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Binder-free and carbon-free 3D porous air electrode for Li-O2 batteries
with high efficiency, high capacity, and long life

Abstract
Pt-Gd alloy polycrystalline thin film is deposited on 3D nickel foam by pulsed laser deposition method
serving as a whole binder/carbon-free air electrode, showing great catalytic activity enhancement as an
efficient bifunctional catalyst for the oxygen reduction and evolution reactions in lithium oxygen batteries.
The porous structure can facilitate rapid O2 and electrolyte diffusion, as well as forming a continuous
conductive network throughout the whole energy conversion process. It shows a favorable cycle performance
in the full discharge/charge model, owing to the high catalytic activity of the Pt-Gd alloy composite and 3D
porous nickel foam structure. Specially, excellent cycling performance under capacity limited mode is also
demonstrated, in which the terminal discharge voltage is higher than 2.5 V and the terminal charge voltage is
lower than 3.7 V after 100 cycles at a current density of 0.1 mA cm−2. Therefore, this electrocatalyst is a
promising bifunctional electrocatalyst for lithium oxygen batteries and this depositing high-efficient
electrocatalyst on porous substrate with polycrystalline thin film by pulsed laser deposition is also a promising
technique in the future lithium oxygen batteries research.
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Two-dimensional Pt-Gd alloy polycrystalline thin film was deposited on three-dimensional 

nickel foam by pulsed laser deposition method serving as a whole binder/carbon-free air 

electrode, showing great catalytic activity enhancement as an efficient bifunctional catalyst 

for the oxygen reduction and evolution reactions in lithium oxygen batteries. The porous 

structure can facilitate rapid O2 and electrolyte diffusion, as well as forming a continuous 

conductive network throughout the whole energy conversion process. It shows a favorable 

cycle performance in the full discharge/charge model, owing to the high catalytic activity of 

the Pt-Gd alloy composite and three-dimensional porous nickel foam structure. Specially, 

excellent cycling performance under capacity limited mode is also demonstrated, in which the 

terminal discharge voltage is higher than 2.5 V and the terminal charge voltage is lower than 

3.7 V after 100 cycles at a current density of 0.1 mA cm
-2

. Therefore, this electrocatalyst is a 

promising bifunctional electrocatalyst for lithium oxygen batteries and this depositing high-
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efficient electrocatalyst on porous substrate with polycrystalline thin film by pulsed laser 

deposition is also a promising technique in the future lithium oxygen batteries research.  

 

1. Introduction 

 

Recently, extensive research has been devoted to the development of next generation lithium 

oxygen battery owing to its high theoretical energy density.
[1, 2]

 However, it is still of great 

challenge to achieve high energy efficiency with lower overpotential, and satisfactory cycling 

performance. 
[3]

  The key to solve these problems is to efficiently combine both an appropriate 

porous air electrode structure and a highly active bifunctional catalyst towards the oxygen 

reduction reaction (ORR) and the oxygen evolution reaction (OER).
[4-14]

  From the catalyst 

point of view, Pt-Gd alloy is a promising catalyst for the ORR, being the most active 

polycrystalline Pt-alloy reported in the literature so far.
[15-17]

  This enhancement in activity is 

considerably higher than that exhibited by PtxNi, PtxCo, or PtxFe alloy catalyst, which also 

revealed several times enhancement compared to polycrystalline Pt.
[17-22]

 Compared with 

other rare earth elements, such as La, Y, and Ce, Pt-Gd alloy also exhibits high kinetic 

catalytic activity owing to the increased compressive strain compared to these other elements 

in the Pt skeleton structure.
[15, 17]

 However, to our knowledge, there is still no report using Pt-

Gd alloy in lithium air battery system as eletrocatalyst. It is also difficult to optimize the 

specific activity of these small nanocrystals by engineering since these nanocrystals tend to 

agglomerate and easily detach from the carbon-based support, which will greatly hinder the 

catalyst activity. Therefore, it is not possible to take full advantage of the catalyst. 

Furthermore, the commonly used carbon-based catalyst substrate and binder, such as 

polyvinylidebe fluoride (PVDF), are not stable in oxygen-riched electrochemical environment 

in lithium oxygen battery system, surviving nucleophilic attack of high-sensitive 

intermediated radicals and being decomposed to LiF, LiOH and Li2CO3.
[23-25]
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Herein, in this work, we firstly deposited Pt-Gd alloy polycrystalline thin film (PTF) directly 

on three-dimensional (3D) porous structured cheaper substrate nickel foam by pulsed laser 

deposition (PLD) method serving as a whole binder/carbon-free high-activity electrode, not 

only suppressing the formation of irreversible byproducts but also increasing the precious 

metal catalyst usage effectivity. This PTF catalyst features a thin film, rather than a 

distribution of discrete and isolated nanoparticles. Due to the polycrystalline catalyst thin film 

itself and the close packed spacing of the catalyst coating on the substrate, the specific 

catalytic activity towards oxygen reduction is up to 10 times higher than for 2-3 nm diameter 

particles, in line with the kinetic activity of polycrystalline or single crystal bulk surfaces.
[26-

28]
  The thin film polycrystalline can be considered as a two-dimensional (2D) thin film array 

of nanocrystals, which will be even more promising for obtaining more catalytic activity from 

Pt-Gd alloy composite with the special polycrystalline structure. This carbon and binder-free 

air-electrode of Pt-Gd alloy catalyst with a polycrystalline thin film on 3D nickel foam 

(denoted as Ni@PG-PTF), was also firstly used as an efficient bifunctional catalyst for the 

ORR and OER in lithium oxygen batteries. This designed 3D porous structure can also form a 

continuous conductive network and improve the adsorption of and immersion in electrolyte 

on the surfaces of deposited Pt-Gd alloy thin film in order to facilitate the electrode reaction 

kinetics for high energy conversion. Meanwhile, without any carbon conductive additive and 

binder, this electrode can also overcome the impedance increase owing to the formation of 

interfacial Li2CO3 via the reaction of lithium peroxide with carbon. 
[25]

 

 

2. Result and Discussion 

 

The morphology and phase of the as-prepared electrode with Pt-Gd alloy PTF was 

characterized by field emission scanning electron microscope (FESEM), high-resolution 

transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), as 
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shown in Fig. 1(a, b) and Fig. S1. The thickness of the as-obtained Pt-Gd alloy polycrystalline 

thin film is about 50 nm, and the electrode forms a whole 3D porous structure. The SAED 

patterns of Pt-Gd alloy PTF (PG-PTF) and polycrystalline Pt PTF (Pt-PTF) exhibit a similar 

face-centered-cubic (fcc) phase, as shown in Fig. S1. The energy dispersive X-ray 

spectroscopy (EDS) of Ni@PG-PTF electrode also shows a similar Pt and Gd uniform 

distributions in the 3D nickel foam structure as shown in Fig.S2. Information on the chemical 

binding from the Pt 4f signal of PG-PTF is given in Fig. S3, with the peaks deconvoluted into 

metallic platinum (1 and 1′) and Pt-Gd (2 and 2′) components. Individual columns of atoms 

and intensity variations across different columns within each particle can be detected in 

aberration-corrected high-angle annular dark-field (HAADF) images collected by scanning 

transmission electron microscopy (STEM), which reveal chemical composition variations 

within individual particles on the atomic scale. The HAADF intensity for each column of 

atoms is proportional to the product of the square of the average atomic number (Z
2
) for each 

column of atoms and particle thickness. 
[18]

 As shown in Fig. 1c, the Pt-Gd nanoparticle 

thickness changes (dashed line) obtained from a truncated octahedron cannot fully account for 

the intensity variations (solid line) observed in Fig. 1e. Meanwhile, as for pure Pt 

nanoparticles, the intensity variations (solid line) observed from Fig. S4 reveal a similar trend 

to the thickness changes (dashed line) obtained from a truncated octahedron serving as a 

model of an ideal nanoparticle. It is evident that some columns of atoms close to the particle 

center have lower average atomic numbers than the surface regions, which suggests the 

formation of alloy nanoparticles that are the same as in the nanoparticle diagram in Fig. 1e. Pt 

and Gd show a similar distribution over the entire area, and the atomic ratio of Pt : Gd is 

about 3.6 (Fig. S5).  
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Figure 1. (a) FESEM of the air electrode (photograph of nickel foam and PG-PTF electrode ); 

(b) HRTEM images of  Pt-Gd alloy PTF, with the inset image showing the thickness of Pt-Gd 

alloy PTF at higher magnification; (c) aberration-corrected HAADF image of Pt-Gd 

nanoparticles; (d) normalized image intensity of the particles in (c) along the column outlined 

in yellow (solid curve), with the dashed curve the normalized thickness changes obtained by 

assuming the shape of the ideal nanoparticle shown in (e). 
 

 

 

 

The ORR activities of PG-PTF and Pt-PTF were measured by the rotating disk electrode 

(RDE) technique in O2 saturated 0.1 M KOH electrolyte at a scan rate of 10 mV s
−1

. RDE 

curves at various rotation speeds were collected to determine the samples’ ORR kinetic 

performance, as shown in Fig. S6 (Supporting Information). As shown in the RDE curves in 

Fig. 2(a), compared with Pt electrode and Pt-PTF, PG-PTF shows a superior ORR activity 

with more positive reduction peak potential and onset potential, and higher reduction current 
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density. The half-wave potential of an ORR polarization curve, E1/2, is often used to evaluate 

the electrocatalytic activity. The onset for Pt-Gd alloy electrode starts at ~1 V, and a 

significant positive shift of ~120 mV was observed in the half-wave potential, implying a 

significant enhancement of the ORR activity. The Tafel plots of the specific activity versus 

measured potential (Figure 2(b)) clearly show that the ORR kinetics of PG-PTF is definitely 

superior to those of Pt and Pt-PTF in the range of the kinetically controlled region (0.88–0.98 

V). The PG-PTF catalyst showed a smaller Tafel slope (~ 49 mV per decade) than that 

measured from the Pt (~ 57 mV per decade) and the Pt-PTF catalysts (~ 55 mV per decade). 

The enhanced kinetic current densities of the PG-PTF catalyst relative to Pt and Pt-PTF are 

shown in Fig. 2(c). The kinetic current densities of the PG-PTF catalyst were higher than 

those of the other catalysts. For example, at 0.9 V, the PG-PTF catalyst showed about 8-fold 

enhancement in activity compared with the Pt catalysts. This excellent ORR activity can be 

attributed to the alloy structure, which can lead to a shortened Pt-Pt bond distance and more 

catalytic activity points relative to the pure Pt nanoparticles. According to reported results,
 [15, 

17, 19, 20, 22] 
the compressed Pt-Pt bond length plays a key role in decreasing the valence band 

center relative to the Fermi level and reducing the binding strength and/or coverage of 

oxygenated adsorbates, which can result in ORR activity enhancement. In an O2 saturated 

non-aqueous organic system [1 M LiCF3SO3 in tetraethylene glycol dimethyl ether 

(TEGDME)], as shown in Fig. 2(d), the cyclic voltammogram (CV) curves of PG-PTF and P-

PTF catalyst were collected. Compared with P-PTF, the PG-PTF shows obvious much earlier 

ORR and OER potentials and smaller over-potentials in O2-saturated electrolyte, which 

indicate that PG-PTF features bifunctional catalyst performance in the anodic and cathodic 

scan processes in an O2 saturated non-aqueous organic system. Generally speaking, the 

enhancement of oxygen catalytic activity should be result from the combination of ligand, 

geometric, and/or ensemble effects in the octahedral structure. This Pt-alloy skeleton-

structured composite allows optimization of the surface electronic structure, weakening its 
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binding to the O-containing reaction intermediates and maximizing the ORR activity. 
[17, 20, 22, 

29]
 

  

 

Figure 2. (a) RDE curves of Pt electrode, P-PTF, and PG-PTF; (b) Tafel slopes of Pt 

electrode, P-PTF, and PG-PTF, from the data shown in (a); (c) activity enhancement relative 

to Pt electrode (jk/jk
Pt

), from the data shown in (a); (d) cyclic voltammogram curves of P-PTF 

and PG-PTF catalyst in a non-aqueous organic system (1 M LiCF3SO3 in TEGDME). RHE: 

reversible hydrogen electrode. 

 

Finally, the binder/carbon-free air-electrode Ni@PG-PTF was used as the air electrode for Li-

O2 batteries. The electrochemical properties were then examined in a lithium oxygen cell. The 

full discharge and charge performances at different current densities are shown in Fig. 3a and 

Fig. S7. Ni@PG-PTF exhibited a low discharge-charge gap at current density of  

0.05 mA cm
-2

, which resulted in excellent round-trip efficiency (78 %) in the first full 

discharge/charge cycle. The charge plateau of the Ni@PG-PTF is lower than 3.6 V, which is 

vital for electrochemical energy storage devices. It also exhibits a high discharge specific 

capacity of ~ 3700 mAh g
-1

 at a current density of 0.05 mA cm
-2

. More importantly, the 
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Ni@PG-PTF also shows excellent cycling performance in the full discharge/charge model at a 

current density of 0.05 mA cm
-2

. After 10 cycles, Ni@PG-PTF still retains a favorable 

overpotential, the charge plateau is still lower than 3.7 V and the discharge capacity is still up 

to ~ 2700 mAh g
-1

. When the current density is increased to 0.2 mA cm
-2

, as shown in Fig. S8, 

the Ni@PG-PTF composite also exhibits good full discharge/charge cycle performance, with 

nearly 2000 mAh g
-1

 in the first cycle and 1400 mAh g
-1

 after 9 cycles. However, during 5 

cycles full discharge/charge process at a current density of 0.05 mA cm
-2 

as shown in Fig.S7, 

Ni@P-PTF experience a large fall trend and higher OER potential. Compared with Ni@P-

PTF, the low overpotential can be attributed from both the high synergistic catalytic activity 

of Pt-Gd and geometric effects from abundant surface lattice strain/defects.  The high capacity 

results from the coral-like reaction products “grown” on the catalyst thin film, as shown in the 

FESEM image in Fig. 3b and HRTEM in Fig. S9. Arrays of coral-like Li2O2 columns with 

diameters in the range of 100 nm are deposited on the surface of the Ni@PG-PTF. An 

individual Li2O2 column was investigated using HRTEM and electron diffraction to determine 

the crystal structure and to further research the formation mechanism of the coral-like column 

formed in Fig. 3(c, d). In Fig. 3c, the coral-like Li2O2 clusters are composed of arrays of plate-

like Li2O2 crystallites, as shown in the inset image. These Li2O2 platelets, roughly parallel to 

each other, are grown from the electrocatalyst thin film to form a layer-by-layer Li2O2 cluster. 

Additional Li2O2 platelets nucleated in different spaces result in the characteristic coral-like 

morphology observed for large particles. The electron diffraction pattern of the Li2O2 clusters 

exhibits characteristic diffraction ring signals corresponding to Li2O2, as shown in the Fig. 3d 

inset pattern. 
[30]

  Fig. 3e schematically shows the mechanism of electrochemical growth of 

the coral-like Li2O2. The first step is the reduction of O2 on the surface of the electrocatalyst 

thin film to form O
2−

, which will bind with Li
+
 to form an intermediate reaction product: 

LiO2*. The LiO2* can either desorb by solvation or undergo a disproportionation reaction 

(2LiO2* → Li2O2 + O2) to grow on the surface of the catalyst thin film, or undergo direct 
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reduction with Li
+
 to form nanoplatelets of Li2O2. 

[29, 30]
 In the following process, the obtained 

individual Li2O2 nanoplatelets are assembled layer-by-layer with nanosheet-shaped structured 

growth to form coral-like large particles. From the conclusions of some previous works, 
[7, 9, 33, 

34, 35]
 large-scale deposition of Li2O2 will result in certain outcomes, including coverage of the 

active reaction sites due to high overpotential and blockage of the gas and electrolyte 

diffusion for further deposition. This porous coral-like Li2O2 deposition structure, however, 

not only contributes to facile reversibility in the charge OER process, resulting in a low 

overpotential, but would also be of benefit for the cycling performance. The polycrystalline 

electrocatalyst thin film provides enormous activity sites for Li2O2 formation in different 

orientations. The porous nickel foam, on the other hand, can facilitate rapid O2 and electrolyte 

diffusion through the film, as well as forming a continuous 3D electron conductive network 

throughout the whole energy conversion process.  
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Figure 3. (a) Full discharge/charge curves for selected cycles of PG-PTF at the current 

density of 0.05 mA cm
-2

; (b) high resolution SEM (HRSEM) image of discharged reaction 

products deposited on the thin film; (c) HRTEM image of discharged reaction products 

deposited on the thin film, with the inset showing higher resolution; (d) SAED pattern from 

(c); (e) schematic diagram of mechanism of discharge/charge process. 

 

 

The full discharge capacity and overpotential results from previously published works on 

cathode electrocatalysts are shown in Fig. 4, including metal oxide, alloy, and precious metal 

nanoparticles used as electrocatalysts. Although different current densities are used, we can 

roughly reach the conclusion that air electrode with porous nanostructure always exhibits a 
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high full discharge capacity. That is because porous nanostructure leading to high surface area 

can provide sufficient space for reaction product deposition. 
[23, 36-38]

 In other words, 

passivation of activity sites from massive deposits of insulating reaction product is likely to 

lead to premature cell death, which will further result in large polarization and unsatisfactory 

cycling performance. 
[32, 35]

 Precious-metal-based electrocatalyst shows a lower overpotential 

than metal oxide and carbon materials, which may be the result of the highly efficient activity. 

[4, 10, 21]
 There were also many efforts made to design a carbon-free cathode or ionic liquid 

electrolyte because undetermined intermediate reaction products formed from high-activity 

LiO2* and electrolyte decomposition. 
[6, 39, 40]

 In our work, the carbon-free, binder-free air 

electrode provides a high discharge capacity together with low overpotential, resulting from 

both the efficient synergistic catalytic activity and the continuous 3D reaction network. It can 

also overcome the impedance owing to the formation of interfacial Li2CO3 via the reaction of 

lithium peroxide with carbon. 
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Figure 4. Full discharge capacity and overpotential results of previously published works on 

cathode electrocatalyst.  
 

 

 

The cycling performance was also investigated at 0.1 mA cm
-2

 current density with a fixed 

specific capacity of 1000 mAh g
-1

 in Fig. 5(a, b) and Fig. S11. Compared to the Ni@P-PTF, 

the Ni@PG-PTF shows a high round-trip efficiency, a high ORR potential (2.62 V), and a 

low OER potential (3.54 V). Even after 100 cycles, the Ni@PG-PTF still exhibits a lower 

OER potential. In Fig. 5(b), the discharge and charge capacities retain stable values, and in 

addition, the discharge terminal voltage is higher than 2.5 V, while the charge terminal 

potential is lower than 3.7 V for 100 cycles. This excellent cycling performance can be largely 

attributed from the high synergistic catalytic activity of Pt-Gd. Meanwhile, the electrolyte 

stability was also characterized by XPS and Fourier transform infrared (FTIR) spectroscopy at 

different discharge/charge stages during long-term capacity-limited cycling in Fig. 5(c-e) and 
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Fig. S10. After the 1
st
 discharge, there are peaks in the O 1s (Fig. 5d) and Li 1s (Fig. 5e) 

spectra corresponding to Li2O2 that are decomposed in the following charge process, which 

provides evidence that the reaction mechanism is consistent with the schematic representation 

shown in Fig. 3. In the following 40
th

 and 80
th

 cycles, an obvious Li2CO3 signal appears in the 

XPS spectra, as well as the appearance of a LiOH signal in the FTIR (Fig. S10). According to 

the published results, ether-based electrolyte is prone to autoxidation from oxygenated 

radicals, and decomposition occurs above 4 V, leading to the formation of non-reversible 

reaction products. 
[41, 24]

 Although TEGDME solvent is more stable than other organic 

solvents, such as in carbonate-based electrolytes, and the charge potential in this work is 

lower than 4 V, a mixture of non-reversible reaction products was formed, largely resulting 

from the electrolyte instability against high-activity oxygenated radical attack during the 

reaction process.  
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Figure 5. (a) Discharge/charge curves of PG-PTF for selected cycles; (b) cycling performance 

of the PG-PTF; XPS spectra of (c) C 1s, (d) O 1s, and (e) Li 1s signals from PG-PTF at 

different cycles.  

             P : electrode before discharge; 1-D : after 1
st
 discharge; 1-C : after 1

st
 cycle. 

 

3. Conclusion 

 

In conclusion, Pt-Gd polycrystalline thin film synthesized by pulsed laser deposition (PLD) 

exhibits excellent oxygen catalytic activity, owing to the highly efficient Pt-Gd alloy 

synergistic catalyst activity together with its special polycrystalline structure. Carbon-free, 

binder-free, air-electrode Pt-Gd alloy polycrystalline thin film on nickel foam was also used 
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as an air electrode. It shows favorable electrocatalyst performance, with a high round-trip 

efficiency in the full discharge/charge model, owing to the high catalytic activity of the Pt-Gd 

alloy composite and 3D porous nickel foam structure. Meanwhile, depositing high-efficient 

electrocatalyst on porous substrate with polycrystalline thin film by PLD is also a promising 

technique in the future lithium oxygen batteries research.  

 

4. Experimental Section  

 

Sample preparation: The targets were made by sintering a pressed mixture of platinum 

powder (< 40 nm, Sigma) and gadolinium powder (-40 mesh, Sigma) according to the 

element stoichiometry at 700 
o
C for 6 hours in argon gas. The laser outputs 248 nm 

wavelength, 30 nanosecond pulses at a frequency that may be chosen between 1 and 10 Hz. 

The energy of this pulse is determined by choosing the pumping high voltage (HV) of the 

laser. The laser HV ranges from 24 kV to 32 kV and, depending on the state of the gas 

medium, will produce energies in the pulse between 400 mJ and 1200 mJ. The rectangular 

output pulse of the laser has dimensions of approximately 30 mm × 12 mm. The substrates for 

deposition include nickel foam to get air electrode, TEM grids convenient for TEM operation, 

and glassy carbon electrode to test RDE performance. 

 

Characterization: The morphology of the samples was examined using field emission 

scanning electron microscopy (FE-SEM; JEOL JSM-7500). Transmission electron 

microscopy (TEM) investigations were performed using a 200 kV JEOL 2011 instrument to 

research the thickness of the thin film. Scanning transmission electron microscopy (STEM) 

and elemental mapping analysis of the thin film were conducted by atomic resolution 

analytical microscope (ARM) investigations performed using a 200 kV JEOL 2011 

instrument. The phase structures of the thin films were also analysed by selected area electron 
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diffraction (SAED) using a 200 kV JEOL 2011 instrument. Fourier transform infrared (FT-

IR) spectra were collected using a FTIR Prestige-21 (Shimadzu). X-ray photoelectron 

spectroscopy (XPS) experiments were carried out on a VG Scientific ESCALAB 2201XL 

instrument using aluminium Kα X-ray radiation. XPS spectral analysis was conducted using 

XPS Peak-fit software. 

 

Catalyst and electrochemical performance: Rotating disk electrode (RDE) aqueous 

electrochemical tests were carried out using a computer-controlled potentiostat (Princeton 

2273 and 616, Princeton Applied Research) with a typical three-electrode cell. The working 

electrodes were prepared by depositing a thin film of the composite on glassy carbon 

electrode. Platinum foil was used as the counter electrode, and an Ag/AgCl (saturated KCl 

filled) electrode was used as the reference electrode. The detailed kinetic analysis was 

conducted according to the Koutecky-Levich (K-L) plots:  

 

(1) 

where jk is the kinetic current and B is the Levich slope, which is given by: 

 
(2) 

Here, n is the number of electrons transferred in the reduction of one O2 molecule, F is the 

Faraday constant (F = 96485 C/mol), DO2 is the diffusion coefficient of O2 (DO2 = 1.9 × 10
-5

 

cm
2
 s

-1
), ν is the kinematic viscosity for KOH (v = 0.01 cm

2
 s

-1,
) and CO2 is the concentration 

of O2 in the solution (CO2 = 1.2 × 10
-6

 mol cm
-3

). The constant 0.2 is adopted when the 

rotation speed is expressed in rpm. According to Equations (1) and (2), the number of 

electrons transferred (n) can be obtained from the slope of the Koutecky-Levich plot of j
-1

 vs. 

ω
-1/2

. The non-aqueous electrochemical oxygen reduction reaction (ORR) and oxygen 

evolution reaction (OER) tests were carried out using computer-controlled potentiostats 

(Princeton 2273) in a three-electrode system. 1 M LiCF3SO3 in tetraethylene glycol dimethyl 

0.5

1 1 1

k
j j Bω

= +

2 2

2 /3 1/ 6
0.2 ( )

O O
B nF D v C

−

=
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ether (TEGDME) was used as electrolyte. The details of assembling the testing system and 

electrode preparation can be found in our reported work.
[23]

  Polarization curves were 

obtained from open voltage to the set potential. The above procedure was repeated for each 

sample. In detail, argon was induced into the electrolyte for 30 min to ensure that the 

background data was measured in an inert atmosphere. Then, pure oxygen was purged into 

the electrolyte for 30 min to study the ORR. Solid dried lithium peroxide powder was added 

to the electrolytic cell while stirring before use for the OER study. 

 

The electrochemical performance was tested under flowing oxygen. The working electrode 

was nickel foam with the catalyst deposited as a thin film. Typical loadings of cathode 

powder were ～1 mg cm
–2

. The electrolyte consisted of a solution of 1 M LiCF3SO3 in 

TEGDME. Pure lithium foil was used as the counter electrode. The cells were assembled in 

an argon-filled glove-box (Mbraun, Unilab, Germany). Galvanostatic deep, full charge-

discharge curves were collected at various current densities of 0.05 and 0.2 mA cm
-2

 with 2.5 

V vs. Li/Li
+
 discharge terminal voltage. Capacity limited charge-discharge curves were 

collected at current density of 0.1 mA cm
-2

. All tests were conducted on LAND CT 2001A 

multi-channel battery testers at room temperature in oxygen atmosphere, using our designed 

facility. 

 

Supporting Information.  

Experiment details, XPS, SEM, TEM, EDS, FTIR and more electrochemical data including 

RDE, Charge/discharge curves.  Supporting Information is available from the Wiley Online 

Library or from the author.  

Acknowledgements 

 

 



     

18 

 

This work is supported by the Australian Research Council (ARC) through a Discovery 

Project (DP140100401). The authors would like to also thank Dr Tania Silver for critical 

reading of the manuscript, and also acknowledge the use of the facilities in the UOW Electron 

Microscopy Center, with particular thanks to Dr. Gilberto Casillas-Garcia. The manuscript 

was written through contributions of all authors. All authors have given approval to the final 

version of the manuscript.  

                                                                       Received: ((will be filled in by the editorial staff)) 

                                                                         Revised: ((will be filled in by the editorial staff)) 

                                                           Published online: ((will be filled in by the editorial staff)) 

 

[1] P. G. Bruce, S. A. Freunberger, L. J. Hardwick and J. M. Tarascon, Nat Mater. 2012, 

11, 19. 

[2] R. Black, B. Adams and L. F. Nazar, Adv Energy Mater. 2012, 2, 801. 

[3] L. Grande, E. Paillard, J. Hassoun, J. B. Park, Y. J. Lee, Y. K. Sun, S. Passerini and B. 

Scrosati, Adv Mater. 2015, 27, 784. 

[4] Z. Q. Peng, S. A. Freunberger, Y. H. Chen and P. G. Bruce, Science. 2012, 337, 563. 

[5] D. Wu, Z. Guo, X. Yin, Q. Pang, B. Tu, L. Zhang, Y. G. Wang and Q. Li, Adv Mater. 

2014, 26, 3258.  

[6] W. H. Ryu, F. S. Gittleson, M. Schwab, T. Goh and A. D. Taylor, Nano Lett. 2015, 15, 

434. 

[7] R. Black, J. H. Lee, B. Adams, C. A. Mims and L. F. Nazar, Angew Chem Int Edit. 

2013, 52, 392. 

[8] F. J. Li, Y. Chen, D. M. Tang, Z. L. Jian, C. Liu, D. Golberg, A. Yamada and H. S. 

Zhou, Energ Environ Sci. 2014, 7, 1648. 

[9] W. B. Luo, S. L. Chou, J. Z. Wang, Y. C. Zhai and H. K. Liu, Small. 2015,11, 2817. 

[10] Y. C. Lu, Z. C. Xu, H. A. Gasteiger, S. Chen, K. Hamad-Schifferli and Y. Shao-Horn, J 



     

19 

 

Am Chem Soc. 2010, 132, 12170. 

[11] J. J. Xu, Z. L. Wang, D. Xu, L. L. Zhang and X. B. Zhang, Nat Commun. 2013, 4, 

2438. 

[12] K. M. Liao, T. Zhang, Y. Q. Wang, F. J. Li, Z. L. Jian, H. J. Yu and H. S. Zhou, 

Chemsuschem. 2015, 8, 1429. 

[13]  Q. C. Liu, L. Li, J. J. Xu, Z.-W. Chang, D. Xu, Y. B. Yin, X.-Y. Yang, T. Liu, Y.-S. Jiang, 

J. M. Yan and X.-B. Zhang, Adv Mater, 2015, 27, 8095. 

[14]   J. J. Xu, D. Xu, Z. L. Wang, H. G. Wang, L. L. Zhang and X. B. Zhang, Angewandte 

Chemie International Edition, 2013, 52, 3887. 

[15] M. Escudero-Escribano, A. Verdaguer-Casadevall, P. Malacrida, U. Gronbjerg, B. P. 

Knudsen, A. K. Jepsen, J. Rossmeisl, I. E. L. Stephens and I. Chorkendorff, J Am Chem Soc. 

2012, 134, 16476. 

[16] P. Hernandez-Fernandez, F. Masini, D. N. McCarthy, C. E. Strebel, D. Friebel, D. 

Deiana, P. Malacrida, A. Nierhoff, A. Bodin, A. M. Wise, J. H. Nielsen, T. W. Hansen, A. 

Nilsson, I. E. L. Stephens and I. Chorkendorff, Nat Chem. 2014, 6, 732. 

[17] I. E. L. Stephens, A. S. Bondarenko, U. Gronbjerg, J. Rossmeisl and I. Chorkendorff, 

Energ Environ Sci. 2012, 5, 6744. 

[18] S. Chen, P. J. Ferreira, W. C. Sheng, N. Yabuuchi, L. F. Allard and Y. Shao-Horn, J Am 

Chem Soc. 2008, 130, 13818. 

[19] C. H. Cui, L. Gan, H. H. Li, S. H. Yu, M. Heggen and P. Strasser, Nano Lett. 2012, 12, 

5885. 

[20] V. R. Stamenkovic, B. Fowler, B. S. Mun, G. F. Wang, P. N. Ross, C. A. Lucas and N. 

M. Markovic, Science. 2007, 315, 493. 

[21] V. R. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer, P. N. Ross and N. M. Markovic, J 

Am Chem Soc. 2006, 128, 8813. 

[22] GreeleyJ, I. E. L. Stephens, A. S. Bondarenko, T. P. Johansson, H. A. Hansen, T. F. 



     

20 

 

Jaramillo, RossmeislJ, ChorkendorffI and J. K. Nørskov, Nat Chem. 2009, 1, 552. 

[23] W. B. Luo, X. W. Gao, S. L. Chou, J. Z. Wang and H. K. Liu, Adv Mater. 2015, 27, 

6862.  

[24] S. A. Freunberger, Y. H. Chen, N. E. Drewett, L. J. Hardwick, F. Barde and P. G. 

Bruce, Angew Chem Int Edit. 2011, 50, 8609. 

[25] M. M. O. Thotiyl, S. A. Freunberger, Z. Q. Peng and P. G. Bruce, J Am Chem Soc. 

2013, 135, 494. 

[26] D. F. van der Vliet, C. Wang, D. Tripkovic, D. Strmcnik, X. F. Zhang, M. K. Debe, R. 

T. Atanasoski, N. M. Markovic and V. R. Stamenkovic, Nat Mater. 2012, 11, 1051. 

[27] J. Januschewsky, M. Ahrens, A. Opitz, F. Kubel and J. Fleig, Adv Funct Mater. 2009, 

19, 3151. 

[28] S. J. Yoo, K. S. Lee, S. J. Hwang, Y. H. Cho, S. K. Kim, J. W. Yun, Y. E. Sung and T. 

H. Lim, Int J Hydrogen Energ. 2012, 37, 9758. 

[29] J. X. Wang, H. Inada, L. J. Wu, Y. M. Zhu, Y. M. Choi, P. Liu, W. P. Zhou and R. R. 

Adzic, J Am Chem Soc. 2009, 131, 17298. 

[30] Z. L. Jian, P. Liu, F. J. Li, P. He, X. W. Guo, M. W. Chen and H. S. Zhou, Angew Chem 

Int Edit. 2014, 53, 442. 

[31] J. Lu, L. Cheng, K. C. Lau, E. Tyo, X. Luo, J. Wen, D. Miller, R. S. Assary, H.-H. 

Wang, P. Redfern, H. Wu, J.-B. Park, Y.-K. Sun, S. Vajda, K. Amine and L. A. Curtiss, Nat 

Commun. 2014, 5,4895. 

[32] W. M. Liu, T. T. Gao, Y. Yang, Q. Sun and Z.  W. Fu, Phys Chem Chem Phys. 2013, 

15, 15806. 

[33] Y. Yang, W. Liu, Y. M. Wang, X. C. Wang, L. Xiao, J. T. Lu and L. Zhuang, Phys 

Chem Chem Phys. 2014, 16, 20618. 

[34]  Q. C. Liu, J. J. Xu, D. Xu and X. B. Zhang, Nat Commun, 2015, 6, 7892. 

[35]  J. J. Xu, Z. L. Wang, D. Xu, F. Z. Meng and X. B. Zhang, Energ Environ Sci, 2014, 7, 



     

21 

 

2213. 

[36] J. X. Li, Y. Zhao, M. Z. Zou, C. X. Wu, Z. G. Huang and L. H. Guan, Acs Appl Mater 

Inter. 2014, 6, 12479. 

[37] S. C. Ma, L. Q. Sun, L. N. Cong, X. G. Gao, C. Yao, X. Guo, L. H. Tai, P. Mei, Y. P. 

Zeng, H. M. Xie and R. S. Wang, J Phys Chem C. 2013, 117, 25890. 

[38] M. H. Lu, J. L. Qu, Q. F. Yao, C. H. Xu, Y. Zhan, J. P. Xie and J. Y. Lee, Acs Appl 

Mater Inter. 2015, 7, 5488. 

[39] J. Y. Cao, S. Y. Liu, J. Xie, S. C. Zhang, G. S. Cao and X. B. Zhao, Acs Catal. 2015, 5, 

241. 

[40] G. A. Elia, J. Hassoun, W. J. Kwak, Y. K. Sun, B. Scrosati, F. Mueller, D. Bresser, S. 

Passerini, P. Oberhumer, N. Tsiouvaras and J. Reiter, Nano Lett. 2014, 14, 6572. 

[41] B. D. McCloskey, R. Scheffler, A. Speidel, D. S. Bethune, R. M. Shelby and A. C. 

Luntz, J Am Chem Soc. 2011, 133, 18038. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



     

22 

 

 

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2013. 

 

Supporting Information  
 

 

Binder-free and carbon-free 3D porous air electrode with high capacity, high efficiency, 

and long life for Li-O2 batteries 
 

Wen-Bin Luo, Xuan-Wen Gao, Dong-Qi Shi, Shu-Lei Chou*, Jia-Zhao Wang*, Hua-Kun Liu 

 

 
Figure S1.  SAED patterns of P-PTF (a) PG-PTF (b); (c) SAED pattern comparison of   P-

PTF and PG-PTF, data from (a), (b). 
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Figure S2. (a) FESEM of Ni@PG-PTF air electrodes,( inset showing the HRTEM of Pt-Gd 

alloy PTF at higher magnification); elements distribution spectrum of (b) Ni; (c) Pt and (d) Gd 

obtained from (a); Pt and Gd elements distribution in Pt-Gd alloy thin film tested by STEM 

(e-g). 
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Figure S3. XPS spectra of Gd (a) and Pt (b) of de-alloying Pt-Gd alloy composite. 
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Figure S4. (a) EDS spectrum of P-PTF obtained from the area inset; (b) aberration-corrected 

HAADF image of Pt nanoparticle; (c) fast Fourier transform (FFT) pattern of Pt nanoparticle in (b); 

(d) normalized image intensity of the particle in (b) along the atoms in theyellow rectangle (solid 

curve), with the dashed curve showing the normalized thickness changes obtained by assuming the 

shape of an ideal nanoparticle as shown in (e). 

 

 
 

Figure S5. Element distribution of PG-PTF. 
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Figure S6.  RDE curves of commercial Pt electrode (a); P-PTF (b); and PG-PTF in O2-

saturated 0.1 M KOH solution (c) with various rotation speeds and a sweep rate of 10 mV s
−1

; 

insets show corresponding K–L plots (J
−1

 versus ω
−1/2

) at different potentials. RHE:  

reversible hydrogen electrode. 
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Figure S7. Full discharge/charge curves for the first 5 cycles of P-PTF at the current density 

of 0.05 mA cm
-2

. 

 

 

 

  
 

Figure S8. Full discharge/charge curves for the first 9 cycles of PG-PTF at the current density 

of 0.2 mA cm
-2

. 
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Figure S9. FESEM (a) and HRTEM (b) images of discharged reaction products deposited on 

the thin film. 

 
Figure S10. FTIR curves of air electrode at different cycles.  

P : electrode before discharge; 1-D : after 1
st
 discharge; 1-C : after 1

st
 cycle. 
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Figure S11. (a) Discharge/charge curves of P-PTF for selected cycles; (b) cycling 

performance of the P-PTF. 
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