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Video Classification based on Spatial Gradient and
Optical Flow Descriptors

Xiaolin Tang, Abdesselam Bouzerdoum, andSon Lam Phung
School of Electrical, Computer and Telecommunications Engineering

University of Wollongong, Australia
E-mail: xt622@uowmail.edu.au, bouzer@uow.edu.au, phung@uow.edu.au

Abstract—Feature point detection and local feature extraction
are the two critical steps in trajectory-based methods for video
classification. This paper proposes to detect trajectories by
tracking the spatiotemporal feature points in salient regions
instead of the entire frame. This strategy significantly reduces
noisy feature points in the background region, and leads to
lower computational cost and higher discriminative power of
the feature set. Two new spatiotemporal descriptors, namely the
STOH and RISTOH are proposed to describe the spatiotemporal
characteristics of the moving object. The proposed method for
feature point detection and local feature extraction is applied
for human action recognition. It is evaluated on three video
datasets: KTH, YouTube, and Hollywood2. The results show that
the proposed method achieves a higher classification rate, even
when it uses only half the number of feature points compared to
the dense sampling approach. Moreover, features extracted from
the curvature of the motion surface are more discriminative than
features extracted from the spatial gradient.

I. I NTRODUCTION

Efficient and reliable video classification is of critical im-
portance for several video management tasks, such as video
annotation, action recognition, video summarization or violent
scene detection. Despite the existing excellent techniques,
video classification continues to be one of the most challenging
problems in computer vision.

In the human visual system (HVS), the discriminative cues
for object and action recognition come from the objects of
interest and their surrounding areas, which are known as
the salient region. The rest of the observable scene (either
static or moving) constitutes the background region, whichis
meaningless for recognition and is generally ignored [1]. By
analogy with the HVS, features used in computer vision should
be extracted from the salient region to improve robustness to
background variations and, moreover, to obtain a compact and
discriminative feature set. The saliency concept is not new
in image analysis, and a number of techniques have been
developed for salient region detection [2]–[7]. In the pastfew
years, several researchers have extended the salient region
detection problem from image to video [1], [8]–[11]. However,
there are few video classification algorithms that employ the
salient region detection method for feature extraction.

In this paper, we first propose to detect feature points from
the spatiotemporal salient region, and then follow the pipeline
of the trajectory-based approach [12], which gives rise to the
state-of-the-art result in video classification. The spatiotem-
poral salient region in the video sequence is calculated by a

graph-based manifold ranking algorithm [6], which ranks the
unlabeled nodes based on their relevance to the query nodes.

Local spatiotemporal features have recently become popular
in trajectory-based action recognition [12]–[14]. Generally,
local features are extracted from the spatial gradient, temporal
difference, optical flow, and trajectory, which reveals either
the spatial structure or temporal motion of the video content.
The most distinct spatiotemporal structure of the objects in the
video is the motion surface which not only reflects the shape
but also records the moving trace. However, it is hard to get
the exact moving surface due to the camera motion, illumi-
nation changes, low contrast, and sudden and swift motion of
the object. Considering the fact that the moving surface, in
essence, is the result of edge motion over time, we propose
to compute the raw motion surface using a combination of
the spatial gradient and optical flow. Furthermore, extensions
of the HOG (histogram of oriented gradients) and SIFT (scale
invariant feature transform) descriptors are developed based on
the curvature of the raw motion surface in small video patches
surrounding the feature points.

This paper is organized as follows. Section II describes
the related work for video classification. Section III presents
the salient feature point detection method, and Section IV
introduces the proposed features based on the curvature of
moving surface. Section V shows the experiment results and
analysis, and Section VI gives the concluding remarks.

II. RELATED WORK

In the past few years, many approaches for video classifi-
cation have been developed. Among the approaches that yield
state-of-the-art classification results are the feature learning
approach [15]–[17] and the trajectory-based approach [12]–
[14], [18]. Recently, deep learning has gained popularity,
where several feature extraction layers are stacked together.
The local features are generally learned by training each
convolutional layer separately using convolutional neural net-
works (CNN) [16], [19], [20] or independent component
analysis (ICA) [17] and its variants [15]. In CNN, each frame
is treated as an independent unit for feature extraction, and
thus the local features only contain spatial properties; the
temporal correlation between successive frames is extracted
by a separate network. ICA, on the other hand, is capable of
extracting spatiotemporal local features since the basic unit
for feature extraction is a video patch. However, ICA cannot



extract complex and non-linear features since itself is a linear
projection. Compared with the hand-crafted features, features
learned by CNN or ICA are not transparent and have no
obvious physical meaning.

In trajectory-based methods, dense point trajectories are
calculated based on the dense optical flow [12], [14]. The SIFT
point trajectories are, on the other hand, obtained by tracking
the SIFT points using feature matching [13], and Harris
point trajectories are obtained by tracking Harris points using
Kanade-Lucas-Tomasi (KLT) tracker [18], [21]. The feature
matching method and KLT tracker enable the extraction of the
exact traces of the feature points. However, the two methods
can easily be affected by the motion of the object, and thereby
the long term trajectories, especially for the moving objects,
are sparse. By contrast, the optical flow based tracking method
gives coarse feature point traces, but it is able to track every
pixel as long as possible, until the feature points disappear
from the video. Empirical results indicate that dense and
raw trajectory-based approaches outperform the sparse and
accurate trajectory-based approaches [14].

In the trajectory-based approaches, hand-crafted features are
extracted from a cuboid whose central axis is the trace of
the feature point. The most commonly used local features
are HOG, HOF, MBH [22], SIFT, 3D-HOG [23], 3D-SIFT
[24], and SURF. The motion boundary histogram (MBH)
feature descriptor records the motion characteristics of the
video content by calculating the histogram of the gradient of
optical flow, which is able to discount the camera movement.
The HOG, HOF, and MBH feature can be extracted efficiently
from the integral images, using spatial gradient, optical flow
and optical flow gradient. The 3D-HOG and 3D-SIFT features
are the extension of HOG and SIFT from 2D spatial domain
to 3D spatiotemporal domain, which enables the two features
to record the temporal structure from the temporal difference.
However, temporal difference contains less motion information
than the optical flow; therefore, motion features extractedfrom
optical flow should be more discriminative than those obtained
from the temporal differences. Inspired by this observation, our
method extracts spatiotemporal features from the curvature of
the moving surface, which is a combination of spatial gradient
and optical flow.

The existing feature point detection methods, like Harris3D
detector, cuboid detector, and Hessian detector, aim to find
the spatiotemporal anisotropic points for feature extraction.
However, the anisotropic points in a video sequence can
be located on the object of interest and also on moving
objects in the background. When there is significant camera
motion, the feature points in the background could become
more prominent than the feature points on object of interest.
Not only do the noisy background feature points increase
computational cost, but they also degrade the discriminative
power of the feature set. Moreover, the above mentioned
feature point detectors cannot detect feature points on slowly
moving objects.

One notable method to deal with these problems is to detect
feature points only from the salient region to exclude the noisy

points whilst retaining salient feature points with small motion.
Huanget al. proposed to calculate the video salient region by
removing the camera motion [1]. Kimet al. proposed to extract
the salient region by using random walk restart method [10].
These methods are pixel based, and hence are susceptible to
background motion. Moreover, they do not cluster pixels in the
same object. Other methods calculate the salient region based
on superpixels to obtain crisp solution that is robust to camera
motion. Gaoet al. used two layer robust PCA (RPCA) to
detect the outlier blocks as the salient region [8]. Fuet al. used
graph construction based on superpixels to calculate the salient
region [11]. However, segmenting an image into superpixelsis
a time-consuming process which obstructs the application of
saliency detection algorithms. Moreover, these methods detect
the salient region mainly using the color and motion contrast
without considering the focus of the shot, which is a significant
property of the salient regions, especially in movies. In the
next section, we present a method which employs a sharpness
measure, in addition to color and optical flow, to highlight the
focus region.

III. SPATIOTEMPORAL SALIENT FEATURE POINT

DETECTION

Given a video sequence, the primary task of spatiotemporal
salient feature point detection is to detect the spatiotempo-
ral salient region, from which the salient feature points are
densely sampled. We propose a modified method of [11] to
calculate the saliency map of each video frame, and then
detect the salient region by Otsu’s method. The algorithm
of [11] includes three steps: i) superpixel generation with
SLIC method [25], ii) graph construction, and iii) saliency
value calculation with graph based manifold ranking [6]. Our
modification includes: a) generating the superpixels with the
down-sampled frames to reduce the computational cost, and b)
adding a sharpness measure into the feature relevance model
to highlight the focus of the shot.

A. Superpixel generation

In saliency map calculation, superpixel generation is a time
consuming step with complexity ofO(N), whereN is the
number of pixels. We reduce the computational cost of this
step by downsampling the input frames. With this strategy, the
segmentation of the original frame is the rescaled segmentation
result of the downsampled frame. Superpixels generated with
this method have rough boundary which, however, is not a
significant problem for salient feature point detection. Figure 1
shows the saliency map and salient feature points for the
original frame and downsampled frame. It can be seen that
superpixels in the salient region have high values in both
frames and the salient feature points have similar distribution.
If the original frame is downsampled by a factorδ = 1/W in
both dimensions, the computation cost is significantly reduced
by a factor1/W 2.

B. Graph construction

In the graph-based manifold ranking method, superpixels
are treated as vertices, and each vertex is connected to its



(a) (b)

(c) (d)

Fig. 1. Comparisons of saliency maps and salient feature points for the
original and downsampled frame: (a) saliency map of original frame; (b)
saliency map of downsampled frame; (c) feature points extracted from (a);
(d) salient feature points extracted from (b).

neighbors in a local region. The connections between adjacent
superpixels are represented by edges. The vertices and edges
constitute the video graph for saliency map calculation.

In a video sequence, objects of interest generally have
high color contrast and distinctive motion compared to the
background. In addition, they tend to have crisp boundary
since they are often the focus of the shot, especially in movies.
Therefore, we describe each superpixel with three features: (i)
the average CIE-Lab color, (ii) the average optical flow, and
(iii) the average sharpness which is a new feature proposed
in this paper. The sharpness mapS = [Sij ] of a frameI is
computed as follows:

S = U(D(G(I))−G(D(I))) ∗H, (1)

where G(·) is the gradient magnitude of the image,D(·)
and U(·) represent, respectively, the downsampling and up-
sampling operators, andH is an averaging filter. We denote
the downsampling factor here asδ. If a boundary is sharp,
the downsampled gradient magnitudeD(G(I)) is approxi-
mately equal to the gradient magnitude of the downsam-
pled imageG(D(I)). If a boundary is blurry, the gradient
magnitude of the downsampled image will increase, i.e.,
D(G(I)) < G(D(I)), which leads to a negative sharpness
value.

Let ∆cij , ∆sij , and∆mij denote the normalized feature
distances between thei-th and j-th superpixels for color,
sharpness and motion, respectively:

∆cij =
‖ci − cj‖2

max
p↔q

‖cp − cq‖2
, (2)

∆sij =
‖si − sj‖2

max
p↔q

‖sp − sq‖2
, (3)

∆mij =
‖mi −mj‖2

max
p↔q

‖mp −mq‖2
, (4)

wherep ↔ q means the two superpixelsp andq are connected.
We define the distance between two connected superpixels,i
and j, as follows:

di,j =
1

2
(1− α)(∆ci,j +∆si,j) + α∆mi,j , (5)

where parameterα controls the trade-off between space feature
distance and motion feature distance.

The saliency map is computed using the manifold ranking
algorithm in [6]. The spatiotemporal salient region is hence
obtained by thresholding the saliency map using Otsu’s algo-
rithm. In Otsu’s algorithm, the threshold is chosen to maximize
the between-class variance (salient region versusbackground
region). Next, the salient feature points are densely sampled
from the salient region. Furthermore, the feature points in
homogeneous area are removed from the salient feature point
set using the method by Wanget al. [12].

Figure 2 shows the saliency map of a video frame that
contains many noisy moving objects in the background. In the
existing method [11], the sharpness measure is not included
in the saliency map calculation. Consequently, the moving
objects in the background introduce noise in the optical
flow, thereby degrading the saliency region, see Fig. 2(c).
In comparison, Fig. 2(d) shows that including the sharpness
measure in Eq. (5) reduces this problem.

(a) (b)

(c) (d)

Fig. 2. Saliency map calculation: (a) original frame; (b) sharpness map
calculated with Eq. (1); (c) saliency map without sharpness measure; (d)
saliency map with the sharpness measure using Eq. (5).

IV. L OCAL SPATIOTEMPORAL FEATURE EXTRACTION

The existing local feature descriptors based on spatial gra-
dient, such as HOG and SIFT, are commonly used to depict
the spatial structure of the image content. These features are
extracted from the magnitude and orientation of the gradient
vectors. Many spatiotemporal descriptors have also been pro-
posed, which aim to find an optimum combination of spatial
structure and motion information. For instance, the HOG and
SIFT were extended to 3D-HOG and 3D-SIFT by combining
temporal difference with spatial gradient. Other methods ex-
tract the space-time shape features based on the eigenvalues of
the spatiotemporal Hessian matrix [26]. However, the temporal
difference reflects merely the intensity changes between two



consecutive frames, which is not discriminative enough for
motion description and is sensitive to the illumination changes.
To address this problem, we propose to extract features from
the motion surface, which is the combination of optical flow
and spatial gradient.

On the motion surface, each pixel is represented with
two vectors, the normal vector of the edge and the motion
direction, which are related to the principal curvatures of
surface at the pixel, see Fig. 3(a). The two vectors form a
hemispherical space, see Fig. 3(b), where the longitudeθ is the
orientation of the optical flow and latitudeφ is the orientation
of the gradient. The gradient orientation is in the range[0, π]
since the opposite direction of the gradient orientation refers
to the same edge direction. Note that the orientation space
model is different from the 3-D gradient model, c.f. Fig. 3(b)
and (c). In the 3-D gradient model, the longitudeθ andφ are
separately calculated based on the gradient with two formulas
θ = arctan(gt/gx) andφ = arctan(gy/

√

g2x + g2t ), which are
not the measure of the motion direction. In contrast with the
3-D gradient model, features based on the orientation model
will be more perceivable and more robust to the illumination
changes.
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Fig. 3. Motion surface curvature.

Let G(i, j, t) and V (i, j, t) be the gradient and optic flow
vector at position(i, j, t), respectively. The norm of the
curvature vector at this position is defined as

MC(i, j, t) = ‖G(i, j, t)‖
2

‖V (i, j, t)‖
2
. (6)

It can be observed thatMC(i, j, t) has a large value only if
the point (i, j, t) is located on the edge (or at a corner) and
has distinct movement.

The orientations of the gradient and optical flow vectors
are separately quantized intoNg bins andNo bins. For the
optical flow vector, a zero bin is added for pixels with small
movement. As each point is described by two orientations,
the local histogram around a feature point is a matrix of
size Ng × (No + 1). We extract the histogram features of
the spatiotemporal orientation from each video cuboid with
two new feature descriptors: STOH (spatiotemporal orientation
histogram) and RISTOH (rotation invariant spatiotemporal
orientation histogram), which are the extension of HOG and
SIFT descriptors, respectively. The central axis of the video
cuboid is the track of the salient feature point produced by
Farneback’s optical flow algorithm. To extract STOH and
RISTOH features, we divide each cuboid intonσ × nσ × nτ

sub-blocks. The feature vectors of both STOH and RISTOH

for each sub-block are of lengthNg × (No + 1). Therefore,
the feature vectors of both STOH and RISTOH consist of
Ng × (No + 1) × nσ × nσ × nτ elements. The dominant
orientation of RISTOH is the same as that of SIFT. Fig. 4
illustrates the method to extract STOH and RISTOH features
from each video cuboid.
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Fig. 4. Illustration of the STOH and RISTOH feature descriptors.

V. EXPERIMENTS AND RESULTS

To investigate the salient feature point detection method and
the local feature descriptors STOH and RISTOH, experiments
are conducted on three video datasets: KTH, YouTube, and
Hollywood2. The three datasets are among the most widely
used for video classification. In this section, we first give a
brief description for these datasets, and introduce the experi-
mental setup. We then compare the performance of different
feature point detection methods and different local features.

A. Video datasets

TheKTH dataset [27] contains six distinct actions: walking,
jogging, running, boxing, waving and clapping. Each action
is performed several times by 25 subjects. Videos from 9
subjects (2, 3, 5, 6, 7, 8, 9, 10, and 22) are used for testing
and the remaining videos are used for training. This dataset
contains 599 video sequences, each separated into about 4
sub-sequences. Each sub-sequence is treated as a sample and
the total number of samples is 2391. The dataset contains a
homogeneous background and controlled variations: outdoors
with scale variation, outdoors with different clothes, and
indoors.

The YouTube dataset [28] contains 11 action categories:
basketball shooting, biking/cycling, diving, golf swinging,
horse back riding, soccer juggling, swinging, tennis swinging,
trampoline jumping, volleyball spiking, and walking with a
dog. The dataset contains a total of 1,168 sequences, which
are divided into 25 groups. The experiment on this dataset
calculates the average classification rate by using Leave-One-
Out Cross-Validation approach. This dataset is challenging
due to large variations in camera motion, object appearance
and pose, object scale, viewpoint, cluttered background and
illumination conditions.

TheHollywood2 dataset [29] contains 12 action categories:
answering the phone, driving car, eating, fighting, gettingout
of car, hand shaking, hugging, kissing, running, sitting down,



sitting up, and standing up. The dataset is collected from 69
different Hollywood movies. In total, there are 1,707 video
sequences divided into a training set (823 sequences) and a
test set (884 sequences). This video dataset is very challeng-
ing since it has natural background, shot cuts, illumination
changes, and co-occurrence of different actions.

B. Experimental method

In the process of saliency map calculation, the down-
sampling factorδ is set to1/5. Let γ be a predefined threshold
which is set to1% of the maximum of image height and width.
Parameterα is set to 0.6 if the maximum magnitude of optical
flows is larger thanγ . Otherwise,α is set to 0.4 to make the
measurement robust to the optical flow noise. To calculate the
sharpness map, the downsampling factorδ is set to1/2, and
H is defined as a Gaussian filter (withσ = 4) of size20×20.

The size of the video cuboid isN ×N ×L, see Fig. 4.L is
the length of the salient trajectory andN is the neighbor size.
The parameters for the experiments are:N = 32, Ng = 4,
No = 8, nσ = 2, nτ = 3, and L = 15. Besides STOH
and RISTOH, other features including salient trajectory (ST),
HOG, HOF, MBH, SIFT are also extracted in our experiments.
The HOG and SIFT haveNg orientation bins. Both MBHx
and MBHy haveNo orientation bins, whilst HOF has an
additional zero bin besides theNo orientation bins. For the
SIFT descriptor, the cuboid is divided into4×4×τ subblocks.

To represent the video sequence, we generate a visual
vocabulary for each local feature with thek-means algorithm.
The histogram vector for each feature descriptor is a channel
of the video. As there are different features, each video is
represented by multi-channels. The dissimilarity betweentwo
videos i and j on channelc is measured by the chi-squared
(χ2) distance:

D(Hc
i , H

c
j ) =

1

2

V
∑

n=1

(hc
i,n − hc

j,n)
2

hi,n + hj,n

(7)

whereHc
i = [hc

i,n] is the histogram vector of channelc for
the i-th video,V is the vocabulary size, andn is the index of
a vocabulary word. For classification, we use non-linear SVM
with multi-Gaussian kernel:

K(Hi, Hj) = exp

(

−
∑

c∈C

1

Ac

Dc(H
c
i , H

c
j )

)

. (8)

whereAc is the average distance of the channelc.

C. Classification results

Three sets of experiment were conducted to investigate
the performances of different feature detection methods and
different local feature descriptors. In the first set of experi-
ment, we assess the performance of feature point detection
methods in terms of the number of salient points detected and
classification accuracy. Table I lists two performance measures
for three feature point detection methods: dense sampling (DS)
[12], motion boundary of dense sampling (DS-MB) [14], and
salient sampling (SS) method. The number of feature points

per frame indicates the density of features sampled from the
video sequence. The classification rate (CR) is obtained by
using the same feature combination (HOG, HOF, and MBH)
on a vocabulary size of 4000. The experiment results of dense
sampling method and motion boundary of dense sampling
method are produced by us repeating the experiments of [12]
and [14]; the results may differ slightly from the original
references, but the difference is not significant for our analysis.
The proposed SS has a higher CR than DS on the KTH
dataset (95.1% vs 94.2%) and and the YouTube dataset (85.1%
vs 84.3%). SS also uses only half the number of feature
points compared to DS. Note that DS produces many noisy
features in the background region. This result indicates that
noisy background features degrade the classification accuracy,
and hence should be removed. The DS-MB uses the smaller
number of feature points per frame, but it also has the lowest
classification rate on both datasets.

TABLE I
PERFORMANCE MEASURES OF DIFFERENT FEATURE POINT DETECTION

METHODS ON THEKTH AND YOUTUBE DATASETS.

Datasets Methods Feature points/frame CR (%)
KTH DS 256.6 94.2

DS-MB 144 93.8
SS 157.5 95.1

YouTube DS 1066.2 84.3
DS-MB 302.4 83.4
SS 559.6 85.1

Figures 5 and 6 show the classification rates of DS, DS-MB,
and SS on the KTH and YouTube datasets, across different
vocabulary sizes (500 to 4000) and feature descriptors (HOG,
HOF, MBH, and point trajectory). The DS-BM method has
lower classification rates than the DS and SS methods. This
applies to all feature descriptors, except for the trajectory
descriptor on the YouTube dataset. Note that DS-MB retains
only the feature points near the moving boundary, and removes
feature points which may contain distinct properties of the
background and objects. The proposed method (SS) has higher
classification rates than the DS and DS-BM methods on both
datasets, except for the HOG descriptor on the YouTube
dataset. Compared with DS-MB, the SS method keeps more
feature points located in the salient region. Since the saliency
map is calculated by comparing the color distance, optical flow
distance, and sharpness distance, objects of interest are kept in
the salient region even though their motions are not dominant.

In the second set of experiment, we evaluate the classifi-
cation performance of the proposed descriptors (STOH and
RISTOH) and compare them with the existing descriptors
(HOG, HOF, and SIFT). The descriptors are extracted from the
salient feature points and the vocabulary size is varied from
500 to 4000. The results on the YouTube and Hollywood2
dataset are shown in Fig. 7. It can be seen that STOH yields
higher CRs than HOG and HOF on both Hollywood2 and
YouTube datasets, at almost all vocabulary sizes. This indicates
that the features extracted from the curvature are more dis-
criminative than those extracted from spatial gradient. Among
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Fig. 5. The video classification rates of the DS, SS and DS-MB methods as a function of the vocabulary size on the KTH dataset.
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Fig. 6. The video classification rates of the DS, SS and DS-MB methods as a function of the vocabulary size on the YouTube dataset.

the evaluated descriptors, the SIFT descriptor performs the
best in the YouTube dataset and the worst in the Hollywood2
dataset. The RISTOH descriptor performs the worst in the
YouTube dataset and the best in the Hollywood2 dataset.
These results indicate that the discriminative power of rotation-
invariant features is not stable and depends significantly on
the properties of the dataset. It can be observed that in the
YouTube dataset, the sport categories are highly correlated
to the scene background. In Hollywood2 dataset, the action
categories mainly depend the human motions. This could
explain that the SIFT descriptor has a higher CR in the

YouTube dataset and the RISTOH descriptor has a higher CR
in the Hollywood2 dataset.

In the third set of experiment, we evaluate different
combinations of features to classify the videos in all three
datasets and compare with some recent state-of-the-art meth-
ods in action recognition. The classification rates from the
best combinations are shown in Table II, together with results
from other methods. We found that the best combination of
features depends on the dataset. For example, STOH plus
MBH gives the highest CR on the KTH dataset, whereas
RISTOH in combination with HOF, MBH, and ST yields
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Fig. 7. Video classification rates as a function of the vocabulary size
for different feature descriptors on two datasets: (a) YouTube, and (b)
Hollywood2.

the highest CR on the Hollywood2 dataset. It is notable
that the classification rate on the KTH dataset decreases
when more features are combined. The background in KTH
is homogeneous so the discriminative information is easily
depicted by each local feature descriptor. The combinationof
multiple features introduces more noise to the feature set while
not increasing significantly the discriminative features.As a
consequence, it leads to a lower classification rate than the
combination of fewer features.

TABLE II
THE CLASSIFICATION RATE (%) OF DIFFERENT METHODS ON THREE

VIDEO DATASETS.

Method KTH YouTube Hollywood2
ISA [15] 93.9 75.8 53.3
DT + HOG + HOF + MBH [12] 95.0 84.1 58.2
Harris3D + HOG/HOF [30] 91.8 - 45.2
STOH + MBH 95.1 83.2 57.5
ST + SIFT + HOF + MBH 94.3 85.6 58.4
ST + RISTOH + HOF + MBH 93.8 84.5 58.7

VI. CONCLUSION

In this paper, we propose a method to detect feature points
from the salient region to remove the noisy background points
from the densely sampled feature point set. An extension of
graph-based manifold ranking method is developed to detect
the salient feature points in a video sequence more efficiently.
The experimental results show that the salient trajectory leads
to a more compact and more discriminative feature set. Two

new features, named as STOH and RISTOH, are proposed
based on the spatiotemporal orientation model of the motion
surface, which is a combination of spatial gradient and optical
flow. The proposed feature descriptor, STOH performs better
in terms of classification rate than HOG and HOF, which indi-
cates that features extracted from the spatiotemporal structure
of the video content are more discriminative than the features
extracted from the spatial structure. The other proposed feature
descriptor RISTOH has better performance than SIFT in the
KTH and Hollywood2 datasets whilst degrades in the YouTube
dataset. The performance of SIFT and RISTOH suggests that
the rotation invariant features are highly related to the dataset
properties.
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