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Si-containing precursors for Si-based anode materials of Li-ion batteries: A
review

Abstract
Lithium-ion batteries with high energy density are in demand for consumer electronics, electric vehicles, and
grid-scale stationary energy storage. Si is one of the most promising anode materials due to its extremely high
specific capacity. However, the full application of Si-based anode materials is limited by poor cycle life and rate
capability resulted from low ionic/electronic conductivity and large volume change over cycling. In recent
years, great progress has been made in improving the performance of Si anodes by employing
nanotechnology. The preparation methods are essentially important, in which the precursors used are crucial
to design and control the microstructure for the Si-based materials. In this review, we provide comprehensive
summary and comment on different Si-containing precursors for preparation of nanosized Si-based anode
materials and focus on the corresponding electrochemical performances in lithium-ion batteries. Bulk sized
silicon, silicon wafer and silicon microparticles are generally used as starting materials to synthesize porous or
nanosized silicon, and the routes for the synthesis are rather mature and commercially available. Silica is also
commonly used to form silicon by conversion through a facile magnesiothermic reduction. Silica derivation
from natural resources, especially from rice husks, is much more sustainable and lower cost than alternative
methods, which attracts considerable research attention. In addition, gaseous Si-based sources like SiH4,
Si2H6 and SiHxCly, liquid silicon sources like trisilane and phenylsilane and elemental silicon have
successfully used to prepare nanosized or carbon-coated silicon. Further considerations on massive
production possibility have also been presented.
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Abstract 

Lithium-ion batteries with high energy density and large power output are in demand for consumer 

electronics, electric vehicles, and grid-scale stationary energy storage. Silicon is one of the most 

promising anode materials because it has 10 times higher specific capacity than that of the 

commercial graphitic carbon anode. Unfortunately, the practical utilization of silicon-based anode 

materials is still hindered by its low electronic conductivity and high capacity fading rate due to the 

large volume changes upon insertion and extraction of Li ions during cycling. Introducing porous 

structure, along with decreasing the dimension of Si-based materials to nanosize, is an effective way 

to address these problems. During the past decade, tremendous attention has been paid to improve 

Si anodes so as to give them better electrochemical performance. In this review, we focus the 

Si-containing precursors for preparation of Si-based anode materials. 
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1. Introduction 

With more engines up and running, sustainable development for the entire human race will be at 

risk. The burning of fuels results in global warming and air pollution by giving off all kinds of 

exhaust gases. Therefore, producing energy from renewable and sustainable resources is preferable. 

Rechargeable batteries are in demand for consumer electronics, electric vehicles, and grid-scale 

stationary energy storage because the technology is feasible, environmentally friendly, and 

sustainable.1-6 Among the different kinds of rechargeable batteries, lithium-ion batteries (LIBs) are 

the most popular ones, due to their high energy density, lack of any memory effect, and only a slow 

loss of capacity when not in use.7,8 The traditional commercial anode materials for LIBs, such as 

graphite microspheres (GMs) and mesophase carbon microbeads (MCMBs), however, have 

relatively low capacity (only 372 mA h g-1, corresponding to a fully lithiated state of LiC6), so that 

they are not suitable for future LIBs with high energy density and large power output.9-11  

To further increase the energy density of LIBs for the above-mentioned applications, alloy-type 

anodes such as Si, Ge, and Sn have been extensively explored because of their high capacity.12-21 

Among them, Si is a promising candidate to replace the traditional graphite anode for high-capacity 

LIBs, since it has 10 times (～4200 mA h g-1) higher specific capacity through forming the alloy 

Li22Si5.
22-24 Compared with other alloy-type and metal oxide anodes, the discharging potential of 

silicon (～0.2 V against Li/Li+) is lower, leading to a higher energy density for full cells. 

Furthermore, its appealing characteristics, such as abundance and environmental benignity, make 

silicon the most attractive anode material for LIBs.25 

Despite all of these advantages, the full utilization of silicon-based LIBs to date has been 

hindered by a series of obstacles, including poor cycle life and rate performance, that result from its 

low ionic/electronic conductivity and large volume changes during the lithium insertion and 
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extraction processes.26-28 When silicon is fully lithiated, the equilibrium Li-Si alloy with the highest 

Li concentration is the Li22Si5 phase, which causes dramatic structural changes (about 400% volume 

expansion).22 The volumetric and structural changes can result in the pulverization of the initial 

particles, which means that the silicon can no longer hold Li+ ions effectively, and the bulk silicon 

experiences a rapid decay of the specific capacity.24 Moreover, when the silicon expands and 

contracts, the solid-electrolyte interphase (SEI) film on the outer surface of the electrode will also 

break up in a cyclical manner, resulting in the continual formation of new SEI films.18 

In the past decade, tremendous attention has been paid to improving the electrochemical 

performance of Si-based anodes by designing and fabricating new and different silicon structures, 

particularly in the nanosized range.29 Compared with the microsized Si-based materials, the 

nanomaterials are endowed with several advantages: (1) the high surface-to-volume ratio of 

nanomaterials can better withstand stress and limit the cracking caused by the volume expansion 

during cycling, thus maintaining high specific capacity with improved cycling stability; and (2) the 

nanosized particles can provide stable electronic and ionic transfer channels to shorten the diffusion 

length of Li+ species, resulting in an increased rate capability and reduced polarization. Apart from 

the nanostructured silicon, porous Si-based compounds are also promising for practical applications, 

because the newly created void space can accommodate the volume changes during the charge–

discharge processes, enhancing the structural and cycling stability. 

In this review article, we aim to provide a comprehensive summary focusing on the preparation 

of Si-based anodes in the nanosize regime from different precursors, in contrast to some previous 

review articles on a similar topic.  

2. Si-containing precursors for nanosized or porous Si anode materials 

2.1 Bulk sized silicon 
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As the second most abundant element in the earth, silicon has great potential to be employed as 

a LIB anode at a very low cost. The bulk-sized Si materials, such as Si wafers and microsized Si 

particles, are frequently employed as starting materials to synthesize porous or nanosized silicon via 

a top-down approach. The routes for the synthesis of silicon nanoparticles (SiNPs) from bulk silicon 

are rather mature and commercially available, which means that SiNPs are compatible with the 

traditional manufacturing process for commercial LIB electrodes. 

2.1.1 Silicon wafer 

Facile methods such as electroless etching30-41 and electrochemical etching42-48 are able to 

convert bulk silicon wafer into a porous structure with tunable pore size and porosity, which is 

called ‘integral’ porosity. For example, with an appropriately doped Si wafer, porous Si and Si 

nanowires can be synthesized in the presence of silver nitrate (AgNO3) in hydrofluoric acid (HF) 

etchant solution.49,50 Typically, there are two reactions taking place: 

4Ag+ + 4e– → 4Ag                                      (1) 

Si + 6F– → [SiF6]
2– + 4e–                               (2) 

During this reaction, nanosized silicon with a porous or wire-like structure can be synthesized by 

localized catalytic etching of the Si wafer in HF solution.51,52 The galvanic displacement reaction 

between Ag+ ions and Si can create Ag clusters and SiOx simultaneously. SiOx is at the bottom of 

the Ag clusters and can be easily dissolved by HF, leading to the production of nanocups right 

under the Ag clusters. The formation and subsequent dissolution of SiOx can proceed continuously, 

due to the further deposition of Ag, thus further “digging” the holes in the Si substrate underneath 

the Ag particles,52 resulting an array of Si nanowires. For example, large-area, oriented Si nanowire 

arrays formed on the Si wafer at near room temperature by localized chemical etching were 

reported by Zhu’s group (Figure 1a and 1b).53 This strategy is based on Ag-induced excessive local 
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oxidation and dissolution of a silicon substrate in an HF solution. It was found that the distribution 

of Ag clusters on the Si wafer surface to be patterned by Ag particles has a great effect on the size 

and density of the thus-prepared silicon nanowires. High-density metal particles can facilitate the 

formation of Si nanowires, and a larger space among the Ag clusters can lead to better-separated 

nanoholes in the Si wafer. In addition, porous silicon with a large pore size and high porosity was 

prepared by Zhou54 via this electroless etching method using the silicon wafer as the Si precursor 

(Figure 1c). In this work, porous Si nanowires were produced by direct etching of boron-doped Si 

wafers and exhibited superior electrochemical performance and long cycle life as the anode material 

in a LIB, using alginate as the binder. As reported, the capacity remained stable above 2000, 1600, 

and 1100 mAh g–1 at current densities of 2, 4, and 18 A g–1, respectively, even after 250 cycles. The 

good cycling stability mainly stems from the use of a porous silicon structure, while the use of a 

commercial alginate binder also helped to a certain degree as compared to the commonly used 

polyvinylidene fluoride (PVDF).54 

Silicon wafer is also a precursor for fabrication of porous silicon via an electrochemical etching 

method which was first accidentally discovered by Uhlir at Bell Laboratories in the 1950s.55,56 The 

porous Si electrode can be produced via electrochemical etching on a silicon wafer using a HF 

etching solution and a constant current density.57 The porosity and depth of the porous silicon can 

be adjusted by the current density and HF concentration.56 Based on this technique, Sibani Lisa 

Biswal58 presented a layered architecture consisting of a gold-coated porous silicon film attached to 

a bulk silicon substrate (Figure 1d). It was found that a specific capacity of more than 3000 mAh g–1 

can be achieved for 50 cycles at 100 μA cm–2, and 2500 mAh g–1 can be achieved for 75 cycles with 

coulombic efficiency of 95%. 
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For summary, uniform distribution can be obtained either for the silicon nanowires or the 

porous structure. And the size of these wires and pores are both in a range of nanosized distribution. 

 

Figure 1. (a) Scanning electron microscope (SEM) cross-sectional image of the as-synthesized 

silicon wires arrays shown in (b).53 Copyright 2006, Wiley-VCH Verlag GmbH and Co. KGaA, 

Weinheim. (c) high resolution transmission electron microscope (HRTEM) image of a single 

nanowire,54 Copyright 2012, American Chemical Society; and (d) top-view SEM image of a 

representative porous silicon sample.58 Copyright 2012, Elsevier. 

2.1.2 Silicon microparticles 

Apart from the silicon wafer, microsized Si particles can also be employed as the silicon 

precursor to prepare porous silicon via an electroless etching process. Compared with silicon wafer, 

microsized silicon is much cheaper and easily-accessed, which makes it more available for scalable 

production. Nevertheless, it is a great challenge to produce structure-regulated silicon nanowires 

from silicon microparticles because of their irregular morphology and crystallization characteristics. 

Therefore, in recent research, microsized silicon powders have always been employed as the silicon 

precursor to prepare porous silicon through various modified electroless etching methods. For 
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example, Su’s group employed commercial metallurgical-grade silicon particles as the primary 

silicon source through a modified ferrite (Fe)-assisted chemical etching method to prepare porous 

silicon particles (Figure 2a and 2b).59 In this reaction, porous silicon particles were produced 

through a reaction between Fe and silicon in the surrounding glycol. Taking advantages of the 

porous structure, the anodes made from these silicon bulks exhibit high reversible capacity and long 

cycle life. In addition, Su’s group also used commercial silicon microparticles as the silicon source 

to react with CH3Cl gas over a Cu-based catalyst to create large amounts of macropores within the 

unreacted silicon (Figure 2c and 2d).40 Thanks to the interconnected porous structure, this porous 

silicon-based anode material exhibited excellent electrochemical performance. The discharge 

capacity of this silicon-based porous material was around 1000 mAh g–1 after 100 cycles, and the 

average capacity fading rate of this anode was around 0.35%/cycle. Meanwhile, it also showed very 

good rate performance, with the discharge capacity of 185.1 mAh g–1 and the charge capacity of 

181.9 mAh g–1 at the current density of 1000 mA g–1. 

Therefore, the porous silicon can be created via these mental-assisted etching methods derived 

from the low-cost commercial microsized silicon bulks. Compared with the porous silicon obtained 

from silicon wafers, it can be found that the porous silicon prepared here have relative poor pore 

distribution and irregular porous structure. However, the low-cost endows this way with more 

attraction from the industry. 
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Figure 2. (a) SEM and (b) transmission electron microscope (TEM) images of porous silicon 

microparticles produced via an Fe-assisted chemical etching method.59 Copyright 2015, 

Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim. (c and d) SEM images of porous silicon 

microparticles produced via a Cu-assisted chemical etching method, Copyright 2014, Wiley-VCH 

Verlag GmbH and Co. KGaA, Weinheim. 

2.2 Silica 

Silica nanoparticles occupy a prominent position in scientific research, because of their easy 

preparation and their wide uses in various industrial applications. Silica has been demonstrated to 

be a high capacity anode material without further reduction to silicon, with a reversible capacity of 

800 mAh g–1 over 200 cycles. Silica can be converted into silicon, however, through a facile 

magnesiothermic reduction, which makes it more attractive due to the high specific capacity of 

silicon. Silicon will be formed through the following reaction: 

2Mg + SiO2 → 2MgO + Si                                   (3) 

The magnesiothermic reduction method has three advantages. Firstly, the original structure of the 
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silica can be well maintained even after the reduction process. Secondly, a highly interconnected 

porous structure is created due to the etching of the MgO inclusions inside the sample during the 

magnesiothermic reduction.60 Thirdly, the low processing temperature and short reaction time make 

this method more attractive than alternative methods.61  

2.2.1 Natural Plants 

As we all know, various kinds of plants in Nature are silica-enriched, because plants can absorb 

silica in the form of silicic acid (Si(OH)4 or Si(OH)3O
-) from the soil.62 As a result, silica derivation 

from natural resources, especially from rice husks, is much more sustainable and lower cost than 

alternative methods, and also is attracting considerable research attention.63-66 Recently, many 

researchers employed natural sources as the silica precursors, and then converted such kinds of 

nature-derived silica to silicon for energy storage applications. Cui’s group prepared pure silica 

directly from rice husks and converted these silica particles to SiNPs with a conversion yield as 

high as 5% by mass (Figure 3a and 3b).64 It was found that these recovered SiNPs exhibit high 

performances as LIB anodes, with high reversible capacity (2,790 mAh g–1) and long cycle life (86% 

capacity retention over 300 cycles). Similarly to Cui’s report, Jung et al. also employed rice husks 

as the precursor via the same process to prepare silicon-based anodes.66 Silicon-based anodes with 

an ideal porous structure and much improved electrochemical performances were successfully 

obtained. 

Apart from the rice husks, other kinds of the plant families, such as poaceae, equisetaceae, and 

cyperaceae are also promising choices.67,68 For example, Yu et al. used reed leaves as the silica 

precursor to prepare the porous silica, and three-dimensional (3D) interconnected porous silicon 

was then synthesized via a magnesiothermic method (Figure 3c and 3d).60 Nitrogen adsorption 

(Brunauer–Emmett–Teller, BET) measurements indicated that the initial 3D mesoporous silica 
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precursor had a BET surface area of 101 m2 g–1 and a total pore volume of 0.22 cm3 g–1. More 

importantly, even after the magnesiothermic reduction and the final carbon coating process, the 

prepared silicon anode still retained the original skeleton morphology of the reed leaves, which 

means good structural and thermal stability for this material. Owing to the excellent porous 

structure, an electrode capacity of about 420 mAh g–1 was still retained even after 4000 cycles at a 

current density of 10 C. 

 

Figure 3. (a) SEM and (b) TEM images of silicon nanoparticles obtained by magnesiothermic 

reduction of silica derived from rice husks.64 Copyright 2013, Nature Publishing Group. (c) SEM 

image of silica precursor converted from natural reed leaves, with the inset showing higher 

magnification, and (d) the finally achieved highly porous 3D silicon nanostructured anode for LIBs 

(inset is a high-magnification SEM image).60 Copyright 2015, Wiley-VCH Verlag GmbH and Co. 

KGaA, Weinheim. 

2.2.2 Sand 

Recently, there have been some reports about using beach sand as the silica source for 

producing silicon anodes for LIBs.69 Compared with the silicon derived from plants, only SiNPs 
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were finally obtained because the bulk structure of sea sand.60 Favors et al. employed beach sand as 

the silica precursor to produce silicon-based anode materials via a magnesiothermic reduction 

method (Figure 4a and 4b).70 The as-prepared sample has high phase purity and good crystallinity. 

The authors discovered that a three-dimensional (3D) network of nano-silicon was synthesized, and 

these SiNPs after carbon coating achieved a remarkable electrochemical performance, with a 

capacity of 1024 mAh g–1 at 2 A g–1 after 1000 cycles (Figure 4c). Also, in the same year, Kim et al, 

synthesized silicon nanosheets from natural sand by the s magnesiothermic reduction method 

(Figure 4d and 4e).69 As reported, an Mg2Si intermediate phase was formed at an early stage of the 

reduction process, leading to a two-dimensional (2D) silicon nanostructure. The thus-prepared 

silicon nanosheets have a leaf-like sheet morphology, ranging from several tens to several hundreds 

of nanometers in size, and show comparable electrochemical properties to commercial SiNPs as an 

anode for LIBs. In addition, in order to improve the electrochemical performance, reduced graphene 

oxide (RGO) was introduced to form a composite with these silicon nanosheets, leading to 

RGO-encapsulated silicon nanosheet electrodes. It was found that the RGO-encapsulated 

silicon-based anodes exhibited very high-reversible capacity and excellent rate capability. 
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Figure 4. (a and b) TEM images and (c) cycling data at selected C-rates (1 C = 4A g—1) for silicon 

nanoparticles.70 Copyright 2014, Nature Publishing Group. (d) SEM and (e) TEM images of the 

as-synthesized silicon nanosheets obtained by magnesiothermic reduction of silica derived from 

sand.69 Copyright 2014, Royal Society of Chemistry. 

2.2.3 Tetraethyl Orthosilicate (TEOS) 

Apart from the natural silica precursors, man-made silica has also attracted significant attention, 

especially the silica derived from TEOS, due to its ability to produce silica nanoparticles via the 

Stöber method.71 This process works particularly well for particles with sizes of 30–60 nm, yielding 

silica spheres with excellent monodispersity. The large-sized silica, however, especially over 30 nm, 
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can lead to silicon nanoparticles with the same large size, which can limit the diffusion of the 

electrolyte, resulting in low capacity and coulombic efficiency. Therefore, Zhao’s group 

synthesized mesoporous-silicon-based nanocomposites with ultra-small SiNPs uniformly embedded 

in a rigid mesoporous carbon framework, which was followed by the magnesiothermic reduction 

approach via a modified Stöber method (Figure 5a and 5b).72 The silica used in this work was 

derived from the hydrolysis of TEOS. The authors found that the obtained mesoporous Si/C 

nanocomposites exhibit excellent performance, with a high reversible capacity of 1790 mAh g–1, 

excellent coulombic efficiency (99.5%) and rate capability, and outstanding cycling stability (with 

the capacity remaining as high as 1480 mAh g–1 after 1000 cycles at a high current density of 2 A g–

1, Figure 5c).  

Besides the silicon particles, some interesting structures can also be obtained in silicon via the 

reduction process from specific structured silica. For example, Yang et al. reported that a 3D 

mesoporous silicon material with a lotus-root-like morphology was successfully prepared by using 

mesoporous silica as the silicon precursor via a magnesiothermic reduction method (Figure 5d).73 

After surface carbon coating by a chemical vapor deposition (CVD) process, the obtained carbon 

covered silicon composite displayed a stable capacity of ~ 1500 mAh g–1 for 100 cycles at 1 C and 

high rate capability up to 15 C. 

Compared with the man-made silicon, silicon derived from natural resources has some 

advantages, such as its abundance and low cost. In addition, the natural silica-enriched resources are 

already endowed with various structures in a very favorable nanoscale/microscale arrangement, 

with various morphologies ranging from sheets, to porous materials, to particles. These 

characteristics mean that natural silica precursors are more available for scalable fabrication and 

facile architectural design. On the other hand, natural precursors are not as pure as the man-made 
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silica, because some impurities are also present inside these resources, leading to the need for extra 

processes to remove the impurities, and increased cost and complexity. From this point of view, the 

man-made silica precursors are highly purified and size-controllable, which is very important for 

LIBs. 

 

Figure 5. (a and b) TEM images and (c) the discharge capacity of mesoporous-silicon-based anode 

over 1000 cycles at a cycling rate of 2 A g–1 (with the current density for the first cycle 0.4 A g–1).72 

Copyright 2014, Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim. (d) TEM image of the 

lotus-root-like silicon anode obtained by magnesiothermic reduction of man-made silica.73 

Copyright 2011, Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim. 

2.3 Gaseous silicon-based sources 

Up to the present, vapor-liquid-solid (VLS) growth, which was first proposed by Wagner and 

Ellis in the mid-1960s, has been the key mechanism for silicon-wire growth, based on using a 

silicon-bearing gas precursor in a chemical vapor deposition (CVD) reactor.49,74-76 The temperatures 

used in this VLS-CVD process range from 300 up to well above 1000 oC, depending on the types of 

gas precursors and metal catalysts that are employed.49,52 The gaseous silicon-bearing precursors, 
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such as silane (SiH4), disilane (Si2H6), dichlorosilane (SiH2Cl2), and tetrachlorosilane (SiCl4), are 

always employed as the silicon sources for synthesizing silicon nanowires, and gold (Au) is the 

most popular metallic catalyst for the VLS growth of nanosized silicon.77-81 The name “VLS 

mechanism” refers, of course, to the fact that silicon from the vapor passes through a liquid droplet 

and finally ends up as a solid.75 Briefly, this process involves the following stages: 1) formation of 

the liquid droplets of the metal-silicon alloy on the surface of the substrate; 2) the dissolution and 

diffusion of gaseous-silicon-based precursor into the silicon-Au alloy droplets; and 3) silicon 

precipitation and axial crystal growth due to supersaturation and nucleation at the liquid/ solid 

interface.82 

2.3.1 SiH4 

SiH4 is a very common and also very important silicon precursor in nanosized silicon 

preparation. During the VLS reaction, the silane decomposes, releasing silicon atoms which alloy 

with the metal, inducing eutectic formation, followed by silicon precipitation and nanowire growth 

from the silicon saturated nanoparticles.52 For example, Chen’s group26 used SiH4 as the silicon 

precursor along with a templating method to synthesize hollow silicon using the CVD process 

(Figure 6a and 6b). They found that a silicon shell could be created on the outer surface of the 

templates and showed a uniform thickness distribution. Meanwhile, the morphology of the hollow 

silicon is tunable by changing the structure of the templates, from hollow cubes, hollow spheres, 

and tubes, to flower-like hollow silicon. In particular, the flower-like silicon anode delivered a 

capacity of 814 mAh g−1 at a current density of 4.8 A g−1, and retained 651 mAh g−1 after 700 

cycles. Magasinski et al.83 prepared a silicon-based anode material by coating carbon black with 

silicon via the CVD process, using SiH4 as the silicon source. A silicon inverse opal structure could 

be prepared by filling a SiO2 opal with silicon through CVD, using Si2H6 as the gas precursor, 
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followed by treatment in HF solution.84 The thus-prepared amorphous silicon demonstrated 

promising cycling characteristics.  

2.3.2 Si2H6 

Another attractive precursor is Si2H6, which is more reactive than SiH4. As a result, compared 

with SiH4, the growth of silicon nanowires can be obtained at much lower pressures, which is very 

important for low-cost preparation. Thin-film amorphous silicon anodes were fabricated by low 

pressure chemical vapor deposition (LPCVD) using Si2H6 as a source gas by Jung and coworkers.85 

The prepared sample exhibited the very high reversible capacity of 4000 mAh g–1, which is about 

95% of the theoretical capacity of silicon. Unfortunately, the capacity fade was rapid after only 40 

cycles. On the other hand, by reducing the current density to 400 mAh g–1 in each cycle, the 

cyclability could be enhanced to 1500 cycles.  

2.3.3 SiHxCly 

Compared with SiH4 and Si2H6, replacing the hydrogen atoms by chlorine, as in SiH2Cl2 and 

SiCl4, can result in some drawbacks. The first is that the use of a chlorinated silane as the silicon 

precursor in the presence of hydrogen will lead to the generation of hydrochloric acid (HCl) during 

the CVD processing. Some undesirable etching of the substrate, the nanowires, and the facilities 

could be caused.49 The second one is that the chlorinated silanes are more chemically stable than the 

non-chlorinated ones, leading to the need for a higher temperature to synthesize the nanosized 

silicon wires.49 For example, the growth temperatures for SiCl4 typically range from around 800–

1000 oC, but only 400–600 °C for silane. The fabrication of nanosized silicon wires derived from 

SiH2Cl2 and SiCl4 also has some advantages, however, and the main one is that we can have a much 

broader choice of possible VLS catalyst materials due the higher reaction temperature. For example, 

Pt,86-88 Ni,89 and Zn90 are also very good choices if the VLS-CVD process is employed under even 
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higher temperatures. Mallet et al.91 synthesized amorphous nanosized silicon wires by using SiCl4 

dissolved in an ionic liquid (1-butyl-1-methylpyrrolidinium bis(triuoromethanesulfonyl) imide 

(P1,4)) through the CVD process under a higher temperature. Yang’s team prepared high-quality 

vertically aligned silicon nanowires using SiCl4 as the silicon precursor in the VLS-CVD process 

(Figure 6c).92 The thus-prepared silicon nanowires were grown vertically aligned with respect to the 

substrate, and the size distribution could be controlled by manipulating the colloid deposition on the 

substrate.  

2.3.4 Silicon monoxide (SiO) 

Another cost-effective way to synthesize nanosized silicon wires on a large scale is to evaporate 

solid SiO in a CVD reactor in a two-zone tube furnace.75 The temperature for this method ranges 

from 900 to 1350 oC. SiO is first evaporated in the hotter zone which is placed at the end of the tube, 

and it then mixes with the inert gas stream and flows to the cooler part, where the gaseous SiO 

undergoes a disproportionation reaction into silicon and silica, thereby forming the final 

nanowires.75,93 By carrying out the growth process over several hours, the obtained silicon 

nanowires with amorphous shells (up to several tens of nanometers in thickness) can reach 

millimeter lengths with varying diameters from about 5 to 100 nm.94-96 Unfortunately, there are no 

reports on silicon anodes for LIBs obtained from SiO via this method. 

2.3.5 Organic silicon sources 

In addition, some organic silicon-based materials such as dimethyl dichlorosilane ((CH3)2Cl2Si, 

DMDCS) can also be used as the silicon precursor via the CVD technique. Su’s group97 prepared 

silicon-based anode materials from this organosilane, which is widely used in industry, through a 

CVD process with DMDCS as the gaseous silicon precursor (Figure 6d). It was found that the 

silicon synthesized in this work had a club-like structure and was embedded on the surface of the 
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carbon substrate. The thus-prepared composite displayed a specific capacity of 562.0 mAh g−1 at a 

current density of 50 mA g−1, much higher than that of commercial graphite anode. 

In summary, silicon-based materials with various structures, such as hollow cubes, hollow 

spheres, nanowires and nanorods, have been successfully synthesized from these different 

silicon-containing gases. In addition, silicon-containing precursors are also playing a very important 

role not only in the lab research but also in the commercial silicon production. Due to the good 

penetrability of the gaseous precursors, perfect structures can be created via the templating method 

along with the assistance from templates. 

 

Figure 6. SEM images of hollow silicon derived from SiH4 using two different carbonates as 

templates: hollow cubes (a) and hollow spheres (b).26 Copyright 2014, Wiley-VCH Verlag GmbH 

and Co. KGaA, Weinheim. (c) Cross-sectional SEM image of silicon nanowires derived from 

SiCl4.
92 Copyright 2005, American Chemical Society. and (d) SEM image of silicon-based rods 

synthesized from the organic silicon compound (CH3)2Cl2Si.97 Copyright 2013, The Royal Society 

of Chemistry. 

2.4 Liquid silicon sources 
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Although the VLS process is a very promising method for thefabrication of nanowires, growth 

by this method thus far is limited, in that it is difficult to synthesize large quantities of nanowire 

materials on the substrate (only ～200–250 µg cm–2 or ～0.75 mg h–1).76,98,99 Furthermore, the 

silicon nanowires must be separated from the substrate using extra processes such as ultrasonication, 

which is destructive for retaining the morphology of the silicon nanowires. Therefore, some 

solution-based analogues of the VLS method have been developed using the supercritical fluid–

liquid–solid (SFLS) growth technique.100-103 Some liquid silicon sources have been successfully 

employed in this SFLS method for the preparation of carbon-coated silicon nanowires, such as 

trisilane,102 phenylsilane,98 monophenylsilane,104 and diphenylsilane.100  

For instance, Korgel’s group100 used diphenylsilane [SiH2(C6H5)2] as the silicon precursor, 

which was mixed with hexane and sterically stabilized gold nanoparticles at pressures of 200-270 

bar at 500 °C within a reaction vessel. Another very attractive approach for the production of 

nanowires has been reported by Heitsch’s team (Figure 7a to 7d).102 They demonstrated the Au- and 

Bi-catalyzed growth of silicon nanowires in solution at atmospheric pressure using trisilane, Si3H8, 

as the silicon precursor. As reported by Cui’s group,98 composite electrodes composed of silicon 

nanowires were synthesized using phenylsilane as the silicon source via the SFLS method and 

mixed with amorphous carbon or carbon nanotubes before being evaluated in LIBs (Figure 7e and 

7f). It was found that the silicon-based anode containing multiwalled carbon nanotubes as the 

conducting additive featured a reversible capacity of 1500 mAh g—1 for 30 cycles.  

The main advantages of using liquid silicon sources for nanosized silicon wire fabrication are 

that very thin nanowires with good crystalline quality can be obtained in large amounts using a 

relatively simple equipment.49 Compared with other synthesis methods which employ gaseous 

silicon as the precursor, the yield from this method is excellent. Nevertheless, controlled, in-place, 
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epitaxial growth of silicon nanowires can hardly be realized through this process. 

 

Figure 7. TEM images of Si nanowires synthesized in hot octacosane under ambient pressure by 

Si3H8 decomposition in the presence of either Au or Bi nanocrystals: (A) A Si nanowire synthesized 

at 410 °C with Au nanocrystal seeds; (B) a silicon nanowire with an Au seed at the tip; (C) Si 

nanowires grown using Bi nanocrystals as seeds (with energy dispersive spectroscopy (EDS) 

confirming that the dark particles at the tips of the wires are composed of Bi, providing evidence 

that the nanowires grow by the VLS mechanism); (D) a silicon nanowire (Bi seeded) longer than 3 

μm.102 Copyright 2008, American Chemical Society. (E) SEM and (F) TEM images of silicon 

nanowires derived from phenylsilane.98 Copyright 2010, American Chemical Society. 

2.5 Elemental silicon 

Instead of a silicon chemical compound, elemental silicon has also attracted considerable 
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attention as the silicon precursor to prepare nanosized silicon via molecular beam epitaxy 

(MBE).105-109 Silicon atoms, created by evaporating a heated high-purity solid Si source, are 

deposited onto the surface of a catalyst (Au) covered substrate, typically Si〈111〉. In this technique, 

elemental silicon, instead of a Si chemical compound, serves as the precursor for the fabrication of 

silicon nanowires. In MBE, there are two different Si fluxes governing wire growth. One is the 

direct flux of silicon from the pure silicon source; and the second one is the flux of diffusing Si 

adatoms from the silicon substrate surface.75 The nanowires produced in this way are endowed with 

some advantages: (1) the Si nanowires grown in this way are epitaxial and oriented, following the 

〈111〉 orientation; and (2) this technique can provide good controllability in terms of the incoming 

flux, which means that the doped wires can be grown by switching between evaporation sources.75 

The diameters of the Si nanowires cannot be precisely controlled, however, and only nanowires 

with diameters over 40 nm could be obtained.105,106,109,110 In addition, the nanowire growth velocity 

is very low. Based on the recent reports, the growth velocity is just a few nanometers per minute. 

In order to compare the electrochemical performances of silicon-based anodes derived from 

different kinds of precursors, we would like to provide a summary in Table 1 for further 

understanding. 

Table 1 Electrochemical performance of the different Si-containing precursors derived Si-based 

anodes 

Materials Precursor Structure Performance Rates Ref. 

Si Silicon wafer Porous Nanowire 1100 mAh g–1 2 A g–1 54 

Si Silicon wafer Porous 3000 mAh g–1 0.1 μA cm–2 58 

Si/C Silicon bulks Porous 1776 mAh g–1 0.05 A g–1 59 
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Si/C Silicon microparticles Porous 1036 mAh g–1 0.05 A g–1 40 

Si Rice husks Nanoparticle 2200 mAh g–1 0.84 A g–1 64 

Si Rice husks Nanoparticle 1554 mAh g–1 2 A g–1 66 

Si/C Reed leaves Porous 1100 mAh g–1 2 A g–1 60 

Si/C Beach sand Nanoparticle 1024 mAh g–1 2 A g–1 70 

Si/RGO Beach sand Nanoparticle 1113 mAh g–1 3 A g–1 69 

Si/C SiO2 Mesoporous 1480 mAh g–1 2 A g–1 72 

Si/C SiO2 Lotus-root-like 1500 mAh g–1 4 A g–1 73 

Si SiH4 Hollow flower-like  814 mAh g−1 4.8 A g−1 26 

Si Si2H6 Film 4000 mAh g–1 100 μA cm–2 85 

Si/C (CH3)2Cl2Si Nanorode 562.0 mAh g−1 0.05 A g–1 97 

Si/C C6H8Si Nanowire 1500 mAh g—1 0.65 A g–1 98 

 

4. Summary and open questions 

To summarize, we have reviewed the recent advances in using various silicon precursors for the 

preparation of porous silicon and nanosized silicon for LIBs. Nanosized and porous Si-based anodes 

have been demonstrated to be promising for the emerging energy-related applications. Great efforts 

have been devoted to investigating LIBs based on Si-based anode materials in recent years, taking 

advantages of its high specific capacity, abundance, and environmental benignity, and overcoming 

its large volume expansion by the introduction of porous and nanosized structures. Despite many 

significant achievements, various difficult challenges still remain and need addressing to prepare 

high-performance silicon anodes with well-defined architectures from suitable Si precursors. 

Porous or nanosized Si materials have shown great potential as LIB anodes, because the 
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introduced porous and nanosized structures can accommodate stress for reversible lithiation and 

delithiation, and rapid charge/discharge rates. Structure-regulated silicon nanowires can be 

produced from silicon wafers via an electroless/electrochemical etching process, or from gaseous 

silicon precursors, such as silane, disilane, dichlorosilane, and tetrachlorosilane through a 

vapor-liquid-solid method. The scaling-up of silicon-wafer-derived or gaseoussilicon -derived 

precursors, however, for silicon-based anodes may be relatively costly due to the low productivity 

and the high temperature needed for the process. Employing liquid Si precursors, such as trisilane, 

phenylsilane, monophenylsilane, and diphenylsilane, can lead to a large yield of silicon nanowires. 

In addition, the synthesis conditions in those methods are relatively mild. Unfortunately, the control 

of the nanowire distribution and dimensional growth regulation are poor. Producing silicon with 

specific structures from natural sources is also a popular way, but there are concerns with regard to 

the complex process required to purify the silica and also concerns about the different silica 

contents from various different natural-silica-enriched resources. Apart from the above-mentioned 

common silicon precursors, some special ones such as elemental silicon and SiO can also be treated 

as silicon sources via related techniques. These models need to be further developed, however, to 

allow for the influences of other factors, such as the growth conditions or the crystallography of the 

wire. This also holds true for the growth velocity of the wires. Among the different silicon 

precursors investigated so far, the preparation of silicon from man-made silica via a 

magnesiothermic reduction process seems to be most promising, but there is definitely a need for 

further investigations. A question in this context that is also unresolved is how to properly maintain 

the initial structure of the original silica precursors. Therefore, a better understanding of the 

magnesiothermic reduction mechanism would be highly desirable. 
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