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Video classification based on spatial gradient and optical flow descriptors

Abstract

Feature point detection and local feature extraction are the two critical steps in trajectory-based methods for
video classification. This paper proposes to detect trajectories by tracking the spatiotemporal feature points in
salient regions instead of the entire frame. This strategy significantly reduces noisy feature points in the
background region, and leads to lower computational cost and higher discriminative power of the feature set.
Two new spatiotemporal descriptors, namely the STOH and RISTOH are proposed to describe the
spatiotemporal characteristics of the moving object. The proposed method for feature point detection and
local feature extraction is applied for human action recognition. It is evaluated on three video datasets: KTH,
YouTube, and Hollywood2. The results show that the proposed method achieves a higher classification rate,
even when it uses only half the number of feature points compared to the dense sampling approach. Moreover,
features extracted from the curvature of the motion surface are more discriminative than features extracted
from the spatial gradient.
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Video Classification based on Spatial Gradient and
Optical Flow Descriptors

Xiaolin Tang Abdesselam Bouzerdoumind Son Lam Phung
School of Electrical, Computer and Telecommunicationsikagying
University of Wollongong, Australia
E-mail: xt622@uowmail.edu.au, bouzer@uow.edu.au, p@ungyv.edu.au

Abstract—Feature point detection and local feature extraction graph-based manifold ranking algorithid [6], which ranks th
are the two critical steps in trajectory-based methods for video ynlabeled nodes based on their relevance to the query nodes.
classification. This paper proposes to detect trajectories by Local spatiotemporal features have recently become popula
tracking the spatiotemporal feature points in salient regions . . . e
instead of the entire frame. This strategy significantly reduces in trajectory-based action recognltlo[[122E[14].. Gerfigra
noisy feature points in the background region, and leads to local features are extracted from the spatial gradientptesd
lower computational cost and higher discriminative power of difference, optical flow, and trajectory, which revealsheit
the feature set. Two new spatiotemporal descriptors, namely #  the spatial structure or temporal motion of the video conten
STOH and RISTOH are proposed to describe the spatiotemporal The most distinct spatiotemporal structure of the objetthé
characteristics of the moving object. The proposed method for . . . .
feature point detection and local feature extraction is applied video is the motion Surfa(_:e which not only refle_cts the shape
for human action recognition. It is evaluated on three video but also records the moving trace. However, it is hard to get
datasets: KTH, YouTube, and Hollywood2. The results show that the exact moving surface due to the camera motion, illumi-
the proposed method achieves a higher classification rate, evenpation changes, low contrast, and sudden and swift motion of
when it uses only half the number of feature points compared to 4,4 object. Considering the fact that the moving surface, in

the dense sampling approach. Moreover, features extracted dm is th It of ed ti fi
the curvature of the motion surface are more discriminative than SSSENCE, IS the Tesuit of edge motion over ime, we propose

features extracted from the spatial gradient. to compute the raw motion surface using a combination of
the spatial gradient and optical flow. Furthermore, extarsi
. INTRODUCTION of the HOG (histogram of oriented gradients) and SIFT (scale

Efficient and reliable video classification is of critical im invariant feature transform) descriptors are developegtan
portance for several video management tasks, such as vitle® curvature of the raw motion surface in small video pagche
annotation, action recognition, video summarization ofent surrounding the feature points.
scene detection. Despite the existing excellent techsijque This paper is organized as follows. Sectioh Il describes
video classification continues to be one of the most chailteng the related work for video classification. Sectlod Il pretse
problems in computer vision. the salient feature point detection method, and Sedfidn IV

In the human visual system (HVS), the discriminative cu@stroduces the proposed features based on the curvature of
for object and action recognition come from the objects ofioving surface. SectidnlV shows the experiment results and
interest and their surrounding areas, which are known asalysis, and Sectidn VI gives the concluding remarks.
the salient region. The rest of the observable scene (either
static or moving) constitutes the background region, wiéch
meaningless for recognition and is generally ignofed [3]. B In the past few years, many approaches for video classifi-
analogy with the HVS, features used in computer vision gshoutation have been developed. Among the approaches that yield
be extracted from the salient region to improve robustnessdtate-of-the-art classification results are the featuegniag
background variations and, moreover, to obtain a compatt ampproach [[I5]+[17] and the trajectory-based approach-{12]
discriminative feature set. The saliency concept is not ndii4], [18]. Recently, deep learning has gained popularity,
in image analysis, and a number of techniques have beghere several feature extraction layers are stacked tegeth
developed for salient region detection [2]-[7]. In the pfast The local features are generally learned by training each
years, several researchers have extended the saliennregmnvolutional layer separately using convolutional neaes-
detection problem from image to vided [1]] [8]=]11]. Howeve works (CNN) [16], [19], [20] or independent component
there are few video classification algorithms that emplay tlanalysis (ICA) [17] and its variants [15]. In CNN, each frame
salient region detection method for feature extraction. is treated as an independent unit for feature extractiod, an

In this paper, we first propose to detect feature points frothus the local features only contain spatial propertieg th
the spatiotemporal salient region, and then follow the lpipe temporal correlation between successive frames is egftact
of the trajectory-based approa¢h][12], which gives risehto thy a separate network. ICA, on the other hand, is capable of
state-of-the-art result in video classification. The sgatn- extracting spatiotemporal local features since the basit u
poral salient region in the video sequence is calculated byfa feature extraction is a video patch. However, ICA cannot

Il. RELATED WORK



extract complex and non-linear features since itself ime@ai points whilst retaining salient feature points with smaditian.
projection. Compared with the hand-crafted featuresufeat Huanget al. proposed to calculate the video salient region by
learned by CNN or ICA are not transparent and have memoving the camera motion/[1]. Kiet al. proposed to extract
obvious physical meaning. the salient region by using random walk restart method [10].

In trajectory-based methods, dense point trajectories arkese methods are pixel based, and hence are susceptible to
calculated based on the dense optical flow [12]] [14]. Th& SIBackground motion. Moreover, they do not cluster pixelshin t
point trajectories are, on the other hand, obtained by ingck same object. Other methods calculate the salient regioedbas
the SIFT points using feature matching [13], and Harrisn superpixels to obtain crisp solution that is robust to e@m
point trajectories are obtained by tracking Harris poirgg)g motion. Gaoet al. used two layer robust PCA (RPCA) to
Kanade-Lucas-Tomasi (KLT) tracker [18],[21]. The featurdetect the outlier blocks as the salient regian [8] eFal. used
matching method and KLT tracker enable the extraction of tlygaph construction based on superpixels to calculate trensa
exact traces of the feature points. However, the two methodsgiion [11]. However, segmenting an image into superpixels
can easily be affected by the motion of the object, and thereh time-consuming process which obstructs the applicatfon o
the long term trajectories, especially for the moving otgec saliency detection algorithms. Moreover, these methotkctle
are sparse. By contrast, the optical flow based tracking edetithe salient region mainly using the color and motion coitras
gives coarse feature point traces, but it is able to trackyevevithout considering the focus of the shot, which is a sigaiiic
pixel as long as possible, until the feature points disappgaroperty of the salient regions, especially in movies. la th
from the video. Empirical results indicate that dense amkxt section, we present a method which employs a sharpness
raw trajectory-based approaches outperform the sparse amehsure, in addition to color and optical flow, to highlige t
accurate trajectory-based approaches [14]. focus region.

In the trajectory-based approaches, hand-crafted fesatwee
extracted from a cuboid whose central axis is the trace of
the feature point. The most commonly used local features ) ) i
are HOG, HOF, MBH [[22], SIFT, 3D-HOG 23], 3D-SIFT leen a video sequence, Fhe primary task of spatloltemporal
[24], and SURF. The motion boundary histogram (MBH§aI|ent_ feature_ point detect_lon is to o!etect the spatl_otemp
feature descriptor records the motion characteristicshef t'@! salient region, from which the salient feature points ar
video content by calculating the histogram of the gradignt §€nsely sampled. We propose a modified method_of [11] to
optical flow, which is able to discount the camera movemerf@iculate the saliency map of each video frame, and then
The HOG, HOF, and MBH feature can be extracted efficientFtect the salient region by Otsu's method. The algorithm
from the integral images, using spatial gradient, opticanfl Of [11] includes three steps: i) superpixel generation with
and optical flow gradient. The 3D-HOG and 3D-SIFT featureat!C method [[25], ii) graph construction, and iii) saliency
are the extension of HOG and SIFT from 2D spatial domalf@lue calculation with graph based manifold ranking [6]rOu

to 3D spatiotemporal domain, which enables the two featurBodification includes: a) generating the superpixels whié t
to record the temporal structure from the temporal diffeeen doWn-sampled frames to reduce the computational cost, and b

However, temporal difference contains less motion infdfoma adding a sharpness measure into the feature relevance model

than the optical flow; therefore, motion features extraétenh © Nighlight the focus of the shot.

optical flow should be more discriminative than those oletdin A. Superpixel generation

from the temporal differences. Inspired by this observat@r |, sajiency map calculation, superpixel generation is @tim

method extracts spatiotemporal features from the curgaitir consuming step with complexity ab(N), where N is the

the moving surface, which is a combination of spatial gnatlien mper of pixels. We reduce the computational cost of this

and optical flow. , _ _ __step by downsampling the input frames. With this stratelyy, t
The existing feature point detection methods, like Habis3geqmentation of the original frame is the rescaled segrtienta

detector, cuboid detector, and Hessian detector, aim to findl it of the downsampled frame. Superpixels generateu wit

the spatiotemporal anisotropic points for feature extwact s method have rough boundary which, however, is not a

However, the anisotropic points in a video sequence Ca[ynificant problem for salient feature point detectiomufel

be located on the object of interest and also on moving,s the saliency map and salient feature points for the

objects in the background. When there is significant came§@ginal frame and downsampled frame. It can be seen that

motion, the feature points in the background could becong,ermixels in the salient region have high values in both

more prominent than the feature points on object of interegh,meg and the salient feature points have similar digighu

Not only do the noisy background feature points increasgi,e original frame is downsampled by a factbe= 1/W in

computational cost, but they also degrade the discrinv@atiy o, gimensions, the computation cost is significantly cedu
power of the feature set. Moreover, the above mentiongg a factorl /2.

feature point detectors cannot detect feature points amlslo )
moving objects. B. Graph construction

One notable method to deal with these problems is to detecin the graph-based manifold ranking method, superpixels
feature points only from the salient region to exclude thisyno are treated as vertices, and each vertex is connected to its

IIl. SPATIOTEMPORAL SALIENT FEATURE POINT
DETECTION



wherep <> ¢ means the two superpixelsandq are connected.
We define the distance between two connected superpixels,
andj, as follows:

1
di)j = 5(1 — Oé)(ACi}j + ASiyj) + aAmi,j, (5)

where parameter controls the trade-off between space feature

distance and motion feature distance.

The saliency map is computed using the manifold ranking
algorithm in [6]. The spatiotemporal salient region is henc
obtained by thresholding the saliency map using Otsu’s-algo
rithm. In Otsu’s algorithm, the threshold is chosen to mazen
the between-class variancga(ientregion versusackground
region). Next, the salient feature points are densely sagnpl
from the salient region. Furthermore, the feature points in
Fig. 1. Comparisons of saliency maps and salient feature pdort the homogeneous area are removed from the salient feature point
original and downsampled frame: (a) saliency map of originami; (b) set using the method by Wargg al. [12].

) v e e St e o PO X0 (@ Figure[2 shows the saliency map of a video frame that
contains many noisy moving objects in the background. In the
existing method[[11], the sharpness measure is not included

neighbors in a local region. The connections between ajacé the saliency map calculation. Consequently, the moving

superpixels are represented by edges. The vertices and edipgects in the background introduce noise in the optical

constitute the video graph for saliency map calculation.  flow, thereby degrading the saliency region, see Elg. 2(c).

In a video sequence, objects of interest generally hale comparison, Figl]2(d) shows that including the sharpness
high color contrast and distinctive motion compared to theasure in Eq[{5) reduces this problem.
background. In addition, they tend to have crisp boundary
since they are often the focus of the shot, especially in a®vi
Therefore, we describe each superpixel with three feat(ijes
the average CIE-Lab color, (ii) the average optical flow, ai
(iif) the average sharpness which is a new feature propos
in this paper. The sharpness mép= [S;;] of a framel is
computed as follows: @)

$ = U(D(G(D)) - G(D(I))) * H, @)

where G(-) is the gradient magnitude of the imag®,(-)
and U(-) represent, respectively, the downsampling and u
sampling operators, anff is an averaging filter. We denote
the downsampling factor here as If a boundary is sharp,
the downsampled gradient magnitud&G(I)) is approxi-
mately equal to the gradient magnitude of the downsarfig. 2. Saliency map calculation: (a) original frame; (b) §in@ss map
pled imageG(D(I)). If a boundary is blurry, the gradientcalpulated with'Eq.I]l); (c) saliency map without sharpnessasuee; (d)
. . . . saliency map with the sharpness measure using[Eq. (5).

magnitude of the downsampled image will increase, i.e.,
D(G(I)) < G(D(I)), which leads to a negative sharpness
value. IV. LOCAL SPATIOTEMPORAL FEATURE EXTRACTION

Let Ac;j, As;j, and Am;; denote the normalized feature The existing local feature descriptors based on spatial gra
distances between theth and j-th superpixels for color, dient, such as HOG and SIFT, are commonly used to depict

(c)

sharpness and motion, respectively: the spatial structure of the image content. These features a
lei — ¢l extracted from the .magnitude and Qrientation of the gradien
Aci; = max|[ey — coll)’ (2) vectors. Many spatiotemporal descriptors have also been pr
perg P TAN2 posed, which aim to find an optimum combination of spatial
s — 5] structure and motion information. For instance, the HO(_B _and
Asjj = ——— 222 (3) SIFT were extended to 3D-HOG and 3D-SIFT by combining
max lsp = 54l temporal difference with spatial gradient. Other methoxis e

tract the space-time shape features based on the eigenadiue
4) the spatiotemporal Hessian matiix [26]. However, the temalpo

Tglg); Iy — mglly’ difference reflects merely the intensity changes between tw

”ml _ijQ

Amij =



consecutive frames, which is not discriminative enough féor each sub-block are of lengt, x (NN, + 1). Therefore,
motion description and is sensitive to the illuminationg@s. the feature vectors of both STOH and RISTOH consist of
To address this problem, we propose to extract features fraiy x (N, + 1) x n, X n, x n, elements. The dominant
the motion surface, which is the combination of optical flowrientation of RISTOH is the same as that of SIFT. Fih. 4
and spatial gradient. illustrates the method to extract STOH and RISTOH features
On the motion surface, each pixel is represented wifftom each video cuboid.
two vectors, the normal vector of the edge and the motion
direction, which are related to the principal curvatures of | L |

Rotate an

surface at the pixel, see Figl 3(a). The two vectors form a weight
hemispherical space, see Hify. 3(b), where the longiflidehe p = S
orientation of the optical flow and latitudeis the orientation ~ SEE 3 RERESER "0,
of the gradient. The gradient orientation is in the rafgjer] E - e
since the opposite direction of the gradient orientatidierse w . SEESEEe: He SEES czES X
to the same edge direction. Note that the orientation spact @ STOH ‘ RI’SNTO‘H '

model is different from the 3-D gradient model, c.f. Fig. B(b

and (c). In the 3-D gradient model, the longitu@l@nd ¢ are @

separately calculated based on the gradient with two famul

= arctan(g;/g,) and¢ = arctan(gy/ /g% + gf), which are Fig. 4. lllustration of the STOH and RISTOH feature desaipt
not the measure of the motion direction. In contrast with the
3-D gradient model, features based on the orientation model

will be more perceivable and more robust to the illumination
changes. To investigate the salient feature point detection methatl a

the local feature descriptors STOH and RISTOH, experiments
are conducted on three video datasets: KTH, YouTube, and
Hollywood2. The three datasets are among the most widely
used for video classification. In this section, we first give a
brief description for these datasets, and introduce theréxp
mental setup. We then compare the performance of different
feature point detection methods and different local fesgur

V. EXPERIMENTS AND RESULTS

Gradient Gradient Orientation

Optical flow

Optical Flow Orientation

g,\'
(a) Moving surface (b) Orientation space of the curvature  (c) 3-D gradient model A. Video datasets

TheKTH dataset([27] contains six distinct actions: walking,
jogging, running, boxing, waving and clapping. Each action

Let G(4,4,t) and V (4, ,t) be the gradient and optic flowis performed several times by 25 subjects. Videos from 9
vector at position(i, j,t), respectively. The norm of thesubjects (2, 3, 5, 6, 7, 8, 9, 10, and 22) are used for testing

Fig. 3. Motion surface curvature.

curvature vector at this position is defined as and the remaining videos are used for training. This dataset
N . o contains 599 video sequences, each separated into about 4
Mc(i, j,t) = |G, 4, Dy V(@50 (6) sub-sequences. Each sub-sequence is treated as a sample and

It can be observed thal/ (i, j,t) has a large value only if the total number of samples is 2391. The dataset contains a
the point (i, j,¢) is located on the edge (or at a corner) andomogeneous background and controlled variations: oudoo
has distinct movement. with scale variation, outdoors with different clothes, and
The orientations of the gradient and optical flow vectoigdoors.
are separately quantized inf¥, bins andN, bins. For the  The YouTube dataset[[28] contains 11 action categories:
optical flow vector, a zero bin is added for pixels with smalbasketball shooting, biking/cycling, diving, golf swimgj,
movement. As each point is described by two orientationsorse back riding, soccer juggling, swinging, tennis swvigg
the local histogram around a feature point is a matrix ¢fampoline jumping, volleyball spiking, and walking with a
size N, x (N, + 1). We extract the histogram features ofilog. The dataset contains a total of 1,168 sequences, which
the spatiotemporal orientation from each video cuboid witlye divided into 25 groups. The experiment on this dataset
two new feature descriptors: STOH (spatiotemporal ortéaria calculates the average classification rate by using Leanes-O
histogram) and RISTOH (rotation invariant spatiotempor&ut Cross-Validation approach. This dataset is challengin
orientation histogram), which are the extension of HOG ardlie to large variations in camera motion, object appearance
SIFT descriptors, respectively. The central axis of theswid and pose, object scale, viewpoint, cluttered backgrourdl an
cuboid is the track of the salient feature point produced bjumination conditions.
Farneback’s optical flow algorithm. To extract STOH and TheHollywood2 dataset[[29] contains 12 action categories:
RISTOH features, we divide each cuboid intg x n, x n. answering the phone, driving car, eating, fighting, gettog
sub-blocks. The feature vectors of both STOH and RISTO&f car, hand shaking, hugging, kissing, running, sittingvdp



sitting up, and standing up. The dataset is collected from §8r frame indicates the density of features sampled from the
different Hollywood movies. In total, there are 1,707 videwideo sequence. The classification rate (CR) is obtained by
sequences divided into a training set (823 sequences) andsmg the same feature combination (HOG, HOF, and MBH)
test set (884 sequences). This video dataset is very challeon a vocabulary size of 4000. The experiment results of dense
ing since it has natural background, shot cuts, illumimaticcampling method and motion boundary of dense sampling
changes, and co-occurrence of different actions. method are produced by us repeating the experimenfs bf [12]
and [14]; the results may differ slightly from the original
references, but the difference is not significant for oulysis.

In the process of saliency map calculation, the dowifhe proposed SS has a higher CR than DS on the KTH
sampling factop is set tol /5. Let~ be a predefined thresholddataset (95.1% vs 94.2%) and and the YouTube dataset (85.1%
which is set tol % of the maximum of image height and width.vs 84.3%). SS also uses only half the number of feature
Parameter is set to 0.6 if the maximum magnitude of opticapoints compared to DS. Note that DS produces many noisy
flows is larger thany . Otherwise is set to 0.4 to make the features in the background region. This result indicates th
measurement robust to the optical flow noise. To calculate thoisy background features degrade the classification acgur
sharpness map, the downsampling factas set to1/2, and and hence should be removed. The DS-MB uses the smaller
H is defined as a Gaussian filter (with= 4) of size20 x 20. number of feature points per frame, but it also has the lowest

The size of the video cuboid & x N x L, see Fig[BL is classification rate on both datasets.
the length of the salient trajectory aid is the neighbor size.

B. Experimental method

The parameters for the experiments afe:= 32, N, = 4, TABLE |
No — 8’ Ng = 2’ n, = 3’ andL = 15. BeSideS STOH PERFORMANCE MEASURES OF DIFFERENT FEATURE POINT DETECTION
and RISTOH, other features including salient trajectory)(S METHODS ON THEKTH AND YOUTUBE DATASETS
HOG, HOF, MBH, SIFT are also extracted in our experiments. Datasets | Methods | Feature points/frame| CR (%)
The HOG and SIFT haveV, orientation bins. Both MBHXx KR DS 2058 e
and_ MBHy have_N(, ori_entation bin_s, Whilst HOF has an 55 1575 951
additional zero bin be5|d.es. twgol orientation bins. For the YouTube | DS 1066.2 843
SIFT descriptor, the cuboid is divided ino< 4 x T subblocks. DS-MB 302.4 83.4
To represent the video sequence, we generate a visual S5 2296 £5.1

vocabulary for each local feature with thkemeans algorithm.

The histogram vector for each feature descriptor is a cHanneFiguredd anfllé show the classification rates of DS, DS-MB,

of the video. As there are different features, each video &d SS on the KTH and YouTube datasets, across different
represented by multi-channels. The dissimilarity betwwem vocabulary sizes (500 to 4000) and feature descriptors (HOG
videosi and j on channelec is measured by the chi-squaredHOF, MBH, and point trajectory). The DS-BM method has

(x?) distance: lower classification rates than the DS and SS methods. This
vV e JR applies to all feature descriptors, except for the trajgcto

D(HE, HY) = 1 (hin = hjin) @ descriptor on the YouTube dataset. Note that DS-MB retains

R 245~ hin+hjn only the feature points near the moving boundary, and resove

] . feature points which may contain distinct properties of the
where H; = [h ] is the histogram vector of channelfor  h4ckground and objects. The proposed method (SS) has higher
thei-th video, V' is the vocabulary size, andis the index of - |assification rates than the DS and DS-BM methods on both
a vocabulary word. For classification, we use non-linear Sv%tasets, except for the HOG descriptor on the YouTube
with multi-Gaussian kernel: dataset. Compared with DS-MB, the SS method keeps more

feature points located in the salient region. Since theseyi
) - (8 mapis calculated by comparing the color distance, optioal fl
distance, and sharpness distance, objects of intereseptérk
where A, is the average distance of the chanael the salient region even though their motions are not dontinan
In the second set of experiment, we evaluate the classifi-
cation performance of the proposed descriptors (STOH and
Three sets of experiment were conducted to investigsd®#STOH) and compare them with the existing descriptors
the performances of different feature detection methods afHOG, HOF, and SIFT). The descriptors are extracted from the
different local feature descriptors. In the first set of ekpe salient feature points and the vocabulary size is variethfro
ment, we assess the performance of feature point detect&®l® to 4000. The results on the YouTube and Hollywood2
methods in terms of the number of salient points detected asiataset are shown in Figl 7. It can be seen that STOH yields
classification accuracy. Talle | lists two performance mess higher CRs than HOG and HOF on both Hollywood2 and
for three feature point detection methods: dense samplg ( YouTube datasets, at almost all vocabulary sizes. Thisates
[22], motion boundary of dense sampling (DS-MB)|[14], anthat the features extracted from the curvature are more dis-
salient sampling (SS) method. The number of feature poirdeminative than those extracted from spatial gradient.oAm

1
K(H;, Hj) = exp (— > - De(H H)
cec ¢

C. Classification results
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the evaluated descriptors, the SIFT descriptor perfornes tiouTube dataset and the RISTOH descriptor has a higher CR

best in the YouTube dataset and the worst in the Hollywood?2 the Hollywood2 dataset.
dataset. The RISTOH descriptor performs the worst in the

YouTube dataset and the best in the Hollywood2 datase’[.In the third set of experiment, we evaluate different

Cco

These results indicate that the discriminative power aftioh-

invariant features is not stable and depends significamily
the properties of the dataset. It can be observed that in
YouTube dataset, the sport categories are highly corekla
to the scene background. In Hollywood2 dataset, the acti
categories mainly depend the human motions. This co

explain that the SIFT descriptor has a higher CR in tt"sl

mbinations of features to classify the videos in all three
gatasets and compare with some recent state-of-the-alnt met
%s in action recognition. The classification rates from the
est combinations are shown in Tablk I, together with tesul
am other methods. We found that the best combination of
tures depends on the dataset. For example, STOH plus
H gives the highest CR on the KTH dataset, whereas
STOH in combination with HOF, MBH, and ST yields



new features, named as STOH and RISTOH, are proposed

ol ,-_-&"'.'*o—" e based on the spatiotemporal orientation model of the motion
sl L ) _';:_:_'_t;}_' _; N surface, which is a combination of spatial gradient andoapti
Swl o ,»,’»” -7 A flow. The proposed feature descriptor, STOH performs better
orr ,,,f"' i P SEEE in terms of classification rate than HOG and HOF, which indi-
:55 x° ’/‘ PO > | cates that features extracted from the spatiotemporattatel
& 7 T o of the video content are more discriminative than the festur

: “ e 2 Eig:‘éﬁ extracted from the spatial structure. The other proposatife

0 < - descriptor RISTOH has better performance than SIFT in the

X hayere e KTH and Hollywood?2 datasets whilst degrades in the YouTube
@) dataset. The performance of SIFT and RISTOH suggests that
the rotation invariant features are highly related to theskt

: ,‘>~-, /",___‘*___‘ ] properties.
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Fig. 7. Video classification rates as a function of the votatyusize
for different feature descriptors on two datasets: (a) Ydel and (b)
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the highest CR on the Hollywood2 dataset. It is notable
that the classification rate on the KTH dataset decreaséd
when more features are combined. The background in KTH
is homogeneous so the discriminative information is easily;
depicted by each local feature descriptor. The combinaifon
multiple features introduces more noise to the feature kdew
not increasing significantly the discriminative featurés.a [g
consequence, it leads to a lower classification rate than the
combination of fewer features.
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