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Abstract 

A cationic degradation product, formed in solution from retinal Schiff base (RSB), is examined in the 

gas phase using ion mobility spectrometry, photoisomerization action spectroscopy, and collision 

induced dissociation (CID). The degradation product is found to be N-n-butyl-2-(β-ionylidene)-4-

methylpyridinium (BIP) produced through 6π electrocyclization of RSB followed by protonation and 

loss of dihydrogen. Ion mobility measurements show that BIP exists as trans and cis isomers that can 

be interconverted through buffer gas collisions and by exposure to light, with a maximum response 

at λ = 420 nm.  

 

*Address reprint requests to: E. J. Bieske, e-mail: evanjb@unimelb.edu.au 
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Introduction 

One of the more remarkable aspects of biology is that a single molecule can perform different 

functions according to its environment and context. One prominent example is retinal protonated 

Schiff base (RPSB, Scheme 1), which serves as the key photoactive molecule in the visual receptors of 

animals, and also as the primary light-activated molecule in proton and chloride ion pumps in 

microbes [1, 2]. In these contexts the primary photoresponse is the structural rearrangement of the 

retinal molecule [3]. In vivo, the opsin-hosted RPSB chromophore is photo-stable, and is recycled for 

many visual phototransduction events. However, as light sensitive structures (e.g. eyes of vertebrates) 

age, the concentration of fluorescent lipofuscin granules associated with lysosomal digestion of the 

cell increases. The lipofuscin granules are known to contain several bisretinoid species including A2E 

and all-trans retinal dimer, which are formed from retinal through dimerization and condensation 

pathways. These pigments are associated with age-related macular degeneration and vision loss [4-6]. 
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Scheme 1: Retinal protonated Schiff base (RPSB), and trans and cis isomers of N-n-butyl-2-(β-

ionylidene)-4-methylpyridinium (BIP), which can be interconverted with UV/visible light or buffer gas 

collisions. Note that the displayed 9-cis BIP isomer is a representative cis isomer. 

 

Degradation of RPSB also occurs outside the cellular environment. For example, it was recently shown 

that photofragmentation of RPSB in the gas phase produces the protonated Schiff base of β-ionone 

through elimination of toluene following intramolecular cyclization of the polyene chain [7, 8]. Other 

degradation mechanisms are important in solution. Okamura and coworkers investigated the 6π 

electrocyclization of retinal Schiff base (RSB) in C6D6 to form a dihydropyridine (DHP, Scheme 2), in a 

process that occurs more rapidly for 13-cis RSB than trans RSB [9]. As shown in Scheme 2, 

protonation of DHP might reasonably be expected to be followed by dihydrogen loss and formation 

of the BIP cation [N-n-butyl-2-(β-ionylidene)-4-methylpyridinium (m/z = 338)]. 

 

Our interest in the BIP cation was prompted by a recognition that although an acidified, fresh 

solution of RSB, when electrosprayed, produced mainly RPSB (m/z = 340), as the solution aged over 

several days, the main electrosprayed ion became one with m/z = 338 [7]. In the current study we 

have investigated the m/z = 338 cation using ion mobility spectrometry (IMS), collision induced 

dissociation (CID) mass spectrometry, and density functional theory (DFT) calculations, confirming that 

it is indeed BIP. Furthermore, using ion mobility mass spectrometry, we demonstrate that BIP has 
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Figure 1: Tandem ion mobility spectrometer. Electrosprayed ions accumulate in the first ion funnel 

(IF1) and are periodically launched through an ion gate (IG1) into the first drift region (IMS 1) where 

they travel through N2 buffer gas (P  6.2 Torr) propelled by an electric field (E  44 V cm-1). The ions 

encounter a second ion gate (IG2) that can be opened to pass mobility-selected isomers. Immediately 

after IG2, ions can be irradiated with light from a tunable OPO. Alternatively, the ions can be 

energized in the collisional excitation region (slammer), where an adjustable potential difference is 

applied between grid electrodes separated by 3 mm. After travelling through the second drift region 

(IMS 2), the ions are collected by an ion funnel (IF2), and pass through an octopole and quadrupole 

mass filter before striking a detector.  

 

The m/z = 338 degradation product of RPSB was examined using a custom-built tandem ion mobility 

apparatus in which different isomers are separated according to their drift mobility and by their 

isomerization behavior following exposure to light [photoisomerization action (PISA) spectroscopy] or 

collisions with buffer gas molecules [collision induced isomerization (CII)]. The tandem ion mobility 

spectrometer and photoisomerization action spectroscopy approach has been described previously 

and further details are given below [13, 14]. High resolution CID mass spectra and MSn spectra for BIP 

cations and fragment ions were collected using a Thermo Scientific XL Hybrid Ion Trap-Orbitrap mass 

spectrometer and a modified Thermo Scientific LTQ XL mass spectrometer, respectively. Details of the 

CID measurements are given in the Supporting Information.  
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Arrangements for the ion mobility experiments are illustrated in Figure 1. Briefly, electrosprayed 

cations, produced from an acidified 10-4 M solution of degraded RSB in methanol/water (electrospray 

voltage  3 kV, flow rate  10 μL/min, 2% acetic acid), were accumulated in an ion funnel before 

being launched in 100 μs pulses at 20 Hz into a 0.9 m drift tube filled with N2 buffer gas (P  6.2 

Torr, E = 44 V/cm). At the end of the drift tube, the ions were gathered radially by a second ion 

funnel before passing through a 0.3 mm orifice into an octopole ion guide from where they exit 

through a second 3 mm orifice into a quadrupole mass filter. Mass-selected ions were sensed by a 

channeltron detector connected to a discriminator and a multichannel scaler. The ions' arrival time 

distribution (ATD) was built up as a histogram of ion counts versus time. The mobility resolution for 

the BIP cations is typically td/Δtd = 70-80 [13]. Under the prevailing operating conditions the effective 

temperature of the ions is predicted to be  310 K [15]. 

 

When operated in tandem IMS-photo-IMS mode, alternate ion packets were irradiated 7.5 mm after 

IG2 with light from a pulsed, tunable optical parametric oscillator (OPO, 10 Hz, λ = 320-710 nm, 10 

ns pulse width, 5 cm-1 bandwidth). Photoisomerization is reflected in the difference between laser-on 

and laser-off ATDs. Care was taken to avoid saturating the electronic transitions. Typically, the pulse 

energy was 5-10 mJ/pulse and the beam cross section was 5 cm2, corresponding to a fluence of 1-2 

mJ/cm2/pulse. At these light levels, photodissociation of the BIP ions was negligible. Note that we 
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were unable to measure the photoisomerization response below 320 nm due to interference by 

background ions produced from photoionization of impurities in the drift gas.  

 

The collisional excitation region (slammer) is situated 15 mm after IG2 and consists of two copper 

mesh electrodes separated by 3 mm between which an adjustable potential difference can be 

applied. For sufficiently high electric fields, collisions with N2 buffer gas cause the BIP ions to 

isomerize between two different forms. Parent and daughter isomer ions are separated in the second 

drift region. As demonstrated by Clemmer and coworkers [16, 17], by monitoring CII as a function of 

the electric field strength, one can derive information on barrier heights for molecular 

rearrangements.  

 

Normally, the potential difference between the slammer electrodes is 20 V, corresponding to an 

electric field of 60 Vcm-1. The electric field between the two electrodes was increased by raising the 

voltages on all upstream electrodes such that the electric fields throughout the rest of the instrument 

remained constant. Under normal operating conditions, the highest attainable potential difference 

between the slammer grids before electrical breakdown was 320 V. 

 

RPSB was synthesized under exclusion of light in an Ar atmosphere according to previous methods 

[18]. Trans retinal (Sigma Aldrich) was dissolved in excess n-butylamine (Sigma Aldrich) and allowed 
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to react at 10° C until 1H NMR showed no evidence of the aldehyde carbonyl signal at  10 ppm. 2,4-

lutidine cations were electrosprayed from a 10-4 M solution of 2,4-lutidine (Sigma Aldrich, 99%) in a 

1:1 mixture of methanol and H2O with 0.2% acetic acid. 

 

Results and discussion 

Formation of the m/z = 338 cation 

The m/z = 338 cation was observed whenever acidified RSB samples were electrosprayed, becoming 

more abundant as the solution aged, and eventually becoming the predominant ion. As shown in 

Figure 2, the ATD for the m/z = 338 cation exhibits two distinct peaks, labelled X and Y, having a  

3:1 intensity ratio. The measured collision cross sections (Ωm) for the two m/z = 338 isomers with N2 

are 8-12% less than trans RPSB (isomer A), indicating that they have more compact structures. 

Indeed, their collision cross sections are similar to those of the RPSB isomers C' and D, which have 

been assigned to cyclic or triple-cis forms [18, 19]. Okamura et al. found that under relatively mild 

conditions, RSB in solution undergoes facile 6π electrocyclization from the 12,13,14-cis form to give 

the cyclic DHP structure, according to the mechanism shown in Scheme 2 [9, 20]. Upon preparing the 

neutral n-butylamine Schiff base of 13-cis retinal, they found that the initial mixture contained 7% 

DHP, along with 8% all-trans and 85% 13-cis RSB [9]. Heating at 78°C in C6D6 for 30 minutes 

produced a 2:5:3 ratio of 13-cis RSB, trans RSB, and the DHP form. The efficiency of the 6π 
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To link the measured collision cross sections for the m/z = 338 ion with molecular structures we 

carried out density functional theory (DFT) calculations for different BIP isomers employing the M06-

2X functional with the cc-pVDZ basis set [25]. A similar computational approach was used previously 

for RPSB and its isomers [7, 19]. According to the calculations, cyclization of trans RPSB to form trans 

BIP and H2 is predicted to be exothermic by 25 kJ/mol. The trans and 9-cis BIP isomers are predicted 

to be almost isoenergetic. The barrier for isomerization around the C9=C10 double bond was 

calculated at the DFT M06-2X/cc-pVDZ level by varying the C8-C9=C10-C11 dihedral angle while 

allowing the rest of the structure to relax, and was found to be 120 kJ/mol with respect to trans BIP. 

Collision cross sections (Ωcalc) for the various BIP isomers with N2 were estimated using the MOBCAL 

program with the trajectory method [26, 27], employing appropriate parameters for N2 buffer gas 

[28]. The trans BIP isomer is calculated to have the largest collision cross section with N2, whereas the 

cis isomers are predicted to have  2% smaller cross sections. Energies and collision cross sections for 

the various BIP isomers are provided in Table 1. 

 

Table 1: Data for BIP and RPSB isomers, including M06-2X/cc-pVDZ energies relative to trans RPSB 

(corrected for vibrational zero-point energy), calculated collision cross sections with N2, and measured 

collision cross sections with N2. Calculated energies and collision cross sections are averages over the 

6s-trans, 6s-cis(-) and 6s-cis(+) configurations as explained in the Supporting Information. A complete 

data compilation is given in the Supporting Information. 
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Structure 

(calculated) 

ΔE* 

(kJ/mol) 

Ωcalc 

(Å2) 

ATD 

peak 

Ωm
† 

(Å2) 

BIP     

trans -37 204.5 X 212.4 

7-cis -25 201.6 Y 

Y 

Y 

203.8 

203.8 

203.8 

9-cis -39 201.1 

7,9-cis -27 200.6 

RPSB‡     

trans 0 219.9 A 231.9 

single-cis 3-24 215.7-220.3 B 226.9 

double-cis 5-44 211.7-222.7 B, C' 226.9,214.6 

triple-cis 23-46 197.9-209.2 C', D 

C', D 

214.6,207.9 

214.6, 207.9 cyclic 1-63 192.1-210.1 

*relative energies for BIP structures correspond to [BIP+H2] 

†estimated absolute errors of ± 5 Å2 and relative errors of ± 0.3 Å2 

‡ RPSB data from refs. [18] and [19]  
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Based on calculated isomer collision cross sections and energies, the most convincing assignment for 

the observed ATD peaks in Figure 2 are X = trans BIP, and Y = 7-cis, 9-cis, or 7,9-cis BIP. The 

calculated cross sections for cis BIP isomers underestimate the measured cross section for isomer Y 

by 1%, whereas the calculated cross section for trans BIP underestimates the measured cross section 

by 4%. These discrepancies are typical for the trajectory method predictions for cross sections for 

collisions between small protonated molecules and N2. For example, the measured collision cross 

section for RPSB is underestimated by 5% by the trajectory method calculations. Von Helden and 

coworkers found that the trajectory method underestimated the collision cross section for the O 

protonated isomer of benzocaine by 2%, whereas the cross section of the N protonated isomer was 

underestimated by 7% [29]. 

 

At this stage we are unable to determine if peak Y is due to a single cis isomer, or if it contains 

contributions from all three cis isomers.  Alternative m/z = 338 isomers were also investigated using 

DFT and are considered at the end of this section (with information on energies and collision cross 

sections provided in the SI). 
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charged fragments contain an N atom, consistent with the proposed cyclic BIP structure. The m/z = 

282 fragment (-C4H8) can be produced either through loss of the butyl chain or through cyclization of 

the polyene chain onto the ionone ring, causing ring opening and loss of C4H8. The smallest observed 

charged fragment at m/z = 108 has the molecular formula C7H10N+, and is assigned as protonated 

2,4-lutidine. This assignment is supported by the close match between the ATD of the m/z = 108 

fragment and a reference ATD of protonated 2,4-lutidine (shown in Figure 3). Overall, the CID data 

are consistent with the proposed fragmentation cascade shown in Scheme 3 and the BIP structure for 

the m/z = 338 cation.  

 

Figure 3: Arrival time distributions (P = 6.2 Torr, N2 buffer gas) for: a) electrosprayed reference 

protonated 2,4-lutidine; and b) m/z = 108 ions formed through collisional activation of electrosprayed 

ions in IF1. 
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Photoisomerization of BIP 

The photoisomerization behaviors of the X and Y isomers of the m/z = 338 cation were investigated 

through tandem IMS-photo-IMS studies. The target isomer was selected in the first stage of the IMS 

and irradiated with tunable light from an OPO immediately after the second ion gate (see Figure 1). 

Resulting photoisomers were separated from the parent isomer in the second IMS stage. The laser-

on/laser-off ATDs (Figure 4) demonstrate that isomer X (assigned as the trans BIP isomer) is 

photoconverted to the more compact Y isomer (assigned as the cis BIP isomer), and vice versa. Plots 

of the photoisomer yield as a function of wavelength (photoisomerization action spectra) of the trans 

and cis BIP isomers are shown in Figure 5. The spectra of both isomers exhibit a broad band with 

maximum response at  420 nm.  The almost identical PISA spectra for isomers X and Y are 

consistent with their assignment as trans and cis BIP isomers, which should have very similar 

electronic transitions.  To confirm that the observed electronic absorption bands are consistent with 

the trans and cis BIP isomers, we calculated vertical S1S0 excitation energies using time dependent 

density functional theory (TD-DFT) at the CAM-B3LYP/6-31+g level. As shown in Figure 5, the 

predicted vertical S1S0 excitation wavelengths for trans and 9-cis BIP are 395 nm and 390 nm, 

respectively, close to the maximum of the observed PISA bands (420 nm). Furthermore, the predicted 

ratio of the oscillator strengths for the S1S0 transitions of the trans and 9-cis isomers is 1.75, 

consistent with the observation that photoisomerization response for isomer X (trans BIP) is around 

twice that of isomer Y (cis BIP).  
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Figure 5: Photoisomerization action spectra of trans BIP (X) and cis BIP (Y). The photoisomerization 

response is measured as a function of wavelength, and is normalized at each wavelength by photon 

number. Calculated vertical excitation wavelengths and intensities (TD-DFT CAM-B3LYP/6-31+g) for 

trans and 9-cis BIP are shown as vertical bars. 

 

Collision induced isomerization of BIP 

Having established the photoisomerization behavior of trans and cis BIP isomers, we explored their 

interconversion through buffer gas collisions in the slammer region. The threshold for collision 

induced isomerization of a mobility-selected BIP isomer was ascertained by scanning the potential 

difference between the slammer electrodes (from 20 to 320 V) while measuring the arrival time 

distribution of the resulting ions. As explained in the Supporting Information, relative abundances of 

the parent and daughter ions were determined at each slammer potential difference, by fitting the 

ATD with a sum of Gaussian functions, each of which corresponds to a different isomer. The data can 

be analyzed in terms of three isomers, the trans (X) and cis (Y) isomers, and a more compact isomer, 

Z, produced in minor quantities at slammer voltages exceeding 210 V. Resulting plots of isomer 

intensity against slammer voltage are shown in Figure 6. As described in the Supporting Information, 

the breakdown curves were fitted with a sigmoidal function, where the threshold voltage (VT) is 

defined as the voltage at which 3.5% of the parent ion population has undergone collision induced 

isomerization, or at which the relative abundance of the daughter ion population reaches 3.5%.  
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because the higher energy 7-cis and 7,9-cis BIP isomers are also generated at elevated collision 

energy. It is relevant to note that no matter if the trans or cis BIP isomer was initially selected, the 

relative abundance of X:Y:Z at the highest attainable slammer voltage (320 V) was 0.38:0.57:0.05, 

suggesting that a pseudo-equilibrium between the different isomers is reached at higher collision 

energies. The structure of isomer Z is uncertain, but it may correspond to the retro-γ-retinylidene 

cation resulting from a [1,5] sigmatropic shift.  

 

At very high slammer voltages, collision induced fragmentation of the m/z = 338 cations occurs, 

primarily giving the same fragment ions to those formed in the Orbitrap and LTQ CID experiments 

discussed previously. The m/z = 280 ion is particularly abundant. However, drop off in the 

transmission and sensitivity below m/z = 180 restricts our ability to detect low mass fragments.   

 

Alternative isomer assignments for the m/z = 338 cation 

Here we consider possible alternative structures for the m/z = 338 cation, including the isomers 

shown in Scheme 4. Calculated M06-2X/cc-pVDZ energies and trajectory method collision cross 

sections for these isomers are compiled in the SI. The bicyclo-RPSB isomer is an unlikely candidate 

based on its high relative energy (  +88≈  kJ/mol with respect to trans BIP) and because it lacks the 

necessary conjugated network for it to absorb visible light. The 7,12-cyclo-RPSB trans and cis 

structures lie lower in energy and have predicted collision cross sections that are roughly consistent 
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Conclusions 

In summary, we have studied one of the main degradation products of retinal Schiff base in solution. 

The data suggest that RSB undergoes 6π electrocyclization to form the neutral DHP molecule, which, 

following protonation in solution, loses H2 to form the BIP cation. Assignment of the observed 

degradation product to BIP is consistent with previous observations of the DHP structure in solution 

[9], and is supported by the DFT calculations, high resolution CID mass spectra, ion mobility ATDs, 

and photoisomerization action spectra. Significantly, BIP can be converted reversibly between trans 

and cis forms in the gas phase through absorption of light (λmax  420 nm) or through buffer gas 

collisions. It is possible that the reversible cis/trans photoisomerization properties BIP discovered in 

this study may be exploited as the core unit in new light-activated molecular machines. 

 

Another notable aspect of the work is the use of ion mobility mass spectrometry to identify the 

structure of a m/z = 108 CID fragment from BIP as protonated 2,4-lutidine. Previously, we used a 

similar approach to identify the main photofragment from RPSB as the protonated Schiff base of β-

ionone [7]. Using tandem IMS in this way, with either collisional or photo excitation, provides a 

potentially powerful route towards structural elucidation of charged molecular fragments that is less 

cumbersome than alternative approaches such as isotopic labelling. 
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