. antarctici is morphologically very similar to C. purpureus and, 

as a result, is commonly misidentified.  

 

Genetic studies on the three Windmill Islands moss species have occurred in recent years. 

Initially these studies focused on population genetics using allozymes (enzyme variants) 

(Melick et al., 1994) and later randomly amplified polymorphic DNA (RAPD) (Skotnicki et 

al., 1998a; Skotnicki et al., 1998c; Skotnicki et al., 1999). However, these studies produced 

vastly conflicting results, with allozymes identifying populations as clonal and RAPDs 

suggesting high levels of variability. Later studies identified fungal contamination that 

inflated the measurement of genetic variability using RAPDs (Stevens et al., 2007b), while a 

microsatellite study of C. purpureus confirmed that populations were largely but not 

exclusively clonal (Clarke et al., 2009). Studies addressing the identification of Antarctic 

mosses have focused on the use of the nuclear non-coding internal transcribed spacer (ITS) 

region (Skotnicki et al., 2005) and a combination of the ITS and the chloroplast ribosomal 

protein subunit 4 (rps4). These studies identified mosses based on sequence data from 

morphologically similar herbarium specimens. They showed, through phylogenetic analysis, 
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that ITS and rps4 can successfully distinguish the moss species B. pseudotriquetrum, 

S. antarctici, Coscinodon lawianus and C. purpureus (Skotnicki et al., 2012). However, no 

study has yet examined the population origins or phylogenetic relationships of these same 

species between Antarctic and non-Antarctic locations. 

 

In particular, unpublished phylogenetic work (Kato pers. comm.) suggests that 

B. pseudotriquetrum may actually be a cryptic Northern and Southern Hemisphere species. 

Cryptic species have been identified in the Antarctic moss species Bryum argenteum (Simon 

et al., 2010) and the trans-Antarctic moss Pyrrhobryum mnioides (McDaniel et al., 2003). 

With regards to C. purpureus, a global study of the taxa identified separate Northern and 

Southern Hemisphere populations, but included only a single replicate from East Antarctica 

(McDaniel and Shaw, 2005). Furthermore, a microsatellite study showed increased genetic 

variability with proximity to Antarctic research stations, suggesting the human introduction 

of spores (Clarke et al., 2009). Finally, with reference to the Antarctic endemic species 

S. antarctici, no molecular studies of the genus Schistidium have incorporated S. antarctici 

samples. As such, its species status and placement within the Schistidium genus is not known. 

 

The origins, species status and phylogenetic relationships of Windmill Islands mosses to 

those from pan Antarctic and non-Antarctic locations have not yet been comprehensively 

studied. Therefore, prediction of the effects of climate change, based upon Windmill Islands 

mosses, cannot be confidently applied to other Antarctic location. As such, phylogenetic 

analyses of the three most common Windmill Islands mosses can elucidate how 

representative Windmill Islands mosses are compared to the same species from other 

locations, and improve the overall understanding of the species. 
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1.3 Molecular markers 

In order to carry out phylogenetic analyses and species delimitation (the use of multilocus 

data to establish the boundaries of species) on the Antarctic moss species: 

B. pseudotriquetrum, C. purpureus and S. antarctici the appropriate molecular markers must 

be selected. In the case of East Antarctic mosses, this relates to the delimitation of haploid 

and essentially clonal populations. Due to these requirements, molecular markers containing 

both high and low levels of variability are required. Markers with high levels of variability 

are useful for delimiting closely related or clonal taxa, while markers with low levels of 

variability are useful for separating distantly related populations (as in the case of refugial 

populations). The number of molecular markers used must also be taken into consideration. 

There is no definitive number of markers required for a phylogenetic study. However, the 

majority of bryophyte phylogenetic studies have utilised 2-3 markers (Stech et al., 2010), 

making 2-3 markers both comparable and efficient in the time required to sequence multiple 

loci from each sample. Furthermore, the molecular markers used should be obtained from 

multiple cellular compartments in order to account for the different evolutionary histories of 

nuclear and plastid genomes. In relation to land plants, a number of molecular markers have 

been used: the atpF–atpH spacer, matK, rbcL, rpoB, rpoC1, the psbK–psbI spacer and trnH–

psbA. However, these molecular markers have not been particularly successful in bryophytes, 

often only able to discriminate taxa at the genus level (Hassel et al., 2013). A range of 

molecular markers have been used in genetic studies of Antarctic mosses, including 

allozymes (Melick et al., 1994), microsatellites (Clarke et al., 2008; Clarke et al., 2009), 

RAPDs (Skotnicki et al., 1998a; Skotnicki et al., 1998c; Skotnicki et al., 1999), single locus 

nuclear markers (Skotnicki et al., 2005) and multilocus markers (Skotnicki et al., 2012). Of 

these techniques, allozymes and microsatellites are not appropriate for the construction of a 
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phylogeny. However, the use of multilocus markers has proven useful for the phylogenetic 

analysis of  Antarctic moss species (Skotnicki et al., 2012).  

 

For the selection of these markers, a number of factors must be taken into account including 

comparability, sensitivity and efficiency (Sunnucks, 2000). In the case of comparability, the 

molecular markers that are chosen must be comparable with markers used in previous studies. 

In bryophyte molecular studies, the most commonly used markers are: the nuclear ribosomal 

genes 18S-ITS1-5.8S-ITS2-28S (collectively known as the ITS region), the mitochondrial 

nicotinamide adenine dinucleotide (nad) gene, of which the subunit 5 is most commonly used 

(nad5), and the chloroplast transfer ribonucleic acid (tRNA) cluster, which consists of the 

genes TrnF-TrnL-TrnT-rps4-TrnS, of which rps4 is the most used bryophyte molecular 

marker (Stech and Quandt, 2010). From this collection of markers, the nuclear marker ITS 

and chloroplast marker rps4 have proven to be the most comparable and efficient in terms of 

easy amplification (Stech and Quandt, 2010) and prior use in Antarctic mosses (Skotnicki et 

al., 2005; Skotnicki et al., 2012). The ITS region provides a highly variable marker for the 

study of population variability in essentially clonal populations, while the less variable 

marker rps4 also satisfies the requirement for markers from multiple cellular compartments. 

As such, the molecular markers ITS and rps4 provide an effective combination from multiple 

cellular compartments for the identification of Antarctic moss species and the construction of 

phylogenies. 

1.3.1 Internal transcribed spacer 

The ITS region is an approximately 1,000 bp stretch of nuclear ribosomal RNA (nrRNA) 

coding genes, which can exist as copies with up to 3,000 repeats (Rogers et al., 1987). These 

copies are homogenised by a process known as concerted evolution (Stech and Quandt, 
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2010), resulting in an easily amplified region with a high copy number, whilst overcoming 

the issue of paralogs associated with other nuclear markers. In terms of use, the complete ITS 

region is one of the most commonly used bryophyte nuclear markers and is almost 

exclusively amplified using the universal primers designed by White, et al., (1990). These 

primers, amplify the complete sequences of ITS1-5.8S-ITS2 and include fragments of both the 

flanking 18S and 26S rRNA genes. However, the modified amplification primer ITSHP5 has 

also been utilised to amplify the same region (Simon et al., 2010). The amplification of the 

ITS region exclusively involves the amplification of the complete ITS region, including 

fragments of the 18S and 26S genes. However, the analysis of this marker rarely utilises the 

complete ITS region, due to the presence of large length variations in ITS1 between species. 

To overcome this issue, often only the ITS2 region is analysed, with the information 

contained within this region sufficient for species identification and also for phylogenetic 

analyses in Antarctic mosses (Skotnicki et al., 2005). This makes ITS a useful nuclear marker 

for the construction of phylogenies between closely related populations and for species 

delimitation. 

1.3.2 Ribosomal protein subunit 4 

The marker rps4 is a fast-evolving protein coding gene found within the chloroplast transfer 

RNA (tRNA) region. This region consists of four tRNA genes and rps4 (TrnF-TrnL-TrnT-

rps4-TrnS). The marker rps4 is one of the most commonly used bryophyte molecular 

markers, as it provides higher levels of information over the commonly employed plant 

chloroplast marker rbcL (O’Brien et al., 2007; Quandt et al., 2007). In addition, due to the 

high abundance of chloroplast DNA in total plant DNA, its amplification is relatively easy 

(Souza-Chies et al., 1997). The use of rps4 for molecular studies was established by the 

development of universal primers by Taberlet et al., (1991) and their first use in a 
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phylogenetic study of grasses (Nadot et al., 1994). In mosses, rps4 has primarily been 

employed as a single locus marker for the delimitation of moss genera and more recently for 

the delimitation of moss species when used as part of a multilocus approach (Magombo, 

2003; Pedersen et al., 2007; Skotnicki et al., 2012). The use of rps4 for the study of Antarctic 

mosses is relatively new, with the first study published by Skotnicki et al., (2012). This study 

used rps4 and the ITS region in order to identify moss species from the Prince Charles 

Mountains and in doing so provided sequence data for the two common East Antarctic 

species B. pseudotriquetrum and S. antarctici. Although rps4 is not appropriate for species 

level delimitation or barcoding (Stech and Quandt, 2010), this study demonstrated that rps4 

when combined with the ITS region can be effectively used to identify Antarctic mosses, 

making rps4 a useful and comparable marker. 

1.4 Phylogenetic methods and species delimitation 

In order to use the molecular markers ITS and rps4 to identify origins, refugial populations 

and cryptic species, a method of phylogenetic analysis that can incorporate multiple markers 

and delimit species in an unbiased manner is needed. The most common methods of 

phylogenetic analyses are Maximum Likelihood, and Bayesian Methods. Maximum 

Likelihood methods of analysis use statistical measures of likelihood based upon prior 

assumptions in order to calculate the most likely relationship between taxa. To overcome the 

subjectivities (use of prior assumptions) associated with Likelihood methods, Bayesian 

methods of analysis can be used. In Bayesian analysis, prior assumptions are established 

computationally based upon the data. In order to establish these priors in a manner currently 

computationally possible with data sets greater than a few sequences, a Markov-chain-monte-

carlo (MCMC) method is employed (Joseph, 2004). This method involves changing each 

parameter in a starting prior and establishing the probability of this new prior based upon the 
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data. If the new prior is more probable than the previous, then the prior is accepted and the 

process is repeated. The number of times this process is repeated is dependent upon the time 

required for the MCMC algorithm to reach an equilibrium (known as the burn-in time), in 

which the probabilities of newly generated priors are not improving; at this point the prior 

with the highest probability is selected and used for further analysis. This method is known as 

a Bayesian MCMC analysis, and can be carried out using the software packages MrBayes 

(Huelsenbeck et al., 2001; Ronquist et al., 2003) and Bayesian  evolutionary analysis and 

sampling trees (BEAST) (Drummond et al., 2007). 

 

As well as requiring a phylogenetic analysis method which is as unbiased as possible, a 

method that can take into account multiple loci is needed. This is generally achieved by 

concatenating sequence data. However concatenation can often give biased results, as the 

locus containing the highest level of variation often determines the resulting phylogenetic 

trees. As such, a method which analyses each loci separately, but incorporates them into a 

single tree is required. This can be achieved using coalescent theory; coalescent theory works 

by constructing a multispecies coalescent, which is essentially a species tree inferred from the 

individual gene trees of each locus. Coalescent theory has recently been incorporated into the 

modified version of BEAST known as *BEAST allowing for the incorporation of multilocus 

data without concatenation (Heled et al., 2010). 

 

Finally, in order to identify cryptic species, a testable species definition is required. In 

general, a species is considered an independently evolving population of organisms with no 

(allopatric) or little (parapatric) gene flow, and has diverged sufficiently enough to be distinct 

from its most recent common ancestor (MRCA) (Fujita et al., 2012). In order to then identify 

allopatric and parapatric species with significant divergence from the MRCA proxies are 
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used. Until recently this has been achieved through the use of morphology (known as the 

morphological species concept), or through the inability of one organism to produce fertile 

offspring with another (known as the biological species concept). Currently, there are 26 

different species concepts (Wilkins, 2002), with many researchers opting for an integrative 

taxonomy, whereby different species concepts are applied under different circumstances 

(Mishler et al., 1987; Will et al., 2005; Fujita et al., 2012). However, none of these species 

concepts can adequately delimit species in all circumstances, with most criteria for species 

delimitation exhibiting much subjectivity. Since the development of techniques such as PCR 

and DNA sequencing, molecular techniques have become one of the primary methods of 

delimiting species.  

 

In particular, the use of DNA barcoding has been one of the primary methods for species 

identification. DNA barcoding was first proposed by Hebert et al., (2003) who proposed the 

use of the cytochrome oxidase I (COI) gene as a barcode for the delimitation of species. The 

use of COI is advantageous as it is a highly conserved, short (648 bp) region of mitochondrial 

DNA found within all eukaryotes, making it easily amplified by universal primers. 

Nevertheless, the use of COI for DNA barcoding has been subject to much criticism relating 

to its ability to effectively separate species. In order to effectively delimit species using a 

DNA barcode, the within species divergence must be less than the between species 

divergence (Moritz et al., 2004). However, empirical studies have reported that this is not 

always the case (Waugh, 2007). Confounding this are the differing degrees of COI variability 

between species, such that the required variability for two populations to be considered 

separate species will depend on the species being examined. In the case of plants, COI has 

been found to evolve too slowly to be useful for the delimitation of plant species (Barcode of 

Life Database, 2012) and as a result the genes matK and rbcL have been generally accepted 
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as DNA barcodes in plants (Hollingsworth et al., 2009; Barcode of Life Database, 2012). 

However, matK and rbcL do not overcome many of the issues associated with DNA 

barcoding, nor do they allow for re-construction of evolutionary histories (Will et al., 2005), 

which can be used to quantify divergence from the MRCA and to identify deep divergences 

characteristic of refugial populations. 

 

The solution to identifying cryptic species is the use of coalescent-based species delimitation, 

which is carried out in the software BP&P (Rannala et al., 2003). Similar to analyses that 

incorporate coalescent theory, coalescent-based species delimitation incorporates multilocus 

data, considering each locus separately. However, unlike the coalescent-based analyses 

carried out in *BEAST, coalescent-based species delimitation relies on a guide tree, which in 

this case is generated through Bayesian MCMC analysis in *BEAST. Once a guide tree is 

specified, BP&P works to identify the probability of speciation at each node in the tree by 

statistically quantifying whether branches represent independently evolving allopatric or 

parapatric populations. 

 

In summary, this study will investigate evidence of refugial populations, origins and cryptic 

species in the three common Windmill Islands mosses B. pseudotriquetrum, C. purpureus 

and S. antarctici. This will be achieved using the molecular markers ITS and rps4 and 

Bayesian MCMC analyses in *BEAST and coalescent-based species delimitation in the 

software BP&P. Furthermore, this study will empirically assess the ability of ITS and rps4 to 

identify the species mentioned above, in an attempt to improve future Windmill Islands moss 

biodiversity measurements. 
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2 METHODS 

2.1 Plant material and sample distributions 

The plant material used in this investigation was sourced from both recent Antarctic 

expeditions and herbarium collections and was combined with publicly available sequence 

data; these are described in greater detail below. 

2.1.1 Fresh plant material 

Fresh plant material was collected between 2004 and 2013 from three East Antarctic 

locations (Windmill Islands; Figure 4, Bunger Hills; Figure 5 and Vestfold Hills; Error! 

Reference source not found.), one sub-Antarctic location (Heard Island; Figure 7) and from 

the University of Wollongong campus (UOW). Within each location several samples were 

collected from multiple sub-sites (Table 1). 

 

 

Figure 5. The Bunger Hills, showing the location of moss collection sites (stars). Inset, location of the Bunger 

Hills with respect to the East Antarctic coast. (Modified from the Australian Antarctic Data Centre, 2013). 
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Figure 7. Heard Island, showing the location of moss collections sites (stars). Inset, location of Heard 

Island with respect to Antarctica and Australia. (Modified from the Australian Antarctic Data Centre, 

2013). 

Figure 6. The Vestfold Hills, showing the location of moss collection sites (stars). Inset, location of the 

Vestfold Hills with respect to the East Antarctic coast. (Modified from the Australian Antarctic Data 

Centre, 2013). 
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Table 1. Fresh samples: Collection locality, with the hemisphere of collection given in bold and underlined, 

followed by the collection localities in bold and the name of collection sites within each locality (sub-sites) 

given in italics. Where sub-sites are ambiguously named (no geographical features were present) GPS (latitude 

& longitude) positions are given. Collection source and year refer to the expedition on which samples were 

collected, while the collector is given in brackets (full names found in acknowledgments). 

 

 

 

 

Collection locality 
Collection Source and 

Year 

Separation of sub-

sites 

Southern Hemisphere    

 

Heard Island  

HIMIE 2004  

(Turnbull) 
15 km  

Dovers Moraine    

Paddock Valley   

East Antarctica   

Windmill Islands, Budd coast 

ANARE 2005 & 2012 

(Robinson, Bramley-Alves 

&  Nydahl ) 

7 Km 

Bailey Peninsula   

Browning Peninsula 
ANARE 2005  

(Robinson & Clarke) 
 

Clark Peninsula  
 

Mitchell Peninsula  
 

Robinson Ridge  
 

 

Bunger Hills  Knox coast 
 4 km  

Site 1 (-66.29° 100.66°)   

Site 2 (-66.28° 100.78°)   

Site 3(-66.28° 100.68°)   

 

Vestfold Hills,  Ingrid Christian Coast 
 14 km  

Grimmia Gorge   
 

Lichen Lake  
 

Mossel Lake  
 

Australia   

New South Wales  70 km 

University of Wollongong 
2013  

(Author) 
 

Macquarie University 
2005  

(Clark) 
 

Victoria   

Mt Beauty   

Canberra    

Australian National University   

ANARE: Australian national Antarctic research expedition 

HIMIE: Heard Island and Macquarie Islands Expedition  
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Plant material was collected as either individual gametophytes or whole moss clumps. 

Individual gametophytes were collected using tweezers to sample a small number of 

photosynthetically active gametophytes, which were placed into sterile 1.5 mL Eppendorf 

tubes. Whole moss clumps were collected using a small trowel and placed into sterile plastic 

containers. Samples collected between 2005 and 2013 were collected for genetic and carbon 

isotope measurements and so were air-dried (until a stable mass was obtained) and stored at -

20°C (Windmills Islands, Bunger Hills, Vestfold Hills and UOW). Samples collected in 2004 

were collected for measurements of photosynthetic and photo-protective pigments and as 

such, were frozen in liquid nitrogen and stored at -20°C (Heard Island). Following collection, 

samples were transported to the University of Wollongong and stored at -20°C prior to 

analysis. For further details see Clark et.al (2008 and 2009). 

2.1.2 Herbarium specimens  

Herbarium specimens were sourced from the British Antarctic survey herbarium (BASH) and 

the New York botanic gardens herbarium (NYBGH) (Table 2). In general, herbarium moss 

samples were air-dried following collection and stored in paper envelopes maintained in 

temperature (25°C) and humidity (45%) controlled conditions. Following transport to the 

University of Wollongong, these samples were transferred into sterile Eppendorf tubes and 

stored at -20°C prior to analysis. 
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Table 2. Herbarium Samples: Collection locality, with the hemisphere of collection given in bold and 

underlined, followed by the collection localities in bold and the name of collection sites within each locality 

(sub-sites) given in italics. Collection source and year refer to the herbarium and year of sample collection, 

respectively. Morphological identification (ID) refers to the species identification as determined by the source. 

 

Collection locality Collection Source and Year Morphological ID 

Northern Hemisphere   

Europe   

Conicus, Gottlan, Hovgard, Sweden DUKE 1966 C. purpureus 

Africa   

Ain Zahalta Bornmuller, Saudi Arabia DUKE 1910 C. purpureus 

Ifrane, Morocco DUKE 1969 C. purpureus 

North America   

Lake Hazen, Ellesmere Is, Canada NYBGH 1967 C. purpureus 

Mauna Kea, Hawaii RBGE  2005 C. purpureus 

New York, America NYBGH 2005 C. purpureus 

Asia   

Sindure, Nepal RBGE 1989 C. purpureus 

Zara/Sivas Province, Turkey RBGE 1960 C. purpureus 

Southern Hemisphere   

Africa   

Lichenya, Malawi RBGE 1991 C. purpureus 

South America   

Provincia Sauta Cruz , Argentina BASH 1978 C. purpureus 

East Antarctic   

Browning Peninsula, Budd Coast BASH 1985 C. purpureus 

Central Basin, Victoria Land BASH 1995 C. purpureus 

Crater  Cirque, Costal Victoria land BASH 1991 C. purpureus 

Davis station, Vestfold Hills BASH 1905 B. pseudotriquetrum  

Grimmia Gorge, Vestfold Hills BASH 1905 B. pseudotriquetrum 

Ice Axe Peak, Dronning Maud BASH 1988 C. purpureus 

Southern Danielle Peninsula, Victoria Land BASH 1996 C. purpureus 

West Anchorage Is BASH 1995 C. purpureus 

West Antarctic   

Deception Is, South Shetland Is BASH 2002 C. purpureus 

Deception Is, South Shetland Is BASH 1994 C. purpureus 

Charcot Is, Antarctic Peninsula BASH 1999 C. purpureus 

Curville Is, Antarctic Peninsula BASH 1993 C. purpureus 

Moe Is, South Orkney Is BASH 1985 C. purpureus 

North  Leonie Is, Antarctic Peninsula BASH 1995 C. purpureus 

Visokai Is, South Sandwich Is BASH 1997 C. purpureus 

BASH: British Antarctic survey herbarium 

DUKE: Duke University Cryptogamic Herbarium 

NYBGH: New York botanic gardens herbarium 

RBGE:  Royal Botanic Garden Edinburgh 
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2.1.3 Morphological identification  

All fresh and herbarium samples were morphologically identified using the taxonomic keys 

in the Illustrated Moss Flora of Antarctica (Ochyra et al., 2008). B. pseudotriquetrum was 

identified by the presence of large rhomboid cells and an ovate leaf shape (Figure 8A). 

C. purpureus (Figure 8B) and S. antarctici (Figure 8C) are morphologically very similar, but 

are distinguished by the presence of sinuous cells in S. antarctici. In addition to the three 

Antarctic mosses listed above, the Antarctic moss Bryoerythrophyllum recurvirostrum 

(Figure 8D), the Antarctic liverwort Cephaloziella varians (Figure 8E) and numerous 

unidentified algae (Figure 8F) were found in samples. In a number of cases, identification 

proved difficult and micrographs of samples were sent to Joy Williams (UOW) and Alison 

Downing (Maquarie University) for identification.  

 

All fresh and herbarium samples were morphologically identified with the aid of a Leica MS5 

dissecting microscope. Where cell structure was required for morphological identification, 

moss leaves were removed and photographed under an Olympus BHA transmission 

microscope (Olympus, Australia) fitted with a DCM510 microscope camera 

(ScopeTek, Australia). During the morphological identification process, samples were 

separated into individual gametophytes and cleaned by removing moribund (appearing dead) 

and fungal material, before being transferred to a sterile 1.5 mL Eppendorf tube. In order to 

reduce contamination, microscope slides were cleaned with 70% ethanol, while tweezers 

(used to remove moss leaves) were flame sterilised between samples. 
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Figure 8. Micrographs of A) B. pseudotriquetrum, B) C. purpureus, C) S. antarctici, D) B. recurvirostrum, E) C. varians 

and F) algae. Upper most images in each pair are at 10X magnification while lower images illustrate cell structure when 

photographed at 40X magnification. 

B A C 

D E F 
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Figure 9. Map showing the locations of samples used for analysis (Stars). Top; Location of samples in relation 

to the world; Bottom, location of samples with respect to the Antarctic continent. 

2.1.4 Geographic sampling of Bryum pseudotriquetrum  

Samples of B. pseudotriquetrum were identified from three sub-sites in the Windmill Islands 

and all three sites in the Bunger Hills. In order to increase the geographic sampling range, B. 

pseudotriquetrum data was supplemented with rps4 and ITS data from Northern Hemisphere 

locations (n = 2) and the Antarctic Peninsula (n = 1) provided by Kengo Kato (Kengo et al., 

2013) and from two locations in the Prince Charles Mountains (Skotnicki et al., 2012) 

(Figure 9 and  

Table 3). 
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Table 3. Bryum pseudotriquetrum samples used in analyses; Collection locality, with the hemisphere of 

collection given in bold and underlined, followed by the collection localities in bold and the name of collection 

sites within each locality (sub-sites) given in italics. Sample identification (ID) or GenBank Accession numbers 

are given for each sample. Where sample ID’s are followed by ‘*’ samples were collected from the same moss 

clump. 

Collection locality 
GPS Position (Latitude 

& Longitude) 

ID/Accession 

Number 

Collection Source 

and Year  

Northern Hemisphere    

Hiroshima prefecture, Japan 78.99°, 12.66° TY-14438 (Kengo et al., 2013) 

Svalbard islands, Ny-Ålesund, Norway 34.40°, 132.46° F03042 (Kengo et al., 2013) 

Southern Hemisphere    

East Antarctic    

Bailey Peninsula, Windmill Is -66.28° 110.54° B4* ANARE 2005 

 
 B5*  

 
 B6*  

 -66.45° 110.51° 94  

 -66.28° 110.54° 170  

Clark Peninsula, Windmill Is -66.25° 110.59° SCBP4  

 -66.24° 110.59° SCBP3  

Robinson Ridge, Windmill Is -66.37° 110.59° RRBP6  

 
-66.37° 110.58° RRBP4  

 -66.36° 110.59° RRBP  

Bunger Hills, Site 1 -66.29° 100.66° B17  

Bunger Hills, Site 2 -66.29° 100.78° B18  

Bunger Hills, Site 3 -66.28° 100.69° B19  

 
-66.28° 100.69° B20  

 
-66.28° 100.69° B23  

 -66.28° 100.69° CP10  

Prince Charles Mts,  -72.01° 68.82° 
JQ040696 (ITS), 

JQ040701 (rps4) 

(Skotnicki et al., 

2012) 

Prince Charles Mts,  -72.78° 68.04° 
JQ040697 (ITS), 

JQ040702 (rps4) 

(Skotnicki et al., 

2012) 

West Antarctic    

South Shetland Islands -62.00° -58.00° TY26709 (Kengo et al., 2013) 

ANARE: Australian national Antarctic research expedition  

PCMEGA: Prince Charles Mountains Expedition: Germany and Australia 
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2.1.5 Geographic sampling of Ceratodon purpureus  

Samples of C. purpureus were identified from two sub-sites in the Windmill Islands and two 

sub-sites on Heard Island. A further three samples of C. purpureus were also collected from a 

single moss clump from the University of Wollongong. In order to increase geographic 

sampling, herbarium specimens and all GenBank C. purpureus sequences were incorporated 

into the sampling. (Figure 10 and Table 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Map showing the location of C. purpureus samples used for analysis. Top; location of samples in 

relation to the world. Bottom; location of samples with respect to the Antarctic continent. 
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Table 4. Ceratodon purpureus samples used in analyses; Collection locality, with the hemisphere of collection 

given in bold and underlined, followed by the collection localities in bold and the name of collection sites within 

each locality (sub-sites) given in italics. Sample identification (ID) or GenBank Accession numbers are given 

for each sample. Where sample ID’s are followed by ‘*’ samples were collected from the same moss clump. 

Collection Locality 
GPS Position (Latitude 

& Longitude) 

ID/Accession 

Number 

Collection source 

and year 

Northern Hemisphere    

Europe     

Berkshire Reading, United Kingdom 51.45° -0.97° 
AJ554004 

 

(Hedderson et al., 

2004) 

North America    

Duke University, Durham, North Carolina 36.00° -78.94° AY908123 (Shaw et al., 2005) 

  AY908122  

  AY908121  

  AF435271 (Farge et al., 2002) 

Mauna Kea, Hawaii 19.82° -155.47° CP8 BASH 2005 

New York, America 40.86° -73.88° CP11 NYBGH 2005 

Asia    

Changbai, North East China 41.42° 128.20° FJ572605 (Liu et al., 2010) 

  FJ572589  

Sindure, Nepal 28.17° 84.30° CP17 RBGE 1998 

Southern Hemisphere    

Heard Island    

Paddock Valley, Heard Island  -53.08° 73.50° CP39 HIMIE 2004 

Dovers Moraine, Heard Island -53.08° 73.50° CP44  

Africa    

Lichenya, Malawi -15.55°  35.83° CP13 RBGE 1991 

Australia    

Australian National University -35.28° 149.12° CP16  

Mt Beauty, Victoria  -36.74° 147.17° CP5 2005 (Clark) 

Macquarie University, Sydney -33.77° 151.11° CP7  

University of Wollongong -34.40° 150.86° B10* 2013 (Author) 

  B11*  

  B12*  
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Table 4. (Continued) 

East Antarctica     

Bailey Peninsula, Windmill Is -66.28° 110.54° CPMP ANARE 2005 

 -66.33° 110.47° CP6  

 -66.28° 110.54° 76  

 -66.16° 110.32° B20  

 -66.28° 110.54° 166CP  

Clark Peninsula, Windmill Is -66.25° 110.57° 219  

 -66.25° 110.55° WPD5  

 -66.25° 110.56° WPD8  

Central Basin, Victoria Land -74.33° 165.13° CP20 BASH 1995 

Ice Axe Peak, West Dronning Maud -71.47° 31.08° CP21 BASH 1988 

West Anchorage Is -68.56° 77.93° CP34 BASH 1995 

West Antarctica    

Deception Is, South Shetland Islands -62.98° -60.66° CP23 BASH 2002 

Moe Is, South Orkney Is -60.74° -45.74° CP24 BASH 1985 

Deception Is, South Shetland Is  -62.97° 60.50° CP25 BASH 1994 

Curville Is, Antarctic Peninsula -64.71° -62.68° CP28 BASH 1993 

Visokai Is, South Sandwitch Islands -54.27° -36.49° CP30 BASH 1997 

Charcot Is, Antarctic Peninsula -69.75° -75.25° CP32 BASH 1999 

ANARE: Australian national Antarctic research expedition 

BASH: British Antarctic survey herbarium 

HIMIE: Heard Island and Macquarie Islands Expedition  

NYBGH: New York botanic gardens herbarium 

RBGE:  Royal Botanic Garden Edinburgh 
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2.1.6 Geographic sampling of Schistidium antarctici  

Samples of S. antarctici were identified from three sub-sites in the Windmill Islands and two 

sub-sites from the Bunger Hills (Figure 11 and  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5). Due to the Antarctic endemic status of S. antarctici, samples were not available from 

Heard Island, Wollongong or other non-Antarctic locations. As for B. pseudotriquetrum and 

C. purpureus all GenBank sequences (ITS and rps4) were incorporated into analyses 

(List available in appendix, Table 8 & Table 9).  
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Figure 11. Map showing the location of S. antarctici samples used for analysis. Top; location of the Bunger Hills 

and Windmill Islands within Antarctica. Bottom left; location of the Bunger Hills and Windmill Islands in relation 

to the East Antarctic coast. Bottom right; location of samples collected from within the Windmill Islands. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Schistidium antarctici samples used in analyses; Collection locality, with the hemisphere of collection 

given in bold and underlined, followed by the collection localities in bold and the name of collection sites within 

each locality (sub-sites) given in italics. Sample identification codes (ID) are given for each sample. Where 

sample ID’s are followed by ‘*’ samples were collected from the same moss clump. 

Collection Locality GPS Position (Latitude 

& Longitude) 

ID  Collection year and Source 

Southern Hemisphere    

East Antarctica    

Bailey Peninsula, Windmill Is -66.28° 110.54° B1* ANARE 2005 
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  B2*  

  B3*  

 -66.28° 110.53° B7  

 -66.28° 110.53° B8  

 -66.28° 110.53° B9  

 -66.28° 110.53° B14  

 -66.28° 110.53° B15  

 -66.28° 110.53° B16  

 -66.28° 110.53° B17  

 -66.28° 110.52° RSSA1 ANARE 2012 

 -66.28° 110.54° 7/12C2 ANARE 2005 

Robinson Ridge, Windmill Is -66.37° 110.59° RRSA6  

 -66.36° 110.58° RRSA5  

 -66.37° 110.58° RRSA3  

 -66.36° 110.59° 49  

Clark Peninsula, Windmill Is -66.25° 110.59° SCSA2 ANARE 2012 

 -66.25° 110.57° 221 ANARE 2005 

 -66.28° 110.54° 17/12B3  

 -66.28° 110.53° 200SA  

Bunger Hills, site 1 -66.30° 100.67° B17CP  

Bunger Hills, site 3 -66.29° 100.66° B22  

ANARE: Australian national Antarctic research expedition 

 

 

 

 

 

2.2 DNA extraction  

Total genomic DNA was extracted from single moss gametophytes (<1 mg dry weight) using 

the Plant DNeasy Mini Kit (QIAGEN, Australia), with the following changes: AP1 (lysis) 

buffer and RNase A were added to samples prior to tissue disruption; plant tissue was 

disrupted using a TissueLyser (QIAGEN, Australia) (four minutes at 30 Hz); and DNA was 

eluted in 50 μL of AE (elution) buffer. DNA concentration and fragment size was determined 
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using agarose gel electrophoresis. Extracted DNA (5 μL) was mixed with 2 μL of 6X loading 

dye (Sigma-Aldrich, Australia) and 5 μL of dH2O then electrophoresed (100 V for 45 min) in 

Tris/Borate/ Ethylenediaminetetraacetic acid (EDTA) buffer (1 mM Tris, 45 mM boric acid 

and 1 mM EDTA [pH 8]) on a 1% agarose gel. DNA was stained for 30 min using ethidium 

bromide (1 μg/mL) followed by a 5 min de-stain in dH2O. Comparisons of fragment size and 

DNA concentration were made against 5 μL (2 μg) of λ/HindIII marker (Sigma-Aldrich, 

Australia), electrophoresed under identical conditions. 

2.3 PCR amplification and gel excision 

All PCR reactions were carried out in a total volume of 20 μL. Each 20 μL reaction mixture 

contained one unit of hot start polymerase (IMMOLASE or MyTaq HS; Bioline, Australia), 

1-10 ng of template DNA or 1 μL of dH2O (negative control), 60 nM of each primer (Sigma, 

Australia), 3.75 mM MgCl2, 580 μM of deoxynucleotide triphosphates (dNTPs) and 1X 

ImmoBuffer (Bioline, Australia). Amplifications were carried out using a Corbett Research 

gradient PalmCycler
TM

 II (Corbett Research, Australia). Following amplification, 20 μL of 

each PCR product was mixed with 4 μL of 6X loading dye and electrophoresed (as describe 

in section 2.2) on a 1% agarose gel, to separate the various PCR products. Gels were stained 

with ethidium bromide as described above and PCR products visualised using a UV 

transilluminator. Bands of interest were excised from the gel and purified using a Wizard SV 

Gel and PCR clean up kit (Promega, USA) with modifications, whereby DNA was eluted in 

15 μL of nuclease free water (Promega, USA) that had been preheated to 65°C. 

2.3.1 PCR of DNA from fresh material 

For the amplification of rps4 and ITS from DNA extracted from fresh material, the hot start 

DNA polymerase IMMOLASE was used. In order to activate the hot start polymerase, an 

initial activation step for 10 min at 95°C was carried out. This was followed by an initial 
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denaturation step for 30 s at 95°C, followed by 35 cycles of denaturation at 95°C for 30 s, 

primer annealing at 60°C for 30 s and elongation for 2 min at 72°C. Amplification of ITS was 

carried out utilizing the primer combination GGAAGGAGAAGTCGTAACAAGG (ITSHP5) 

(Simon et al., 2010) and TCCTCCGCTTATTGATATGC (ITS4) (White et al., 1990). 

Amplification and sequencing of rps4 utilized the primer combination 

ATGTCCCGTTATCGAGGACCT (RPS5) and TACCGAGGGTTCGAATC (TrnS) (Souza-

Chies et al., 1997). Following amplification, PCR products were separated, visualised, 

excised and purified as described above. 

2.3.2 PCR of DNA from herbarium material 

DNA extracted from herbarium plant material often contains higher concentrations of PCR 

inhibitors and shorter fragments of DNA, which can make amplification of genes difficult 

(Savolainen et al., 1995). For the amplification of rps4 and ITS from DNA extracted from 

herbarium specimens (9-100 years old), the hot start DNA polymerase MyTaq HS was used. 

In preliminary trials, amplification with MyTaq HS led to higher yields of amplicon, when 

compared to the polymerases IMMOLASE and Biotaq (Bioline, Australia). In order to 

amplify rps4 and ITS, a modified PCR protocol was used: MyTaq HS was activated by an 

initial activation step for 1 min at 95°C, this was followed by an initial denaturation step for 

15 s at 95°C, followed by 35 cycles of denaturation at 95°C for 15 s, primer annealing at 

60°C for 15 s and elongation for 30 s at 72°C.  

 

The amplification of rps4 from herbarium material often produced amplicons too weak for 

gel excision and sequencing. To concentrate these weak PCR products for sequencing, rps4 

was amplified in replicate tubes (n=5) and PCR products pooled. One hundred μL of this 

pooled PCR product was mixed with 20 μL of 6X loading dye and electrophoresed as 
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described in section 2.2. Amplicons were then excised and purified as described in section 

2.3. Amplification of the complete ITS region (1000 bp) from herbarium material was often 

not possible using the primer combination ITS4 and ITSHP5. Instead, the smaller ITS1 

region of ITS was amplified using the primer combination ITSHP5 (Simon et al., 2010) and 

GCTGCGTTCTTCATCGATGC (ITS2). Amplified products were then visualised and bands 

of interest excised and purified as described above. 

2.4 Sequencing of amplified DNA 

Sequencing reactions were carried out using the Perkin-Elmer DNA sequencing kit (Perkin-

Elmer, USA) and standard sequencing conditions (95°C for 30 s and 30 cycles of 95°C for 30 

s, 55°C for 30 s and 72°C for 2 min) for rps4. Sequencing of the complete ITS region used 

the standard sequencing protocol described above, but with the following modifications; due 

to the length of the complete ITS region, the internal primers 

GCATCGATGAAGAACGCAGC (ITS3) and ITS2 (White et al., 1990) were also used to 

initiate sequencing reactions; and 5% dimethyl sulfoxide (DMSO) was added to each 

sequencing reaction. Following the sequencing reaction, DNA was precipitated using 2 μL of 

EDTA (125 mM), 2 μL of sodium acetate (1 M), 20 μL of sequencing product and 50 μL of 

ethanol (95%). The mixture was vortexted and incubated at room temperature (15 min) 

before being centrifuged (13,000 g for 15 minutes). The supernatant was then removed and 

the DNA pellet washed with cold (-20°C) 70% ethanol. The mixture was then centrifuged 

(13,000 g for 15 minutes), the residual 70% ethanol removed and the DNA pellet allowed to 

air dry. Precipitated DNA was sequenced by Margaret Phillips (UOW sequencing facility) 

using a 3130XL genetic analyser (Applied Biosystems, Australia). All sequencing 

chromatograms were checked in ChromasPro V1.7.5 (Technelysium Pty Ltd., Australia) and 

consensus sequences generated in BioEdit V7.1.9 (Hall, 1999) using the Cap-Contig 

Assembly program. All generated sequences were identified using GenBank BLASTn 
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searches (http://blast.ncbi.nlm.nih.gov/Blast.cgi) based upon the GenBank nucleotide 

collection. 

2.5 Phylogenetic analyses of DNA sequence data 

Phylogenetic analyses were carried out on the complete rps4 gene and the complete ITS 

region. Sequences were aligned using the CLUSTAL-W algorithm (Thompson et al., 1994) 

within Molecular evolution and genetic analysis 5 (MEGA5) (Tamura et al., 2011). In cases 

where CLUSTAL-W produced poor alignments (in which the length of the alignment was 

much longer than any individual sequence), the alignment tool MAFFT 

(http://mafft.cbrc.jp/alignment/server/) was used and alignments corrected manually. Due to 

differing evolutionary pressures on gene regions and therefore differing rates of evolution, 

analysis is improved by partitioning alignments into different gene regions and allowing for 

multiple nucleotide substitution models (Brandley et al., 2005). Ribosomal protein subunit 4 

data was partitioned into 1
st
, 2

nd
 and 3

rd
 codon partitions, while ITS was partitioned into ITS1, 

5.8S and ITS2 regions. Partitioned alignments were then imported into the program partition 

finder V1.1.1 (Lanfear et al., 2012), which searches partitioned alignments and identifies the 

most appropriate nucleotide substitution model for each partitioned region. Partition finder 

was run using all nucleotide substitution models found in the program BEAST (Drummond et 

al., 2007a). The Akaike information criterion (AIC), Akaike information criterion corrected 

(AICc) and Bayesian information criterion (BIC) were used to identify the most appropriate 

model for each partition. In most cases all criteria identified the same model for each 

partition. Where criteria were in disagreement, the model supported by two criteria was 

selected. Once nucleotide substitution models had been established for each partition, 

alignments were imported into Bayesian evolutionary analysis utility V1.7.5 (BEAUTi) 

(Rambaut et al., 2007), which allows for the specification of nucleotide substitution models, 

clock models, tree priors and chain lengths prior to Bayesian MCMC analysis in the program 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://mafft.cbrc.jp/alignment/server/
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BEAST V1.7.5 (Drummond and Rambaut, 2007a). In circumstances where rps4 and ITS data 

were available for each sample, the modified version of BEAST (*BEAST;  Heled and 

Drummond, 2010) was used. The program *BEAST allows for the incorporation of 

coalescent theory for the construction of a species tree from multilocus data. Following 

analysis in BEAST or *BEAST, stationarity of each parameter was assessed using the 

software Tracer V1.5 (Drummond et al., 2007b). Stationarity was considered reached if the 

Effective Sample Size (ESS) of each parameter had a score ≥100. The burn-in time (the time 

required for parameters to reach stationarity) was taken as the first 10% of each logged 

parameter. Once stationarity had been confirmed, a consensus tree was generated using 

TreeAnnotator V1.7.5 and the tree viewed in the software program Figtree V1.4.0. In cases 

where *BEAST was used, the software BP&P V1.1.1 (Rannala and Yang, 2003) was then 

used to delimit separate species (Figure 12). 
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Figure 12. Flow diagram illustrating the phylogenetic analysis process. 
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The type of analysis carried out on each dataset depends upon the data available, particularly 

if the data are multi locus or single locus (Table 6). For the analysis of B. pseudotriquetrum, 

both rps4 and ITS data were available for each specimen. As such, coalescent-based species 

delimitation could be carried out. For analysis of data from both C. purpureus and 

S. antarctici, sufficient data was only obtained from one locus. Therefore, only Bayesian 

MCMC analyses could be carried out. In C. purpureus, difficulty obtaining ITS data from 

herbarium specimens meant that only sufficient rps4 data had been obtained. In S. antarctici, 

herbarium specimens were not available. In this case, GenBank data were used. However, no 

paired data sets were publicly available and analysis was thus carried out separately on ITS 

and rps4 data sets. 

 

Table 6. Parameters and priors used for each analysis, where GTR refers to a general time reversible model 

(Tavaré, 1986), HKY refers to a Hasegawa-Kishino-Yano model (Hasegawa et al., 1985) and TN93 refers to a 

Tamura-Nei 93 model (Tamura et al., 1993). Models that incorporated a gamma distribution or invariant sites 

are denoted by +G (Gamma) and +I (Invariant). 

 B. pseudotriquetrum C. purpureus 
S. antarctici 

(rps4) 

S. antarctici 

 (ITS) 

Parameters     

Analysis *BEAST BEAST BEAST BEAST 

Data ITS and rps4 rps4 rps4 ITS 

Substitution model GTR+G HKY  HKY 

GTR+I+G (ITS1) 

TN93+I+G (5.8S & ITS2) 

 

Chain length 100,000,000 100,000,00 100,000,00 100,000,000 

Parameters logged 10,000 1,000 10,000 1,000 

Base frequency Estimated Estimated Estimated Estimated 

Clock model Strict Strict Logarithmic Logarithmic 

Tree prior Yule Process 
Coalescent: 

Constant size 
Yule Process Yule Process 
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3 RESULTS 

The three common East Antarctic moss species: B. pseudotriquetrum, C. purpureus and 

S. antarctici form part of a long term biodiversity study in the Windmill Islands and serve as 

indicators for the effects of climate change on Antarctic terrestrial ecosystems. However, the 

identification of moss species from the Windmill Islands is difficult. Furthermore, it is not 

known whether Windmill Islands mosses are representative of the same species from other 

locations. As such, a molecular basis of identification and phylogeny is highly desirable. In 

this section, results obtained during the optimisation of PCR and the phylogenetic analyses of 

the three species mentioned above are detailed. Furthermore, the ability of the molecular 

markers ITS and rps4 to identify B. pseudotriquetrum, C. purpureus and S. antarctici are 

empirically assessed. 

3.1 PCR amplification and optimisation 

The molecular markers ITS and rps4 were selected due to their location in distinct genomic 

compartments and differing levels of phylogenetic resolution. Although protocols for the 

amplification of these two markers from mosses have been published (McDaniel and Shaw, 

2005; Skotnicki et al., 2012), these protocols required considerable optimisation in order to 

produce reliable sequence data. 

3.1.1 Internal transcribed spacer 

The amplification of ITS consistently produced multiple strong amplicons, ranging from 600 

to 1,200 bp in size and varying in number between species, samples and annealing 

temperatures (Figure 13).  
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To identify the multiple amplicons, the ITS region was amplified from the moss species 

B. pseudotriquetrum, C. purpureus and S. antarctici. Amplicons were separated by gel 

electrophoresis and individually excised and sequenced. Sequencing of some amplicons 

proved difficult, due to the presence of strong secondary structures, evident through a sharp 

signal drop in sequencing chromatograms. This was particularly evident in amplicons of 

1,000 bp in size, in C. purpureus and S. antarctici. Once sequenced, amplicons were 

identified by BLASTn searches and revealed the presence of the moss ITS band at 1,000 bp 

in size (C. purpureus and S. antarctici) and 1,200 bp in size (B. pseudotriquetrum). 

Amplicons larger than 1,200 bp were identified as green algal ITS genes, while amplicons 

below 1,000 bp in size were identified as fungal ITS genes (Table 7 and Figure 14). 

Figure 13. A) Internal transcribed spacer region amplified from 1-10 ng of DNA extracted from single 

gametophytes of S. antarctici (SA), herbarium C .purpureus (20 years old) (hCP), Wollongong C. purpureus 

(wCP), Antarctic C. purpureus (CP) and Antarctic B. pseudotriquetrum (BP). B) Annealing temperature 

gradient of ITS amplified from 1-10 ng of DNA extracted from a gametophyte of S. antarctici. Amplicon sizes 

were determined via comparison to a Hyperladder II marker, electrophoresed under identical conditions. Black 

boxes indicate the location of moss ITS amplicons. 
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Table 7. Contaminant genes identified following gel excision and sequencing of the ITS region. Genes were identified by BLASTn searches, with E value (probability of a 

chance match), Identity score (Identity) and accession number of the top BLAST match given. The region of Antarctica is given in bold and underlined, followed by the 

collection locality in bold and sub-sites in italics. The collection site represents the collection locality of the moss sample from which the genes were isolated. Species refers 

to the identity of the closest matched sequence available in GenBank. 

A
Algal genes 

F
Fungal genes 

Moss collection site 
GPS Position (Latitude & 

Longitude) 
Species Identity Score E value 

BLASTn Accession 

number 

East Antarctica        

Bunger Hills  Knox coast       

Site 1  -66.29°  100.66° B. pseudotriquetrum Ulothrix
A
 96% 0 DQ821516.1 

Site 1  -66.29° 100.66° B. pseudotriquetrum Chloromonas
A
 97% 0 AB734112.1 

Site 1  -66.29° 100.66° B. pseudotriquetrum Chloromonas
A
 98% 0 AB734112.1 

Site 3 -66.28° 100.68° B. pseudotriquetrum Geomyces
F
 96% 0 FJ977924.1 

Windmill Islands, Budd coast       

Bailey Peninsula, ASPA135  -66.28°  110.54°  C. purpureus Ascomycetes
F
 97% 0 HQ211827.1 

 
-66.28° 110.53° B. pseudotriquetrum Neocystis mucosa

A
 86% 7E-76 JQ920366.1 

 
-66.28° 110.53° B. pseudotriquetrum Trebouxiophyceae

A
 96% 0 FJ554399.1 

 
-66.28° 110.53° B. pseudotriquetrum Phaeospharia

F
 97% 0 KC965394.1 

 
-66.28° 110.53° S. antarctici Phialocephala virens

F
 97% 2E-85 KC456683.1 

 -66.28° 110.53° B. pseudotriquetrum Pseudendocloniopsis botryoides
A
 98% 0 FR865755.1 

Clark Peninsula  -66.25° 110.57° S. antarctici Sphaerocystis
A
 98% 0 HQ404871.1 

  

 
-66.25° 110.55° C. purpureus Chlorosarcinopsis

A
 98% 0 HQ246437.1 

Robinson's Ridge 

 
-66.36° 110.58° S. antarctici Trebouxia impressa

A
 92% 0 AJ249570.1 

 
-66.37° 110.58° S. antarctici Physcia adscendens

F
 97% 0 FR799268 

http://www.ncbi.nlm.nih.gov/nucleotide/310753937?report=genbank&log$=nucltop&blast_rank=1&RID=3MEA3MAG01R
http://www.ncbi.nlm.nih.gov/nucleotide/428161191?report=genbank&log$=nucltop&blast_rank=1&RID=3MEHNA8401R
http://www.ncbi.nlm.nih.gov/nucleotide/219814185?report=genbank&log$=nucltop&blast_rank=1&RID=3MEP9J6401R
http://www.ncbi.nlm.nih.gov/nucleotide/532165551?report=genbank&log$=nucltop&blast_rank=1&RID=3MESDE8301R
http://www.ncbi.nlm.nih.gov/nucleotide/444744941?report=genbank&log$=nucltop&blast_rank=1&RID=3MEYSXU601R
http://www.ncbi.nlm.nih.gov/nucleotide/359385338?report=genbank&log$=nucltop&blast_rank=1&RID=3MEV68VP01R
http://www.ncbi.nlm.nih.gov/nucleotide/312270197?report=genbank&log$=nucltop&blast_rank=1&RID=3MF61NK501R
http://www.ncbi.nlm.nih.gov/nucleotide/5918301?report=genbank&log$=nucltop&blast_rank=1&RID=3ME7FXYK01R
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In order to identify if the algal and fungal genes were a product of laboratory contamination, 

ITS was amplified from a sterile cultured gametophyte of C. purpureus. Amplification 

resulted in one strong ITS band at 1,000 bp, showing that the presence of algal and fungal 

genes in Antarctic samples was not due to laboratory contamination.  

 

Figure 14. Map showing the location of fungal and algal ITS genes isolated from moss samples of 

B. pseudotriquetrum, C. purpureus and S. antarctici from the Windmill Islands and Bunger Hills. Collection 

site of moss from which samples were isolated is marked by a star, with the gene identity given below. Top; 

location of the Bunger Hills and Windmill Islands in relation to Antarctica. Bottom left; location of the 

Bunger Hills and Windmill Islands in relation to the East Antarctic coast. Bottom right; location of samples 

collected from within the Windmill Islands. 
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Figure 15. Gel electrophoresis showing A) rps4 amplified from 1-10 ng of DNA extracted from single 

gametophytes of Antarctic C. purpureus (CP), B. pseudotriquetrum (BP), S. antarctici (SA), B. recurvirostrum 

(BR) and a herbarium specimen (20 years old) of C. purpureus (hCP). B) Annealing temperature gradient of 

rps4 amplified from 1-10 ng of DNA extracted from a gametophyte of S. antarctici. Amplicon sizes were 

determined via comparison to Hyperladder II marker, electrophoresed under identical conditions. 

A B CP BP SA BR hCP 

6
3

°C
 

5
5

°C
 

5
9

°C
 

4
8

°C
 

5
2

°C
 

4
5

°C
 

700 

3.1.2 Ribosomal protein subunit 4 

Amplification of rps4 consistently produced a single strong amplicon of 700 bp in size in all 

moss species examined (Figure 15A). However, sequencing consistently resulted in noisy 

chromatograms (chromatograms containing multiple bases at each nucleotide position). 

Optimisation of both PCR annealing (Figure 15B) and sequencing annealing temperatures, 

failed to decrease the noise in subsequent data. Alternatively, gel excision of the PCR 

amplicon proved effective and resulted in consistently high quality data. 
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3.2 Bryum pseudotriquetrum  

Recent evidence has suggested that Antarctic B. pseudotriquetrum may be a distinct species 

to B. pseudotriquetrum populations from the Northern Hemisphere (Kengo et al., 2013). 

Furthermore, whether Antarctic B. pseudotriquetrum populations represent a single or 

multiple species has not been investigated. In order to address these issues, coalescent-based 

species delimitation was carried out on samples of B. pseudotriquetrum. Moreover, the ability 

of ITS and rps4 to identify Antarctic B. pseudotriquetrum samples was assessed. 

3.2.1 Phylogeny of Bryum pseudotriquetrum  

Phylogenetic analysis of B. pseudotriquetrum sequence data involved the use of only those 

samples from which both rps4 and ITS had been sequenced and in all cases incorporated a 

sample of B. argenteum collected from the University of Wollongong (UOW) as an out-

group.  

 

The delimitation of species using analytical approaches that incorporate the coalescent has 

only recently become possible (Fujita et al., 2012).  Nevertheless, all current approaches are 

computationally intensive.  Ideally, analytical inference of the phylogeny and species 

delimitation should be carried out at the same time, but this is not computationally feasible at 

present.  Instead, the phylogeny must first be determined, species limits proposed, and then 

species limits tested using coalescent approaches. For these reasons an initial phylogeny was 

constructed through *BEAST. Once this initial phylogeny had been established, species 

limits were proposed. Samples from the Bunger Hills (Bunger Hills, n = 6) and Windmills 

Islands (Windmill Islands, n = 10) were proposed as two separate groups based on sample 

location. The single samples from Japan and Norway were proposed as a single group (Japan 

and Norway, n = 2), whilst the two samples from the Prince Charles Mountains were grouped 
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with a single sample from the South Shetland Islands (Prince Charles Mountains, n = 3). A 

second *BEAST analysis, defining species limits as described above, was carried out (Figure 

16). Results from this tree revealed strong posterior probabilities (PP) (the probability of the 

tree node given the data) for Prince Charles Mountain samples forming a sister clade to 

samples from the Windmill Islands, Bunger Hills and Northern Hemisphere (PP = 0.8927). 

Lower support was found for the separation of Northern Hemisphere samples from samples 

collected from the Windmill Islands and Bunger Hills (PP = 0.4979). While the highest 

support was found for distinguishing samples from the Windmill Islands and Bunger Hills 

(PP = 0.955). 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 16. *BEAST tree generated using rps4 and ITS sequence data from samples of B. pseudotriquetrum collected 

from Japan and Norway (TY-14438 and F03042) (n = 2), Bunger Hills (B17, B18, B19, B20, B23 and CP10) (n = 6), 

Prince Charles Mountains (JQ040696 & JQ040701, JQ040697 & JQ040702 and TY26709) (n = 3) and Windmill 

Islands (B4, B5, B6, RRBP6, RRBP4, RRBP, SCBP4, SCBP3, 94 and 170) (n = 10). Tree was rooted using a single 

sample of B. argenteum collected from the University of Wollongong. Scale bar represents evolutionary change in 

branches, while values on branches are posterior probabilities for each respective node. 
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Following analysis in *BEAST, Species limits were tested using BP&P, which calculates the 

probability of speciation at each node in the tree (Figure 17). Posterior probabilities suggested 

that speciation events separated populations from the Bunger Hills (n = 6) and Windmill 

Islands (n = 10) (PP = 0.97975), Windmill Islands and Bunger Hills from Northern 

Hemisphere populations (n = 2) (PP = 1.00000) and Prince Charles Mountain populations 

(n = 3) from all other populations (PP = 1.00000). 

 

Figure 17. Tree generated via *BEAST using rps4 and ITS sequence data from samples of B. pseudotriquetrum 

collected from the Japan and Norway (TY-14438 and F03042) (n=2), Bunger Hills (B17, B18, B19, B20, B23 

and CP10) (n=6), Prince Charles Mountains (JQ040696 & JQ040701, JQ040697 & JQ040702 and TY26709) 

(n=3) and Windmill Islands (B4, B5, B6, RRBP6, RRBP4, RRBP, SCBP4, SCBP3, 94 and 170) (n=10). Tree 

was rooted using a single sample of B. argenteum collected from the University of Wollongong and used as a 

guide tree for analysis in BP&P. Values represent probabilities of speciation at each node, with values greater 

than 0.95 considered significant and scale bar representing evolutionary change in branches. 
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3.2.2 Ability of ITS and rps4 to identify Bryum pseudotriquetrum 

Samples morphologically identified as B. pseudotriquetrum were consistently identified as 

B. pseudotriquetrum based upon BLASTn matches using the complete ITS sequence. 

Furthermore, in cases where only partial sequence data was obtained, 500 bp from either 

ITS1 or ITS2 consistently identified samples as B. pseudotriquetrum. In contrast, the ability 

of rps4 to identify samples of B. pseudotriquetrum was poor. Samples from all locations were 

consistently identified as the moss species Bryum lisae. Furthermore, a single sample from 

Robinson Ridge in the Windmill Islands (RRBP6) was identified as Bryum elegans.  

3.3 Ceratodon purpureus  

A recent phylogenetic study by McDaniel and Shaw (2005) has identified separate Southern 

and Northern Hemisphere populations of C. purpureus. However, this study only included a 

single isolate from Antarctica. As such, the origins of Antarctic C. purpureus populations are 

poorly known. Furthermore, the identification of C. purpureus is difficult, and samples are 

often misidentified as S. antarctici. To address these issues, Bayesian MCMC analysis of 

Antarctic and herbarium samples of C. purpureus was performed. Additionally, the ability of 

ITS and rps4 to identify Antarctic C. purpureus populations was assessed.  

3.3.1 Phylogeny of Ceratodon purpureus 

Ceratodon purpureus sequence data was analysed using only a single locus, rps4, as ITS 

sequence data proved difficult to obtain from many herbarium specimens. Bayesian MCMC 

analysis was carried out in BEAST (Figure 18). In order to root the tree, three 

B. recurvirostrum samples originally identified as C. purpureus from the Vestfold Hills were 

incorporated into the analysis.  
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Results from this analysis revealed five distinct clades. All samples collected from East 

Antarctica (n = 8) formed a well-supported clade (PP = 0.98) incorporating samples from 

Heard Island (n = 2) and Australia (n = 6), with the exception of a single sample from 

Anchorage Island. Samples collected from Northern Hemisphere locations formed a poorly 

supported clade (PP  < 0.35) incorporating samples from the Antarctic Peninsula, surrounding 

islands and a single sample from South Africa. Although support for this clade was low, a 

highly supported sub-clade (PP = 0.99) was resolved incorporating all samples from the 

Antarctic Peninsula and a single sample from Anchorage Island. A single sample from North 

Carolina and Nepal formed a separate clade (PP = 0.99), basal to both the Australia and East 

Antarctic clade and the Northern Hemisphere and Antarctic Peninsula clade. A single sample 

from Moe Island, located off the coast of the Antarctic Peninsula, formed a well-supported 

branch (PP = 1.0) basal to all other groups in the tree, with the exception of the out-group. 

3.3.2 Ability of ITS and rps4 to identify Ceratodon purpureus 

Samples morphologically identified as C. purpureus were consistently identified as 

C. purpureus in BLASTn searches using either ITS or rps4. Furthermore, the use of either 

ITS or rps4 effectively identified samples of B. recurvirostrum misidentified as C. purpureus. 

In both cases the accuracy of sequence data was confirmed by the incorporation of the 

misidentified samples into phylogenetic analyses as an out-group. As with B. 

pseudotriquetrum, in cases where only partial sequence data was obtained, 500 bp from ITS1 

or ITS2 proved sufficient for identifying samples. In contrast, when full length rps4 data 

could not be obtained, samples were often incorrectly identified as uncultured streptophytes. 
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Figure 18. Tree generated via Bayesian MCMC analysis of rps4 sequence data originating from samples of C. purpureus (C.p) and rooted using three samples of 

B. recurvirostrum (B.r). Outliers highlighted by *. The collection locality of each sample is listed followed by the sample identification code or GenBank 

Accession number.  Distinct clades are given on the right-hand side, values present on branches represent posterior probabilities of support for each node (values 

below 0.35 are not shown for clarity) and scale bar represents evolutionary divergence in branches. 
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3.4 Schistidium antarctici  

Schistidium antarctici is one of a few mosses native to Antarctica and along with 

B. pseudotriquetrum and C. purpureus is one of the most common East Antarctic mosses 

(Ochyra et al., 2008). However, like Antarctic B. pseudotriquetrum and C. purpureus, 

S. antarctici has never been examined using a molecular approach. As such, the presence of 

cryptic species of S. antarctici has not been investigated. Similarly, nothing is known of the 

origins of S. antarctici. To address these issues, Bayesian MCMC analysis was carried out on 

samples of S. antarctici and all available Schistidium sequences in GenBank. Additionally, 

the ability of ITS and rps4 to identify S. antarctici samples was assessed. 

3.4.1 Phylogeny of Schistidium antarctici  

In total, 108 Schistidium ITS sequences and 20 Schistidium rps4 sequences were available on 

GenBank and incorporated into the analysis of ITS and rps4 respectively (full list available in 

appendix, Table 8 & Table 9). 

3.4.1.1 Analysis of ITS 

Initial alignment of the ITS region using CLUSTAL-W proved difficult due to the presence 

of large gaps in the ITS1 region. Alignments produced using CLUSTAL-W contained many 

ambiguous gaps and aligned regions. In order to improve this, the alignment tool MAFFT 

was used, resulting in an alignment containing fewer gaps and ambiguous regions, and 

requiring little manual improvement. BEAST analysis resulted in a tree containing high 

support for nodes close to the branch tips, but with decreasing support towards the tree base 

(Figure 19).  
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Figure 19. Tree generated via Bayesian MCMC analysis of ITS sequence data originating from samples of 

S. antarctici, and congeneric Schistidium sequences available on GenBank and rooted using ITS sequence data from 

C. purpureus (out-group). The species name for each sample is listed followed by the corresponding GenBank 

accession number or sample identification code. Species groups are listed (far right). Values present on branches 

represent posterior probabilities of support for each node (values below 0.35 are not shown for clarity) and scale bar 

representing evolutionary changes in branches. 
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In general two large clades were resolved. The clade in panel A (Figure 20) contained all S. 

antarctici samples and a group containing the sister taxa Schistidium crenatum (n = 1), 

Schistidium grandirete (n = 2), Schistidium sordidum (n = 1), Schistidium platyphyllum (n = 

1), Schistidium sinensiapocarpum (n = 3), Schistidium platyphyllum subsp. Abrupticostatum 

(n = 6) and Schistidium apocarpum subsp. Canadense (n = 6) (Figure 19, Section A). 

However, support for the separation of S. antarctici from its sister clade is low (PP < 0.35). 

Within the S. antarctici sister clade, well supported grouping of the species: S. grandirete (PP 

= 1), S. platyphyllum subsp. Abrupticostatum (PP = 1), S. sordidum (PP = 0.9) and 

S. sinensiapocarpum (PP = 1) were resolved. With regards to S. antarctici all samples formed 

a single monophyletic group. Two samples within the S. antarctici clade, originating from 

Robinson Ridge (RRSA1 & RSSA5), were resolved as more divergent to all others (PP = 1). 

Samples of S. antarctici originated from three East Antarctic locations, although, no 

geographical structure was resolved between samples and the collection localities. Based on 

branch lengths, S. antarctici samples have undergone rapid evolution, with few divergences. 

In contrast, species within the sister taxa have experienced rapid evolution, following 

multiple divergences. 
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A 

Figure 20. Section A of Figure 19 generated via Bayesian MCMC analysis of ITS sequence data 

originating from samples of S. antarctici and congeneric Schistidium sequences available in GenBank 

and rooted using ITS sequence data from C. purpureus. The species name of each sample is listed 

followed by the corresponding GenBank accession number or sample identification code. Values present 

on branches represent posterior probabilities of support for each node. Scale bar represents evolutionary 

change in branches  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The large clade resolved in section B contains all other Schistidium taxa forming three 

distinct but poorly supported sub-clades. Well supported grouping were resolved for all 

species, with the exception of Schistidium apocarpum (n = 1) Schistidium confertum (n = 3), 

S. apocarpum subsp. Canadense (n = 5) and Schistidium holmenianum (n = 2) which were 

resolved as paraphyletic groups. Furthermore, of note is the paraphyly resolved for 

S. platyphyllum subsp, Abrupticostatum which formed a grouping of two samples in section 

A and four samples in section B. 
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Figure 21. Section B of Figure 20Figure 19 generated via Bayesian MCMC analysis of ITS sequence 

data originating from samples of S. antarctici and congeneric Schistidium sequences available in 

GenBank and rooted using ITS sequence data from C. purpureus. The species name of each sample is 

listed followed by the corresponding GenBank accession number or sample identification code. Values 

present on branches represent posterior probabilities of support for each node. Scale bar represents 

evolutionary change in branches. 
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3.4.1.2 Analysis of rps4 

Bayesian MCMC analysis of the rps4 locus (Figure 22) incorporated all Schistidium rps4 

sequence data available in GenBank (n = 18). Alignment of rps4 was carried out in 

CLUSTAL-W, resulting in no ambiguous regions or gaps. 

 

Phylogenetic analysis of the rps4 locus resulted in a tree containing high support for nodes 

closer to the tree root, but with decreasing support toward the tree tips. Two well-supported 

(PP = 1) clades were resolved. The first of these clades contained all S. antarctici samples as 

a single monophyletic group, with the exception of a single sample from the isolated Prince 

Charles Mountains (JQ040761) (Skotnicki et al., 2012).  Although inter-clade support was 

low within the S. antarctici clade, six samples (Bu22, RSSA1, B15, 17/12C2, B8 & RRSA6) 

appear to be more divergent than all other S. antarctici samples. Furthermore, as resolved in 

the ITS phylogeny, no S. antarctici samples formed any groupings based upon the 

geographical collection localities. 

 

The second clade resolved contained all other taxa and the single outlier S. antarctici sample. 

As in the S. antarctici clade, inter-clade support was low. As such, no well supported 

grouping of any taxa exist. Although inter-clade support was low, the placement of the outlier 

S. antarctici sample outside of the S. antarctici clade was well supported. Additionally, when 

the two clades were compared, it can be seen that more genetic divergence has occurred 

within the S. antarctici clade than within the clade formed by all other taxa.  
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Figure 22. Tree generated via Bayesian MCMC analysis of rps4 sequence data originating from samples of S. antarctici, and congeneric Schistidium sequences available on 

GenBank and rooted using rps4 sequence data from C. purpureus. The species name for each sample is listed followed by the corresponding GenBank accession number or 

sample identification code. Species groups are given on the right-hand side and outliers highlighted by *. Values present on branches represent posterior probabilities of 

support for each node (values below 0.35 are not shown for clarity) and scale bar represents evolutionary divergence in branches. 
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3.4.2 Ability of ITS and rps4 to identify Schistidium antarctici 

As with C. purpureus, BLASTn searches using complete rps4 and ITS sequences proved 

effective for the identification of samples morphologically identified as S. antarctici. 

Furthermore, a number of samples initially identified as S. antarctici were confirmed as 

C. purpureus based upon sequence data from ITS and rps4. To confirm the reliability of 

sequence matches, these samples were incorporated into phylogenetic analyses as out-groups. 

Moreover, as in B. pseudotriquetrum and C. purpureus, 500 bp of either ITS1 or ITS2 proved 

effective in identifying samples. Once again, incomplete rps4 data resulted in 

misidentification of samples as uncultured streptophytes. 
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4 DISCUSSION 

This study has identified cryptic species of the moss B. pseudotriquetrum from locations in 

the Bunger Hills, Prince Charles Mountains, Windmill Islands and the Northern Hemisphere. 

Moreover, it demonstrated that populations of C. purpureus from the Windmill Islands are 

very closely related to populations of the same species from Australia and Heard Island. 

Populations of the Antarctic moss S. antarctici were shown to form a single monophyletic 

group, with the exception of a single sample analysed using the rps4 locus. Lastly, the PCR 

amplification and sequencing of the ITS region revealed the presence of a large diversity of 

algae and fungi closely associated with the moss gametophytes.  

4.1 PCR and contaminant genes 

Amplifications of ITS and rps4 were carried out using published protocols and produced 

amplicons consistent with published amplicon sizes (McDaniel and Shaw, 2005; Skotnicki et 

al., 2005; Simon et al., 2010; Skotnicki et al., 2012). However, issues associated with poor 

quality data were present when investigating both loci. Sequencing of the ITS region was 

hindered by the presence of strong secondary structures in the species C. purpureus and 

S. antarctici. Secondary structures form between complementary bases in single stranded 

DNA. These secondary structures cause polymerases to stall, hindering the incorporation of 

dNTPs and causing sharp signal drops in sequencing chromatograms. As secondary structures 

do not form in all single stranded DNA copies, they can give rise to multiple amplicons in 

PCR reactions. These multiple amplicons would consist of short ITS fragment (up till the 

secondary structure) and complete ITS amplicons. However, no evidence of short ITS 

fragments were identified, as they were likely too small in size. To allow for sequencing of 

the ITS region, 5% DMSO, which disrupts secondary structure formation, was added to all 

sequencing reactions. Once high quality data could be obtained for the ITS region, the 
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identification of multiple ITS amplicons revealed a wide diversity of contaminant fungi and 

algae, which likely resulted in the poor sequence data obtained from rps4. Being a chloroplast 

gene, rps4 is only present in plants (Stech and Quandt, 2010). As such, it is likely that gel 

excision improved sequence data by removing weakly co-amplified algal genes. In order to 

sequence ITS, gel excision was used to excise the moss amplicons, using amplicon size as a 

guide. Therefore, the identification of contaminant genes (following the initial investigation 

of ITS amplicons) was biased towards contaminants with ITS regions between 1,000 and 

1,200 bp in size. Nevertheless, a large diversity of foreign genes were still identified. Algal 

genes were more commonly isolated from B. pseudotriquetrum, while fungal genes were 

more commonly isolated from C. purpureus and S. antarctici. It is likely that this is a result 

of the growth habit of B. pseudotriquetrum, which is commonly found in wetter locations 

(Lockhart et al., 2012). Futhermore, the loose growth habit of B. pseudotriquetrum may allow 

for light to penetrate moss clumps, aiding algal photosynthesis (Wasley et al., 2006). 

 

Of the algal and fungal groups identified, no groups were present in both the Bunger Hills 

and Windmill Islands. In the Bunger Hills, the Genus Chloromonas was identified from two 

separate samples. Interestingly, this genus of alga has not been previously reported in the 

Bunger Hills, but is present in the Windmill Islands as the species C. rubroleosa and is 

responsible for red snow (Ling et al., 1993; Ling et al., 1998). Additionally, a second red 

snow-forming algal genus (Ulthorix) was identified. Again this genus has previously been 

recorded in the Windmill Islands, but not in the Bunger Hills (Ling, 1996). A single fungal 

gene from the genus Geomyces was identified in a sample from the Bunger Hills. The genus 

Geomyces consists of freeze tolerant filamentous fungi, commonly found in Arctic 

permafrost (Rice et al., 2006). The Antarctic distribution of Geomyces is commonly 

associated with bird, seal and human colonies (Marshall, 1998). By contrast, although the 
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Bunger Hills contain bird colonies, no Geomyces species have been reported previously. The 

Windmill Islands region contained the highest levels of biodiversity. This is expected as the 

Windmill Islands contain some of the highest levels of biodiversity on the Antarctic continent 

(Selkirk et al., 1987; Smith, 1988). However, this high level of biodiversity was primarily 

localised to Baily Peninsula, the site of the current Casey Station. This may be a result of 

greater sampling within the region or may represent human introduction of fungal  and algal 

diversity, much of which has been shown to originate from European locations (Azmi et al., 

1998b; Frenot et al., 2005). The high levels of algal diversity on Baily Peninsula may also be 

due to the high level of moisture in the ASPA135 site, which is formed from a low lying 

basin. In contrast, Robinson Ridge, Browning and Mitchell peninsula are drier sites. 

However, regions of Clark Peninsula are very wet and high levels of algal and fungal 

diversity may be present in this region, but not represented in this study due to low levels of 

sampling on Clark Peninsula (Australian Antarctic Division, 2013). 

 

Of the fungal species identified in the Windmill Islands the genera Ascomycota, 

Trebouxiophyceae, (T. impressa) and Physcia, (P. adscendens) have been previously 

identified from this region (Antarctic Treaty Consultative Meetings, 1991). Contrastingly, the 

algal genera Neocystis (N. mucosa), Pseudendocloniopsis (P. botryoides), Chlorosarcinopsis 

and Sphaerocystis have not been recorded in Antarctica. Interesting, the known distributions 

of N. mucosa, P. botryoides and Chlorosarcinopsis are from cold Northern Hemisphere 

locations (Guiry et al., 2013). Additionally, the genus Sphaerocystis is only known from 

Signy Island, a small island off the coast of the Antarctic Peninsula (Broady, 1976).  

 

The two fungal genera identified, Phaeospharia and Phialocephala (Phialocephala virens) 

are plant pathogenic fungi. Phaeosphaeria belongs to the Asomycota fungal division.  
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Phaeosphaeria has been isolated from the Antarctic grass Deschampsia antarctica found on 

the sub-Antarctic South Orkney Islands and Antarctic Peninsula (Stchigel et al., 2004). 

Contrastingly, P. virens and its related genus Phialocephala have not been recorded in 

Antarctica but are associated with Northern Hemisphere alpine environments (Stoyke et al., 

1991; Hambleton et al., 1997) and contribute to root rot in some plants (Siegfried et al., 

1992). 

 

For the identification of moss species, ITS and rps4 proved variable. Ribosomal protein 

subunit 4 and ITS sequence data from the species B. pseudotriquetrum, C. purpureus, and 

S. antarctici are present in GenBank. However, the identification of each species using 

BLASTn search matches proved variable. For the identification of B. pseudotriquetrum, rps4 

proved unreliable, consistently identifying samples as Bryum lisae and Bryum elegans. This 

is likely a result of the low variability in rps4 between species (Liu et al., 2010). However, it 

may also indicate that Antarctic B. pseudotriquetrum was misidentified, although this is 

unlikely as B. lisae and B. elegans have never been recorded in Antarctica. The final 

possibility is that the Genbank specimens for B. lisae and B. elegans have been misidentified. 

A major difficulty in the identification of Antarctic mosses is the delimitation of 

C. purpureus, S. antarctici and B. recurvirostrum, which share overlapping distributions and 

very similar morphologies. Skotnicki et al., (2012) found rps4 to be effective in delimiting 

populations of C. purpureus and S. antarctici. This is supported by evidence from this study, 

where in all cases rps4 correctly identified samples of these three species. Furthermore, in 

one case a sample of C. purpureus from the BASH (CP3) and two S. antarctici samples 

collected during the 2005 ANARE, were confirmed as B. recurvirostrum and C. purpureus 

respectively using rps4 sequence data. Moreover, the identification was confirmed by ITS 

sequence data and the incorporation of samples into phylogenetic analyses (Figure 18 and 
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Figure 19). For the identification of B. pseudotriquetrum, C. purpureus, S. antarctici and 

B. recurvirostrum ITS proved reliable and consistent in all cases. This again is in agreement 

with Skotnicki et al., (2012). However, as mentioned above, sequence data from ITS proved 

much more difficult to obtain and yielded contaminant genes, whereas no contaminant genes 

were isolated during the amplification and sequencing of rps4. Together these observations 

suggest the ITS is the most reliable marker for identifying Antarctic mosses. However, within 

the Windmill Islands, where B. pseudotriquetrum is easily identified by morphological 

means, rsp4 is most feasible. 

 

A limitation of this form of species identification is that it is most reliable when databases 

contain gene information from all genera, and assumes that all species have been identified 

correctly. However, this is not presently the case. It is likely that the bulk of Antarctic algal 

and fungal species are not represented in the GenBank database. Nevertheless, in all cases 

ITS sequences from contaminant taxa resulted in very close matches, suggesting that for the 

foreign genes identified in this study GenBank proved adequate. Finally, even though a 

number of studies have examined the distributions of Antarctic fungi and algae in soils (for 

full review see Broady, 1979; Ruisi et al., 2007), the high diversity and novelty of the algae 

and fungi identified in this study suggests that much work is still required. Furthermore, it 

appears that moss turfs, which have been poorly studied, are a rich source of biodiversity yet 

to be thoroughly examined. 
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4.2 Bryum pseudotriquetrum 

Recent evidence has suggested that what has previously been considered a single 

cosmopolitan population of the moss B. pseudotriquetrum is instead a discrete Antarctic and 

Northern Hemisphere species (Kengo et al., 2013). Consequently, this study identified four 

cryptic species from what was considered to be a homogeneous population of 

B. pseudotriquetrum. Bryum pseudotriquetrum is considered to be highly variable in its 

morphology and is found in almost all environments in both the Northern and Southern 

Hemisphere (Ochyra et al., 2008). It now seems likely that B. pseudotriquetrum is instead 

multiple cryptic species adapted for specific environments.  

 

Coalescent-based species delimitation identified four distinct cryptic species present in the 

Bunger Hills, Windmill Islands, Prince Charles Mountains and the Northern Hemisphere. 

Populations from the Bunger Hills were most closely related to populations from the 

Windmill Islands. This suggests that ancestral populations may have colonised the East 

Antarctic coast following the de-glaciation of the Bunger Hills 20,000 to 30,000 years ago 

(Gore et al., 2001) and the subsequent de-glaciation of the Windmill Islands 5,500 years ago 

(Goodwin, 1993). However, samples from the Vestfold Hills, which became ice free 10,000 

to 25,000 years ago (Adamson et al., 1983), would be required to strengthen this hypothesis.  

 

Most closely related to the Windmill Islands and Bunger Hills samples are two 

B. pseudotriquetrum samples originating from the Northern Hemisphere. As suggested by 

Kato (2013), these samples represent a distinct species from all Antarctic samples. Moreover, 

the Northern Hemisphere samples, being the first described as B. pseudotriquetrum, represent 

the B. pseudotriquetrum (Hedw.) holotype (Gärtner et al., 1802). However, caution must be 

applied since the two Northern Hemisphere samples are unlikely to capture the full variability 
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in Northern Hemisphere populations. Moreover, non-Antarctic Southern Hemisphere 

populations have not been included in this analysis (Ochyra et al., 2008). In terms of origins, 

samples from the Bunger Hills and Windmill Islands are more closely related to Northern 

Hemisphere samples than samples from the Prince Charles Mountains. This suggests that 

B. pseudotriquetrum samples from the Windmill Islands and Bunger Hills originated as a 

result of a colonisation event, while samples in the Prince Charles Mountains might be 

refugial. However, in order to conclusively establish the origins of these three Antarctic B. 

pseudotriquetrum species, greater sampling is required, both around Antarctica and the 

Northern and Southern Hemispheres. Furthermore, tree nodes require dating, a process that 

requires a key event with a known date in order to calibrate evolutionary clocks. In particular, 

accurate measurements of de-glaciation may provide such information for future studies. 

 

In recent years, cryptic speciation has become more evident in bryophytes (comprehensively 

reviewed in Shaw, 2001). Exploration during the 19
th

 Century led to an explosion in 

bryophyte species, based primarily on the assumption that isolated populations must represent 

different species (Shaw, 2001). This is evident in Antarctic mosses, with B. pseudotriquetrum 

from the Bunger Hills previously known as Bryum korotkeviczia (Savicz-Lyubitskaya, 1959; 

Savicz-Lyubitskaya, 1960), B. pseudotriquetrum from the Antarctic Peninsula known as 

Ptychostrum pseudotriquetrum (Ochyra et al., 2008) and B. pseudotriquetrum from 

Madagascar described as Bryum austroventricosum (Crosby et al., 1983). In total, 

B. pseudotriquetrum has been described as at least 15 different species, which in recent years 

have been reclassified as the single species B. pseudotriquetrum (Ochyra et al., 2008). 

However, evidence of high levels of genetic variation in Antarctic B. pseudotriquetrum 

(Skotnicki et al., 1998b), combined with the high levels of morphological plasticity in 
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varying environments provided early evidence of multiple species within the 

B. pseudotriquetrum species group.  

 

There are many definitions of a species, but in general the morphological and biological 

species concepts have proven effective for classifying organisms. However, in the case of 

Antarctic bryophytes, sexual reproduction is rare (Convey and Smith, 1993). Moreover, 

bryophytes show a large geographical range and little morphological differentiation (Shaw, 

2001). As such, molecular techniques are most appropriate. A species is generally considered 

to be an independently evolving population (Fujita et al., 2012). However, molecular 

methods other than coalescent-based species delimitation are not capable of identifying 

independently evolving population, and as such could not be used to delimit cryptic moss 

species. Although, once a population is establish as being a single species, other methods of 

species identification prove appropriate. The use of a DNA barcoding approach using rps4 

and ITS as suggested by Skotnicki et al., (2012) and Skotnicki et al., (2005) proved effective 

in identifying C. purpureus, S. antarctici and B. recuroviorstrum. Although, this method 

correctly identified B. pseudotriquetrum populations, it could not identify cryptic species, as 

cryptic species have likely been misidentified in public databases. This highlights the benefits 

of coalescent-based species delimitation, as employed in this study, which enable statistical 

identification of independently evolving populations (Fujita et al., 2012) and as such 

overcomes many issues associated with other methods (see Chapter 3). In the case of 

B. pseudotriquetrum, this study employed the first use of coalescent-based species 

delimitation in bryophytes and identified definitive cryptic populations in the Windmill 

Islands and Bunger Hills and possible cryptic populations in the Northern Hemisphere and 

Prince Charles Mountains. To confidently confirm the presence of cryptic species in the 
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Northern Hemisphere and Prince Charles Mountains, greater sampling is required from both 

the Northern and Southern Hemisphere. 

4.3 Ceratodon purpureus 

As with B. pseudotriquetrum, C. purpureus is a morphologically variable cosmopolitan moss 

species (Ochyra et al., 2008). Similar to B. pseudotriquetrum, it was initially classified as a 

number of different species: Ceratodon antarcticus, (Holzinger, 1902) Ceratodon grossiretis 

(Cardot, 1908), Ceratodon minutifolius (Cardot, 1911), Ceratodon validus (Horikawa et al., 

1963) and Ceratodon kinggeoricus (Kanda, 1986), all of which are currently considered as 

C. purpureus (Ochyra et al., 2008). However, in contrast to B. pseudotriquetrum, no evidence 

of cryptic species has been reported in C. purpureus. Genetic studies of C. purpureus have 

identified discrete Northern and Southern Hemisphere populations (McDaniel and Shaw, 

2005) and identified that relatedness in Antarctic C. purpureus populations is likely related to 

geographical separation (Skotnicki et al., 1998c). However, no study has examined the 

origins of Antarctic populations, until this study.  

 

Bayesian MCMC analysis of rps4 sequences identified populations from East Antarctica as 

most closely related to populations from Australia and Heard Island. This corroborates work 

by Skotnicki et al., (2004) who identified a close relatedness between East Antarctic 

C. purpureus populations and those found in Australia and on Heard Island. Furthermore, 

Skotnicki et al., (2004) incorporated samples from Northern Hemisphere populations. 

However, these results were unfortunately not presented and further comparisons cannot be 

made. Surprisingly, the analyses carried out in the present study resolved populations of 

C. purpureus from the Antarctic Peninsula as more closely related to populations from the 

Northern Hemisphere than East Antarctica. This is in contrast to work by McDaniel and 
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Shaw (2005) who identified discrete Northern and Southern Hemisphere populations, with 

little movement between hemispheres. Unfortunately,  McDaniel and Shaw (2005) only 

incorporated a single East Antarctic sample and as such the same results were not elucidated. 

 

It would be expected that moss communities that are closer geographically would be more 

closely related. In addition, evidence suggests that the relatedness of bryophyte communities 

is strongly correlated with wind patterns (Muñoz et al., 2004). However, the Antarctic 

continent is isolated from surrounding land masses by the Antarctic circumpolar current and 

strong circumpolar winds. Furthermore, due to limited sporophyte production in Antarctic 

mosses, long range dispersal by winds is probably limited. Nevertheless, low levels of spore 

have been recorded in Victoria Land Antarctica, showing that transfer by wind is possible 

(Linskens et al., 1993). Aside from low levels of spore transfer by winds, the close 

relationship of East Antarctic C. purpureus to Australian C. purpureus might be due to 

migratory birds, the Tasman gateway acting a land bridge between Australia and Antarctica, 

or more recently humans. The Tasman Gateway connected Australia to Antarctic and 

collapsed before the LGM. Therefore if relatedness between Australian and East Antarctic 

C. purpureus is due to the Tasman Gateway, C. purpureus populations must be refugial 

populations which have survived through the LGM. However, no evidence of refugial 

populations has been found in East Antarctica. On the other hand, evidence exists for the 

human introduction of C. purpureus to Antarctica. Evidence from C. purpureus 

microsatellites shows higher levels of genetic diversity with proximity to Australian research 

stations (Clarke et al., 2009). Additionally, studies of fungi have found increased fungal 

diversity in human disturbed sites (Azmi et al., 1998a; Connell et al., 2008). These findings 

suggest that human exploration and research may be one of the key factors in both the 

introduction of moss and fungi to Antarctica and increasingly its movement within the 
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continent. The other possibility is the introduction of spores via migratory birds. Research has 

shown that bryophytes are transported by birds for nest building (Breil et al., 1976), although 

no specific research has been carried out examining the introduction of flora and fauna to 

Antarctica by migratory birds. As such, the impacts of migratory birds are not known, 

although it seems likely that both migratory birds and Antarctic researchers impact on the 

introduction of flora and fauna to the Antarctic continent. 

 

The Northern Hemisphere clade that was resolved during phylogenetic analysis grouped all 

Northern Hemisphere samples with the samples from the Antarctic Peninsula, along with a 

single Southern Hemisphere sample from Malawi, Africa. This contrasts with the 

phylogenetic analysis carried out by McDaniel and Shaw (2005), who identified three 

samples from Capetown, South Africa as grouping strongly with other Southern Hemisphere 

samples. This distinction is likely a result of the location of the samples, with Malawi located 

much closer to the equator than Capetown. Within the Northern Hemisphere clade, two 

poorly supported sub-clades were resolved, containing all Antarctic samples, with the 

exception of a single sample from the UK and all Northern Hemisphere samples. However, 

support for these two sub-clades was low and a second locus is required for confirmation. 

The close relationship of samples from the Antarctic Peninsula with samples from the 

Northern Hemisphere can be partially explained by the close proximity of South America to 

the Antarctic Peninsula, which may act as a land bridge for dispersal between the Northern 

and Southern hemisphere. However, the incorporation of samples from South America in 

future studies is required to confirm this hypothesis. Contrastingly, refugial and endemic 

populations of nematodes, microbes and wingless insects that have been identified on the 

Antarctic Peninsula suggest that the Antarctic Peninsula is geographically isolated (Convey et 

al., 2008).  
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The Antarctic Peninsula is one of the most temperate and hospitable locations on the 

Antarctic continent and contains more human research stations than any other Antarctic 

location. In particular, the British Antarctic Survey operates seven Antarctic research stations 

within the Antarctic Peninsula. The single UK sample which grouped with samples from the 

Antarctic Peninsula was generated as part of a larger study investigating the subclass 

Dicranidae (Hedderson et al., 2004). Its similarity to samples from the Antarctic Peninsula 

may be due to laboratory contamination during its extraction, or to the introduction of genetic 

diversity from the UK into the Antarctic Peninsula by the long history of human habitation. 

No introduced species have been found on the Antarctic Peninsula. However, the human 

mediated introduction of the North Atlantic crab spider (Hyas araneus) around the Antarctic 

Peninsula shows that it could easily occur (Tavares et al., 2004). It seems most probable that 

the close relation between Antarctic Peninsula C. purpureus and Northern Hemisphere 

C. purpureus is related to the late separation of the Drake Passage, a land Bridge connecting 

South America to the Antarctic Peninsula. Moreover, the high level of human activity in the 

Antarctic Peninsula and short distance for migratory birds makes it likely that genetic 

diversity has been introduced into the region. However, further studies are required to 

identify this.  

 

Finally, phylogenetic analysis revealed the presence of three highly divergent samples. A 

single sample from Nepal formed a well-supported clade with a single GenBank sample from 

North Carolina. Four North Carolina samples were incorporated from a study of moss 

diversity (Shaw et al., 2005). Its placement may represent laboratory contamination. 

Contamination of the author amplified and sequenced sample from Nepal can be ruled out as 

any contamination would result in the sample being grouped into another clade. As such, this 
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sample may represent a unique isolate. Further to this, a single highly divergent sample was 

identified from South Orkey Is; whilst this single sample may be from a refugial population, 

further replicates are required for verification. 

 

The molecular marker rps4 provides an effective phylogenetic tool due to its ease of 

amplification, even from old material. However, rps4 is limited by low phylogenetic 

resolution. Future work will require the incorporation of multiple markers of a higher 

resolution to identify fine scale relationships, while incorporating more comprehensive 

sampling. Finally, work remains to be done to specifically identify possible introductions of 

flora and fauna to the Antarctic continent by bird and human movement. 

4.4 Schistidium antarctici  

Schistidium antarctici is one of seven moss species found only in Antarctica (Ochyra et al., 

2008). However, unlike other native Antarctic species, S. antarctici is very common. 

Furthermore, its morphological similarities with C. purpureus can make identification of 

Windmill Islands specimens difficult. The species status of S. antarctici has never been 

examined using a molecular approach. As such, S. antarctici may represent multiple cryptic 

species or morphological variants of Schistidium species found elsewhere. In this section, the 

species status of S. antarctici is examined using all Schistidium ITS and rps4 data available 

on GenBank. Moreover, the location of S. antarctici within the Schistidium genus is 

discussed. 
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4.4.1 Internal transcribed spacer 

The ITS region contains high levels of phylogenetic information. However, issues associated 

with its sequencing (as mentioned in section 4.1) and alignment made obtaining data and 

analyses difficult. Alignment of the ITS region in B. pseudotriquetrum and C. purpureus 

proved relatively straightforward, as alignments within a single species often contain few 

gaps. However, in the case of S. antarctici the incorporation of other Schistidium species 

required the insertion of large gaps, resulting in ambiguously aligned regions. To overcome 

this, often only part of the ITS2 region is analysed, although this requires the exclusion of 

informative sequence data. Instead, the analysis of RNA secondary structures in the ITS1 and 

ITS2 regions are used to improve alignments (Milyutina et al., 2010). In this study the 

software MAFFT was used, which incorperates RNA secondary structure to improve 

alignments. 

 

Following alignment, analysis of the ITS region revealed S. antarctici as a single 

monophyletic group. As paired multilocus data was not obtained nor available for 

Schistidium samples, speciation in each node could not be quantified by coalescent-based 

species delimitation. Therefore, identification of a species is based upon all samples forming 

a monophyletic group, with less variation between samples than to other taxa (Moritz and 

Cicero, 2004). Based upon this criterion, S. antarctici appears to be a unique species rather 

than a morphological variant of other Schistidium species. Schistidium antarctici samples 

included in this analysis were sampled from three locations (Prince Charles Mountains, 

Bunger Hills and Windmill Islands) spread over 2,000 km of the East Antarctic coast. 

However, unlike B. pseudotriquetrum, no evidence of cryptic species was present. 

Furthermore, no distinct groupings based upon geographical locations were identified. 

However, samples from West Antarctica were not available for this study, therefore distinct 
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East and West Antractic populations or possible cryptic species may not have been revealed. 

More comprehenive sampling and the incorporation of multiple loci are required in future 

studies to confirm that no cryptic species or geographic structure is present. 

 

Being an Antarctic endemic species, it is likley that S. antarctici has been present in 

Antarctica longer than cosmopolitan species. Due to the slow and consistent growth of 

Antarctic mosses, evidence of the prescence of S. antarctici prior to other moss species can 

be seen in the abundance of long moss shoots (Robinson Pers. Comm). Additionally the long 

term prescence of S. antarctici may be evidenced in the ITS phylogeny. Branch lengths show 

that following divergance from its sister taxa, S. antarctici  underwent rapid evolution, 

followed by a period of limited change. This may represent the evolution of S. antarctici in 

response to the cooling Antarctic climate, prior to the LGM. However, as in 

B. pseudotriquetrum, key events are required in order to date tree nodes and confirm this 

hypothesis. 

 

Phylogenetic analysis using ITS revealed that the sister taxa to S. antarctici are the 

Schistidium species S. crenatum, S. grandirete, S. sordidum, S. platyphyllum, 

S. sinensiapocarpum, S. platyphyllum subsp. Abrupticostatum and S. apocarpum subsp. 

Canadense. Interestingly, Schistidium species most closely related to S. antarctici are all 

restricted to cold climate locations. Schistidium crenatum is only known from two samples in 

Russia (Váňa et al., 1988), S. sordidum, which is a synonym for S. apocarpum subsp 

soridium and S. apocarpum subsp. Canadense are found in sub-Antarctic and high latitude 

environments (Amann et al., 1918). Schistidium platyphyllum and S. platyphyllum subsp. 

Abrupticostatum are semi aquatic species commonly found in high latitude Northern 

Hemisphere locations (Lockhart et al., 2012). Finally, S. grandirete is an Arctic species 
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(Blom, 1996). In general, all Schistidium species in the sister clade to S. antarctici originate 

from cold permafrost climates, with the exception of S. sinensiapocarpum. Furthermore, few 

morphologically shared features are present between the moss species 

(Milyutina et al., 2010). The location of cold climate moss species as a sister group to 

S. antarctici may be a result of vicariance of a single common ancestor. However, due to the 

large degree of geographical separation between S. antarctici and its sister taxa, the grouping 

may be a result of convergent evolution in the ITS regions as a result of cold climates. 

Although the ITS1 and ITS2 regions do not code for protein, conserved secondary structures 

between plants suggest a functional role (Mai et al., 1997), which is therefore subject to 

confounding environmental pressures. A detailed investigation of the effects of cold climates 

on ITS secondary structure would be useful in identifying confounding factors impacting on 

phylogenetic relationships. 

4.4.2 Ribosomal protein subunit 4 

 

In contrast to the support values from analysis using ITS, analysis using rps4 resulted in high 

support near the tree root with low support towards the tree tip. Furthermore, since studies of 

the Schistidium genus have primarily focused ITS, rps4 data are limited. Nevertheless, 

sequence data was available for many of the same species used in the analysis of ITS. 

Analysis using rps4 revealed S. antarctici as a paraphyletic group, with a single sample of 

S. antarctici grouped outside of the S. antarctici species clade. Support for the placement of 

taxa within each clade was low. However, support for the separation of all samples into two 

distinct clades was high, suggesting high confidence in the placement of the single S. 

antarctici sample outside of all others. Unfortunately, ITS data was not available for this 

sample. However, ITS and rps4 data from S. antarctici samples originating from the same 

location do not group outside of the main S. antarctici clade. As such, this suggests that the 
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single outlier S. antarctici sample may have been misidentified. Schistidium antarctici unlike 

B. pseudotriquetrum and C. purpureus is a quite distinct species, being originally named 

Grimmia antarctici (Cardot, 1906) before being reclassified as S. antarctici (Savicz-

Lyubitskaya, 1965). However, it is occasionally confused with the species 

Schistidium andinum, which is known only from the Antarctic Peninsula (Ochyra et al., 

2008) and C. purpureus. If the outlier S. antarctici sample is a misidentified sample of 

C. purpureus it would be grouped within the out-group. As this was not the case, the sample 

may be a misidentified sample of S. andinum. If this is the case, it represents a new record for 

S. andinum in the Prince Charles Mountains. However, comparison to S. andinum samples 

from the Antarctic Peninsula would be required for confirmation. 

4.4.3 Relationship of Schistidium antarctici within the Schistidium genus 

The genus Schistidium is a poorly understood genus and primarily consists of cold and 

temperate climate species, which were once part of the overarching genus Grimmia. Attempts 

have been made to classify Schistidium into distinct groups (Ochyra et al., 2008). A number 

of groupings have been suggested including: the separation of the genus Schistidium into the 

subdivision Platyphylloideae and Apocarpiforms (Kindberg, 1898), separation of Schistidium 

into the subdivision Apocarpa and Conferta (Vilhelm, 1922) and separation into the five 

subdivisions: Robust, Conferta, Tenera, Atrofusca and Apocarpa (Blom, 1996). However, 

Bayesian MCMC analysis of the Schistidium genus, based upon all available ITS and rps4 

data did not resolve clades in agreement with any of the suggested division and sub-divisions 

mentioned above. Analysis using ITS revealed fine detail towards node tips, while rps4 

revealed higher level information about the grouping of clades. However, further analysis 

incorporating both loci in a coalescent-based approach is required for confidence at all 

taxonomic levels. The phylogenetic relationships resolved are in most agreement with the 

taxonomic divisions and sub-divisions suggested by Blom (1996) and support the findings of  
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Milyutina et al., (2010), who constructed a phylogeny of the Schistidium genus using ITS and 

a maximum Likelihood method of analysis. 

5 CONCLUSION 

Antarctic mosses are the main floral component of the Antarctic ecosystem and survive on 

the coldest, windiest and most isolated continent on the planet. In this study, the aim was to 

construct a phylogeny of the three common Antarctic mosses: Bryum pseudotriquetrum, 

Ceratodon purpureus and Schistidium antarctici and evaluate the ability of the molecular 

markers ITS and rps4 to delimit the three species. Coalescent-based species delimitation on 

samples of B. pseudotriquetrum allowed for the identification of four separate cryptic species, 

originating from the Bunger Hills, Windmill Islands, Prince Charles Mountains and Northern 

Hemisphere. In line with taxonomic protocol, we suggest that the first described specimens 

from the Northern Hemisphere remain as B. pseudotriquetrum, while populations from the 

Bunger Hills revert to Bryum korotkevich. Further taxonomic work is required prior to the 

reclassification of populations from the Windmill Islands. However, the place holder names 

of B. pseudotriquetrum var. Windmill and B. pseudotriquetrum var. Prince Charles prior to 

further investigation is recommended. Finally, work remains to identify populations of 

B. pseudotriquetrum not sampled in this study; in particular, greater sampling and replicates 

are required from the Northern Hemisphere and non-Antarctic Southern Hemisphere 

locations. 

 

Bayesian MCMC analysis of C. purpureus samples revealed that populations from the 

Antarctic Peninsula are more closely related to populations from the Northern Hemisphere, 

whilst populations from East Antarctica are most closely related to populations from 

Australia and Heard Island. This evidence corroborates evidence of the introduction of moss 
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species by human and bird colonies, which will require specific investigation in future 

studies. Moreover, the use of multiple loci in future analysis will improve tree support. 

 

Analysis of S. antarctici ITS and rps4 data separately revealed S. antarctici as a 

monophyletic group, indicative of a single species. Additionally, analysis revealed that East 

Antarctic S. antarctici populations are most closely related to Arctic and cold climate 

Schistidium species, which may be a result of convergent evolution. Future work will require 

the use of multilocus data for coalescent-based species delimitation and to improve tree 

support. Moreover, the examination of ITS sequence changes in response to cold climates, 

will allow for the identification of confounding factors in phylogenetic analyses. 

 

Lastly, the issue of Antarctic moss identification has been examined both through the 

identification of contaminating biological material and the reliability of the GenBank 

database for the identification of C. purpureus, S. antarctici, B. recurvirostrum, and 

B. pseudotriquetrum samples, using ITS and rps4. However, care must be taken as rps4 may 

not correctly identify samples of B. pseudotriquetrum. 

 

In conclusion, Antarctic mosses represent a unique group of plants which survive in some of 

the harshest conditions on earth. Due to these harsh conditions, their identification has proven 

difficult and although much work remains to be done, this study demonstrates that rps4 and 

ITS are effective for identifying phylogenetic relationships in Antarctic mosses, for the 

coalescent-based species delimitation of cryptic populations and for the identification of the 

mosses examined in this study. Furthermore, this investigation has elucidated phylogenetic 

relationships among the three most common East Antarctic mosses, improving our ability to 
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use these Windmill Islands mosses as proxies for the effects of climate change on Antarctic 

terrestrial ecosystems. 
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APPENDIX 

Table 8. Schistidium ITS sequence data incorporated into the Bayesian MCMC analysis of the Schistidium 

genus. Sequence Identities (ID), Accession numbers and source are listed. 

Sequence ID Accession Number Source 

S.  agassizii HM053879 (Milyutina et al., 2010) 

S.  agassizii HM053878 (Milyutina et al., 2010) 

S.  amblyophyllum HM053880 (Milyutina et al., 2010) 

S.  andreaeopsis HM053881 (Milyutina et al., 2010) 

S.  andreaeopsis HM053882 (Milyutina et al., 2010) 

S.  antarctici AY613335 (Skotnicki et al., 2012) 

S.  apocarpum JQ040700 (Skotnicki et al., 2012) 

S.  apocarpum subsp. Canadense HM053915 (Milyutina et al., 2010) 

S.  apocarpum subsp. Canadense HM053917 (Milyutina et al., 2010) 

S.  apocarpum subsp. Canadense HM053916 (Milyutina et al., 2010) 

S.  apocarpum subsp. Canadense HM053914 (Milyutina et al., 2010) 

S.  apocarpum subsp. Canadense HM053883 (Milyutina et al., 2010) 

S.  atrofuscum HM053887 (Milyutina et al., 2010) 

S.  atrofuscum HM053886 (Milyutina et al., 2010) 

S.  boreale HM053890 (Milyutina et al., 2010) 

S.  boreale HM053889 (Milyutina et al., 2010) 

S.  boreale HM053888 (Milyutina et al., 2010) 

S.  confertum HM053879 (Milyutina et al., 2010) 

S.  confertum HM053891 (Milyutina et al., 2010) 

S.  confertum HM053892 (Milyutina et al., 2010) 

S.  crassipilum EU343802 (Hernández-Maqueda et al., 2008) 

S.  crenatum HQ890505 (Ignatova et al., 2009) 

S.  cryptocarpum HM053893 (Milyutina et al., 2010) 

S.  dupretii HM053895 (Milyutina et al., 2010) 

S.  dupretii HM053894 (Milyutina et al., 2010) 

S.  flaccidum HM053899 (Milyutina et al., 2010) 

S.  flaccidum HM053896 (Milyutina et al., 2010) 

S.  flaccidum HQ890511 (Ignatova et al., 2009) 

S.  flaccidum HQ890510 (Ignatova et al., 2009) 

S.  frigidum HM053907 (Milyutina et al., 2010) 

S.  frigidum HM053906 (Milyutina et al., 2010) 

S.  frigidum HM053905 (Milyutina et al., 2010) 

S.  frigidum HM053904 (Milyutina et al., 2010) 

S.  frisvollianum HM053908 (Milyutina et al., 2010) 

S.  frisvollianum HM053909 (Milyutina et al., 2010) 

S.  grandirete HM053910 (Milyutina et al., 2010) 

S.  grandirete HM053911 (Milyutina et al., 2010) 

S.  holmenianum HM053912 (Milyutina et al., 2010) 

S.  holmenianum HM053913 (Milyutina et al., 2010) 

S.  lancifolium HQ890512 (Ignatova et al., 2009) 
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Table 8. (Continued)   

S.  lancifolium HQ890513 (Ignatova et al., 2009) 

S.  lancifolium HQ890516 (Ignatova et al., 2009) 

S.  lancifolium HQ890517 (Ignatova et al., 2009) 

S.  lancifolium HQ890514 (Ignatova et al., 2009) 

S.  lancifolium HQ890515 (Ignatova et al., 2009) 

S.  liliputanum HM053918 (Milyutina et al., 2010) 

S.  marginale HM053919 (Milyutina et al., 2010) 

S.  marginale HM053920 (Milyutina et al., 2010) 

S.  maritimum HM053924 (Milyutina et al., 2010) 

S.  maritimum HM053922 (Milyutina et al., 2010) 

S.  maritimum subsp. Piliferum HM053923 (Milyutina et al., 2010) 

S.  papillosum HM053925 (Milyutina et al., 2010) 

S.  papillosum HM053875 (Milyutina et al., 2010) 

S.  papillosum HQ890520 (Ignatova et al., 2009) 

S.  platyphyllum subsp. Abrupticostatum HM053931 (Milyutina et al., 2010) 

S.  platyphyllum subsp. Abrupticostatum HM053929 (Milyutina et al., 2010) 

S.  platyphyllum subsp. Abrupticostatum HM053926 (Milyutina et al., 2010) 

S.  platyphyllum subsp. Abrupticostatum HM053930 (Milyutina et al., 2010) 

S.  platyphyllum subsp. Abrupticostatum HM053928 (Milyutina et al., 2010) 

S.  platyphyllum subsp. Abrupticostatum HM053927 (Milyutina et al., 2010) 

S.  platyphyllum HM053877 (Milyutina et al., 2010) 

S.  pruinosum HM053932 (Milyutina et al., 2010) 

S.  pruinosum HM053933 (Milyutina et al., 2010) 

S.  pulchrum HQ890521 (Ignatova et al., 2009) 

S.  rivulare HM053937 (Milyutina et al., 2010) 

S.  rivulare HM053936 (Milyutina et al., 2010) 

S.  rivulare HM053935 (Milyutina et al., 2010) 

S.  rivulare HM053934 (Milyutina et al., 2010) 

S.  robustum HM053938 (Milyutina et al., 2010) 

S.  sinensiapocarpum HM053939 (Milyutina et al., 2010) 

S.  sinensiapocarpum HM053940 (Milyutina et al., 2010) 

S.  sinensiapocarpum HM053941 (Milyutina et al., 2010) 

S.  sordidum HM053942 (Milyutina et al., 2010) 

S.  strictum HM053944 (Milyutina et al., 2010) 

S.  subjulaceum HQ890522 (Ignatova et al., 2009) 

S.  tenerum HM053951 (Milyutina et al., 2010) 

S.  tenerum HM053952 (Milyutina et al., 2010) 

S.  trichodon var. nutans HM053954 (Milyutina et al., 2010) 

S.  trichodon var. nutans HM053953 (Milyutina et al., 2010) 

S.  umbrosum HM053956 (Milyutina et al., 2010) 

S.  umbrosum HM053955 (Milyutina et al., 2010) 

S.  viride HM053957 (Milyutina et al., 2010) 

S.  viride HM053958 (Milyutina et al., 2010) 
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Table 9. Schistidium rps4 sequence data incorporated into the Bayesian MCMC analysis of the Schistidium 

genus. Sequence Identities (ID), Accession numbers and source are listed. 

Sequence ID Accession Number Source 

S.  antarctici JQ040706 (Skotnicki et al., 2012) 

S.  antarctici JQ040705 (Skotnicki et al., 2012) 

S.  antarctici JQ040704 (Skotnicki et al., 2012) 

S.  apocarpum JQ040707 (Skotnicki et al., 2012) 

S.  apocarpum GU809069 (Liu et al., 2011) 

S. apocarpum GU809063 (Liu et al., 2011) 

S. apocarpum GU809062 (Liu et al., 2011) 

S. apocarpum AJ845208 (Streiff, 2004) 

S. apocarpum JQ040708 (Skotnicki et al., 2012) 

S. crassipilum AJ553984 (Hedderson et al., 2004) 

S. liliputanum HM989818 (Liu et al., 2011) 

S. papillosum AJ553985 (Hedderson et al., 2004) 

S. strictum GU809064 (Liu et al., 2011) 

S. strictum GU809065 (Liu et al., 2011) 

S. strictum GU809066 (Liu et al., 2011) 

S. strictum GU809067 (Liu et al., 2011) 

S. trichodon HM989819 (Liu et al., 2011) 

S. trichodon HM989817 (Liu et al., 2011) 

S. trichodon HM989816 (Liu et al., 2011) 

S. rivulare GU809068 (Liu et al., 2011) 
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Figure 23. Tree generated via Bayesian MCMC analysis of ITS sequence data originating from samples of S. antarctici, and 

Schistidium sequences available on GenBank and rooted using ITS sequence data from C. purpureus. The species name of each 

sample is listed followed by the corresponding GenBank accession number or sample identification code. Distinct clades are 

highlighted in alternating blue and grey, with the out-group highlighted in green. Species groups are listed (far right) and correspond 

to the highlighted clade left of the species name. Values present on branches represent posterior probabilities of support for each node 

and scale bar representing evolutionary changes in branches. 
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