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Abstract

Accurate PET quantitation requires a matched attenuation map. Obtaining matched CT attenuation maps in
the thorax is difficult due to the respiratory cycle which causes both motion and density changes. Unlike with
motion, little attention has been given to the effects of density changes in the lung on PET quantitation. This
work aims to explore the extent of the errors caused by pulmonary density attenuation map mismatch on
dynamic and static parameter estimates. Dynamic XCAT phantoms were utilised using clinically relevant 18F-
FDG and 18F-FMISO time activity curves for all organs within the thorax to estimate the expected parameter
errors. The simulations were then validated with PET data from S patients suffering from idiopathic
pulmonary fibrosis who underwent PET/Cine-CT. The PET data were reconstructed with three gates
obtained from the Cine-CT and the average Cine-CT. The lung TACs clearly displayed differences between
true and measured curves with error depending on global activity distribution at the time of measurement.
The density errors from using a mismatched attenuation map were found to have a considerable impact on
PET quantitative accuracy. Maximum errors due to density mismatch were found to be as high as 25% in the
XCAT simulation. Differences in patient derived kinetic parameter estimates and static concentration between
the extreme gates were found to be as high as 31% and 14%, respectively. Overall our results show that
respiratory associated density errors in the attenuation map affect quantitation throughout the lung, not just
regions near boundaries. The extent of this error is dependent on the activity distribution in the thorax and
hence on the tracer and time of acquisition. Consequently there may be a significant impact on estimated
kinetic parameters throughout the lung.
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Abstract
Accurate PET quantitation requires a matched attenuation map. Obtaining
matched CT attenuation maps in the thorax is difficult due to the respiratory
cycle which causes both motion and density changes. Unlike with motion,
little attention has been given to the effects of density changes in the lung on
PET quantitation. This work aims to explore the extent of the errors caused
by pulmonary density attenuation map mismatch on dynamic and static
parameter estimates. Dynamic XCAT phantoms were utilised using clinically
relevant '8F-FDG and '8F-FMISO time activity curves for all organs within
the thorax to estimate the expected parameter errors. The simulations were
then validated with PET data from 5 patients suffering from idiopathic
pulmonary fibrosis who underwent PET/Cine-CT. The PET data were
reconstructed with three gates obtained from the Cine-CT and the average
Cine-CT. The lung TACs clearly displayed differences between true and
measured curves with error depending on global activity distribution at the
time of measurement. The density errors from using a mismatched attenuation
map were found to have a considerable impact on PET quantitative accuracy.
Maximum errors due to density mismatch were found to be as high as 25%
in the XCAT simulation. Differences in patient derived kinetic parameter
estimates and static concentration between the extreme gates were found
to be as high as 31% and 14%, respectively. Overall our results show that
respiratory associated density errors in the attenuation map affect quantitation
throughout the lung, not just regions near boundaries. The extent of this error
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is dependent on the activity distribution in the thorax and hence on the tracer
and time of acquisition. Consequently there may be a significant impact on
estimated kinetic parameters throughout the lung.

Keywords: lung, density, PET/CT, respiration, attenuation correction, air
fraction correction, quantitation

(Some figures may appear in colour only in the online journal)

1. Introduction

Quantitative PET images can only be obtained with accurate attenuation correction (AC)
maps. These AC-maps are commonly derived from short CT acquisitions and are appropriate
in regions where internal anatomical motion is unlikely (Beyer et al 2003, Osman et al 2003).
However, in regions such as the thorax, these CT techniques only produce a ‘snap shot’ of the
respiratory cycle and therefore determining a PET matched AC-map is difficult (Pepin et al
2014). Respiratory AC-map mismatches can be separated into two types, the ‘motion’ leading
to location mismatches and the ‘density’ variations, due to lung fractional air volume (V)
change over the course of the breathing cycle. Mismatches due to motion have been widely
explored in the literature (Nehmeh and Erdi 2008, Sun and Mok 2012) and although density
variations due to the respiratory phase at the time of acquisition have long been acknowledged
by the CT community (Shaker ef al 2004, Gorbunova et al 2012), its effect on PET quantita-
tion has been largely ignored.

Methods for correcting for PET/AC-map mismatch include acquiring a ‘snap shot’ CT at
end expiration (breath hold) or while the patient performs shallow or free breathing (Goerres
et al 2002, Yamaguchi et al 2009, Nyflot et al 2015). Both of these techniques have been
shown to improve PET accuracy but issues still remain (Bacharach 2007, van der Vos et al
2014). Both methods involve some form of patient training and compliance can be difficult in
many respiratory conditions (Sun and Mok 2012). These techniques also do not account for
changes in density in the lung between the PET and CT images, only the locational mismatch.
Another alternative is to use Cine-CT acquisitions, utilising the average of the acquisition to
derive the AC-map (Pan et al 2005, Alessio et al 2007). This method is not widely used clini-
cally due to the higher patient dose. However, Cine-CT does have the advantage that both
location and density will be closely matched to the PET and therefore may be the best method
for determination of an AC-map.

Previous work on AC-map mismatch has shown that the extent of PET quantitation errors
in the region of the mismatch are not only dependent on the magnitude of the AC-map
mismatch, but also on the tracer distribution surrounding the mismatched region (i.e. the activity
in the thorax outside the lungs) (Thielemans et al 2008). It can therefore be theorised that the
extent of the PET concentration error due to the mismatch will vary with the tracer used and
time of acquisition, affecting both static and kinetic parameter estimate accuracy.

As errors due to AC-map mismatch have been shown to be mostly local, it is likely that
the correction for lung density changes is only required when the lung itself is the anatomy
of interest. A solid pulmonary tumour, for example, may be subject to motion due to breath-
ing, but the tumour density is unlikely to vary throughout the course of the breathing cycle.
However, lung PET/CT analysis is becoming more common with applications in chronic
obstructive pulmonary disease (COPD), interstitial lung disease (ILD), infection and inflam-
mation (Groves et al 2009, Inoue et al 2009, Win et al 2012b, Abdulla et al 2014). In the lung,
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the effect of mismatched PET and CT for accurate kinetic and static parameter estimates has
not been previously investigated.

One condition in which both static and dynamic PET parameters have been studied in
recent literature is the most severe form of ILD, Idiopathic Pulmonary Fibrosis (IPF). IPF
is a fatal restrictive fibrotic disease characterised by increased lung scar tissue distorting the
normal parenchyma architecture and resulting in regions of dense tissue with large air pockets
(Meltzer and Noble 2008). In this patient group, the average lung density is higher than that of
healthy lungs and variable across the organ. In IPF, density variations in PET images between
patients and within a single patient lung have been considered post reconstruction in terms of
‘air fraction correction” (AFC) (Lambrou et al 2011). AFC involves calculating the quantity
of air within each lung voxel from the CT Hounsfield units (HU) and then correcting the PET
image accordingly. AFC has been shown to improve PET image quantitation in the lungs of
IPF patients (Win et al 2012a, 2014), however the correction method is based on deriving
fractional air volumes from the CT, which if not matched, will provide an incorrect result.

AC and AFC are independent, non-related correction methods. However, both rely on the
PET and CT matching with a too low density in the CT causing an undercorrection of the PET
tracer concentration with AC, but an overcorrection for the AFC. It is therefore important to
study the effect of attenuation mismatch on AC and AFC.

In this work, we will investigate the impact of PET/CT mismatch due to both respira-
tory motion and density changes, with consideration of two commonly used clinical tracers
BF-FDG and 'F-FMISO. While we concentrate on quantification in the lung, a constant
high density region within the lung, representing a tumour, will also be considered to test the
hypothesis that a solid lesion may be less affected by density AC-map mismatch. The extent
of the errors associated with mismatched AC-maps on both AC and AFC PET quantitation
within the lung and tumour will be determined for kinetic and static parameter estimates using
simulations and patient data. Our investigation uses ungated non-time-of-flight (non-TOF)
PET data only as this is supported by all current scanner software.

2. Methods

2.1. Patient acquisitions

5 patients, 2 males and 3 females aged 70 = 5 yr all with diagnosed IPF underwent 'F-FDG
dynamic PET/Cine-CT in the local department using a GE Discovery VCT PET/CT scanner.
All patients were imaged supine immediately post-injection using 200 + 26 MBq '8F-FDG
with the protocol outlined in table 1. Cine-CT imaging was acquired with a duration equiva-
lent to the patient’s complete breathing cycle plus one second. Patient scans were obtained
from an ongoing study (NCT01725139) designed to explore a number of doses of a drug for
engagement of pharmacology in subjects with IPF after short term dosing. All patient data
used from this study were from baseline acquisitions (i.e. prior to patient dosing).

For use in simulations, the '*F-FMISO dynamic PET/static CT data from 1 male patient
suffering from a singular nodular lung tumour was utilised. This acquisition was part of a study
exploring hypoxia in oncology patients. The patient was imaged on the scanner described
above immediately following injection of 330 MBq of '®F-FMISO. For the patient’s comfort,
the study was performed in three parts to allow for breaks. The frame timings for the first part
(t = Omin post injection) of the scan were 12 x 10s,6 x 20s,6 x 60 s, 4 x 120 s and for the
second (f = 100 min) and third (r = 200 min) parts, the frame times were both 3 x 300 s.

Institutional Review Board permission, MHRA approval and informed patient consent
were obtained for all studies.
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Table 1. IPF FDG patient acquisition protocol.

Study Time post

section injection  Acquisition

Early Cine-CT (1 PET bed) cine duration 4.5-6 s depending on respiratory rate
0 min Patient injection (bolus administered over 1-3 s)
0 min 20 min dynamic PET (1 bed): 6 x 10,3 X 20,3 x 60,5 x 120s,

1x300s

20 min Patient break (free to move)

Late 30 min Cine-CT (1 PET bed) cine duration same as in previous acquisition

35 min 20min dynamic PET (1 bed): 4 x 300 s

2.2. XCAT simulations

Thielemans et al (2008) suggest that the errors in PET tracer concentration are mostly local to
the region with the AC-map mismatch and dependent on the activity distribution surrounding
that region. It therefore seems to follow that the errors associated with PET/AC-map mis-
match will be variable over time and different for each PET tracer utilised.

To test this theory and to gain further understanding into how the tracer kinetics affect
measured uptake in the lung and whether density mismatch is a significant effect, 3 XCAT
simulations were produced for each of the two tracers, '*F-FDG and '®F-FMISO. Healthy
lungs were used for simulation so as to not limit the study to patients of any specific disease
type, including those with cancer.

The first XCAT simulation contained mismatches due to motion and density (MD), the
second with just motion (M) (i.e the density in the lung remains constant) and the third with
density only (D) (i.e. the PET images are representative of a single respiratory gate and matched
in terms of anatomy to the AC-maps). In both the MD and M cases, the PET is ungated.

To ensure that the simulations had the correct lung densities over the course of the breathing
cycle, lung attenuation coefficients (u-values) determined from Cine-CT data from patients
with normal appearing lungs were used. The Cine-CT data were respiratory gated (see sec-
tion 2.3) and the p-values, extracted for the extreme gates (Hounsfield 1980), representing end
expiration and end inspiration. The p-values used for the lung in the end expiration and end
inspiration AC-maps are 0.0231 and 0.0191 cm~! respectively and the corresponding fractional
air volumes (V) (Lambrou ef al 2011) 0.77 and 0.81 respectively.

The XCAT simulations were then created as follows:

Image generation

(i) Determine '8F-FDG and '8F-FMISO TACs for every organ in the thorax:

(a) FMISO—all organ TACs, except those of the lung, were obtained from the thorax of
the cancer patient described in section 2.1. For the lung region, the TAC was derived
from a 2-tissue irreversible compartment model fit with the input parameters defined
by Wang et al (2009) as those for normoxic tissue. The reason for this is that FMISO
is a tracer for investigating areas of hypoxia. A preliminary analysis of the patient
data showed that hypoxic regions in the lungs of healthy patients are negligible as the
kinetic parameters K; and k3 tended to zero. Using normoxic tissue ensured that any
determined errors are associated with the effect of the mismatched CT and not the
ability of the optimisation algorithm to fit a zero value.

(b) FDG—all organ TACs (including lung) were obtained from a single control patient
undergoing PET/static CT imaging.
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(i1) Determine TACs for an FMISO and FDG tumour using the kinetic parameters defined in
Sachpekidis et al (2015) (no appropriate in house data available for lung oncology patients)
and applying a 2-tissue irreversible compartment model suitable for both F-FMISO and
8F_.FDG when acquired over relatively short scan times (Sokoloff et al 1977).

(iii) Create dynamic XCAT PET phantoms of the thorax with the inclusion of a 2 cm diameter
high and constant density region within the lung representative of a tumour. For the MD
and M cases, output 11 PET gates from the XCAT phantom, evenly spaced over the res-
piratory cycle (phase gated), where the breathing motion is defined by the XCAT default
diaphragm and anterior-posterior motion curves. Then take an average of these 11 gates
to obtain a motion averaged PET image. For D use the mid-inspiration gate only (MID).

(iv) Create matched AC-maps with lung values representative of healthy patient densities. For
the MD and M cases the matched AC-map is an average of 11 gates (AVE) and in the D
case use the MID gate.

(v) Create mismatched ‘snap shot” AC-maps from the extreme gates representing end inspi-
ration (INS) and end expiration (EXP) as well as a MID gate for the MD and M cases.

(vi) Simulate a PET acquisition taking into account single scatter and attenuation from the
matched AC-maps using the ‘software for tomographic image reconstruction’ (STIR)
(Thielemans et al 2012).

(vii)Reconstruct the PET data in STIR using OSEM (7 subsets, 40 iterations) both with the
correct and mismatched AC-maps for attenuation and scatter correction.

Analysis—AC errors

(i) Using masks that have been eroded away from edges determine lung, tumour and left
ventricle TACs from each of the reconstructed PET images.

(i1) Determine an input function (IF) from the left ventricle TAC by fitting a previously
defined model (Feng er al 1994).

(ii1) Fit the 2-tissue irreversible compartment model (Sokoloff et al 1977) to each of the TACs
and determine kinetic parameter estimates for each of the macro parameters K, (the flow-
extraction product), Vg (blood volume), K;, (the influx rate constant determined from the
2-tissue irreversible compartment model) and the micro parameters k, and k3 (Gunn et al
2002).

(iv) Perform Patlak—Rutland analysis to the TACs (Patlak er al 1983) to determine K;p (the
influx rate constant determined from Patlak—Rutland analysis).

(v) Apply AFC to the reconstructed PET images as previously described (Lambrou et al
2011).
(vi) Repeat steps (i)—(iv) above (note that the IF is not affected by the AFC).

This analysis results in 88 TACs to analyse (44 TACs without and 44 TACs with AFC). All
TACs were reviewed visually and the percentage difference between the true and measured
kinetic parameters were calculated. Lastly, the final time point alone was used to estimate the
errors associated with acquisition of a static image.

2.3. Patient data

IPF patient '®F-FDG data acquired using the protocol outlined in table 1 were used to deter-
mine errors from mismatched PET and ‘snap shot” CT. In this method it is assumed that the
average Cine-CT is correctly matched to the ungated PET data. INS, EXP and MID CT gates
were determined for the early and late study sections (see table 1) using PCA gating of the two
Cine-CT acquisitions (Thielemans et al 2011).
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FDG MD Peak Frame FDG MD End Frame  FMISO MD Peak Frame FMISO MD End Frame

2000

1000

-1000

FDG D Peak Frame FDG D End Frame FMISO D Peak Frame FMISO D End Frame

Figure 1. PET difference images (True—EXP) in Bq - ml~! for the XCAT MD and D
reconstructions for FDG and FMISO at two time frames. The true concentrations in the
heart, lungs and tumour at the peak time frames are 5 x 104, 3 x 10% and 9 x 103 Bq -
ml~! respectively and for the end time frame 3 x 103, 3 x 10? and 3 x 10* Bq - mI~!
respectively. A reference anatomical image is shown on the left which also displays the
location of the profiles shown in figure 2.

The raw PET data were reconstructed using OSEM (7 subsets, 40 iterations, 6 mm FWHM
filter) with each of the three gates and the average Cine-CT for AC using a GE proprietary
software for off-line data processing of PET/CT data.

To obtain an input function, the average Cine-CTs for the early and late study sections were
registered together using a non-rigid technique with the NiftyReg software (Ourselin et al
2001, Modat et al 2010). A manually drawn ROI over the heart and aorta was included in the
registration to ensure accurate alignment of this region. The resulting deformation fields were
applied to the reconstructed PET images. For each patient the IF was derived using a previ-
ously defined model (Feng et al 1994) by fitting data points obtained from a 2cm spherical
ROI placed within the ascending aorta (de Geus-Oei et al 2006). The size of the ROI was cho-
sen to be much smaller than the diameter of the ascending aorta in order to minimise partial
volume effects (van der Weerdt et al 2001).

Lung TACs were determined separately for the unregistered early and late study sections to
ensure that no bias in the kinetic model could occur due to registration errors. A lung mask,
eroded away from boundaries for each of the 4 reconstructions for each patient was used to
determine the TACs.

The early study acquisition lasted for a period of 20 mins only and it is therefore not
appropriate to apply a 2-tissue irreversible compartment model to these data. For this
reason, a l-tissue reversible compartment model was used to determine the parameters
K1, Vg and k, for the early data. This was performed for each gated CT and the average
Cine-CT reconstructed PET dynamics. Patlak—Rutland analysis was applied to the late
images to allow calculation of K;p. Lastly, the final time point alone was used to estimate
the errors associated with acquisition of a static image only. In each case, the percentage
difference between the estimated parameters using the gates and the average Cine-CT was
calculated.

The reconstructed PET images then underwent AFC using the appropriate average or gated
Cine-CT from each study section and the above analysis repeated.
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Figure 2. Profiles of the FDG XCAT D, M and MD reconstructed PET non-AFC
images at time # = 30 s. PET tracer concentrations for the TRUE (solid black line), EXP
(dotted line) and INS (dashed line) cases are shown. As can be seen, PET/CT mismatch
errors are mostly local with the whole lung affected in the D case but only edges in the
M case. The lung MD profiles are a combination of the M and D errors.
Table 2. Percentage difference between measured and true PET tracer concentration
results at the final time frames (representative of relative errors in SUV) of the motion
and density (MD), motion only (M) and density only (D) XCAT simulations with and
without AFC
MD M D
No AFC  AFC No AFC  AFC No AFC AFC
EXP 7.1 -23 -79 -79 15.3 52
FDG MID 0.0 0.0 0.1 0.1
INS —10.9 —1.7 3.8 3.8 —14.5 -56
EXP 8.5 —1.0 —-5.7 —-5.7 —12.6 4.3
FMISO MID -0.2 —-0.2 —0.1 —0.1
INS —11.7 -2.5 2.2 22 —24.5 —4.7
3. Results

In the following sections, EXP, MID and INS refer to the resulting PET data after reconstruc-
tion with the mismatched EXP, MID and INS attenuation maps.

3.1. XCAT simulations

The PET difference images (True—EXP) (figure 1) show that the error in the EXP image
depends on both tracer and time frame, i.e. tracer distribution. The MD images show largest
errors near the boundaries of the organs and the tumour. The D difference images show that
using the wrong lung-density for AC causes errors in the lung tissue and in the heart, while the
tumour and other surrounding regions are less affected. However, as the tracer concentration
in the heart is an order of magnitude higher than in the lung, the relative error in the lung is
much greater.
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Figure 3. Percentage difference curves between the TRUE TACs and the INS (grey
line) and EXP (black line) TACs in the D (top row), M (middle row) and MD (bottom
row) reconstructions for both FDG (first column) and FMISO (second column). The
graphs show the percentage differences before (solid lines) and after (dashed line) AFC.
Note that for the motion only case, AFC is just a scaling factor and thus the curves for
the non-AFC and AFC curves lie on top of each other.

Figure 2 displays profiles across the left lung of the reconstructed FDG XCAT phantom
images (figure 1) at time # = 30 s. For the D profiles, the true and mismatched AC-maps
demonstrate that the errors are mostly local to the lung region as expected. Errors in the M
phantom appear to be limited to the lung borders only.

Late time frame errors from each of the tracer simulations, both before and after AFC are
shown in table 2.

The percentage difference between the True TAC and the INS and EXP TACs for each of
the D, M and MD simulations for each tracer are shown in figure 3. It was found that the errors
in the D and M simulations have opposite signs (i.e. the errors due to motion are inverted with
respect to the density-related errors). The two tracer error curves were different in both shape
and extent. In general, the EXP data was found to have greater errors than the INS data. The
percentage differences between the MID and True TACs were found to be negligible.

The extent of the errors in the lung TACs derived from the AFC images (figure 3) were
found to be lower than those without AFC in the MD and D cases. After AFC, for MD, the
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Table 3. The true kinetic parameters (first two columns) and the maximum MD kinetic
parameter percentage differences between the true and those derived from the INS, MID
and EXP TACs, before and after AFC (final four columns). Note that the parameters k,
and k3 are not affected by AFC.

True kinetic parameter FDG FMISO

FDG FMISO No AFC AFC No AFC AFC
Ky 006ml-g!'-s7! 0.15ml-g~ ' 57! 3.9 14.7 —4.1 —6.5
Vp 0.24 0.10 —-33 7.2 -3.0 -7.1
Ko 19x%x103s! 7.6 x 107457t —-180 95 —440 382
Kip 19x%x103s7! 7.6 x 1074s7! —-129 38 —16.6 -7.9
ky  1.01s7! 0.20s~! 31.2 312 2.7 2.7
ks 30x1072s! 1.0x 1073571 2.9 2.9 —402  —40.2

curves converge in the tail in the FDG case, while for FMISO, the EXP curve is lower in the
peak than the INS curve, but higher in the tail. In the M case, the AFC acts as a scaling factor
and therefore does not change the magnitude of the percentage difference curve. In all cases,
there is a linear relationship between the percentage difference non-AFC and AFC curves and
as such, the AFC does not change the temporal shape of the these curves.

The maximum errors for all lung derived MD kinetic parameters are shown in table 3. With
the exception of k,, the FDG parameter errors were found to be lower than or equal to those of
FMISO. The different methods of calculating K; (2-tissue irreversible compartment model and
Patlak—Rutland analysis) should yield the same result if there are no TAC errors. However as
the shape of the TACs were incorrect, the two methods gave different results, with the Patlak—
Rutland method proving more reliable. The parameter of most interest for FDG is the influx
rate constant K; (Schroeder ef al 2011) which has a maximum error of —18% and for FMISO,
the parameter of interest is k3 (Thorwarth et al 2005) with a maximum error of —40%.

AFC reduced the sensitivity of the influx rate constant to mismatches in the AC-map. AFC
does not affect the micro parameters (Holman et al 2015).

TACSs and parameter estimates (dynamic and static) for the tumour region in the D simula-
tion were not significantly different (max error for Kj; of 1.4%). The MD and M cases had
significant errors due to blurring of the high density region itself, suggesting that motion is the
greatest component of the error.

3.2. Patient analysis

All 5 8F-FDG patient Cine-CTs were gated into 3 gates representing EXP, MID and INS.
The EXP and INS patient mean whole lung fractional tissue volume (1 — V,) were found to
be 0.45 £ 0.03 and 0.41 £ 0.03 respectively. This leads to a variation between extreme gates
of 8.2+ 1.5%.

A patient example of the I-tissue reversible compartment model fits of the early study
TAC:s is shown in figure 4. As with the phantom simulations, the INS data are underestimated
with respect to the average Cine-CT, with the reverse being true for the EXP data. The MID fit
closely matches the average Cine-CT curve in all cases. In all patients, there was an observed
difference in the shape of the curves between each of the gates.

After application of the AFC, the INS data are overestimated with respect to the average
Cine-CT (opposite to before AFC) again in agreement with the XCAT simulation results. AFC
appeared to cause convergence in the tail of the gated curve fits for all patients.
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Figure 4. An 'SF-FDG patient example of the fitted curves for the average Cine-
CT reconstruction and for each of the INS, MID and EXP gates using data from
the early part of the study only. The plots show the peak (top row) and a zoomed in
region between 600 and 1050s (bottom row) displayed both before (left column) and
after (right column) AFC. Note that the INS is underestimated before correction and
overestimated after, the reverse is true for the EXP reconstruction. Examination of the
peak illustrates the errors that can arise when fitting the data using the incorrect p-map.

Table 4. Mean (min,max) kinetic parameter percentage differences between those
derived from the FDG patient PET data reconstructed with gated CT and the Cine-CT
before and after AFC. Note that the parameter k; is not affected by AFC.

K 1 VB kz
No AFC AFC No AFC AFC No AFC

EXP  51(3.1,102) —0.7(=3.1,3.1) 1.7(=1.5,47) —29(—1.1,-5.0) 1.0 (—2.4,3.6)
MID  09(-1.1,41) 13(03,43) —1.0(04,-23) 0.0 (0.7,-0.9) 0.9 (—0.2,2.7)
INS -1.0(21,-33) 584,79 —58(-3.8,-7.6) 07(-1.7,2.0) 1.6(—0.7,2.9)

Table 4 lists the average and range of percentage differences between the kinetic para-
meters derived from fitting the early TACs to the 1-tissue reversible compartment model.

Percentage differences between the Patlak—Rutland K;p from the late TACs for the average
Cine-CT reconstructed data compared to each of the three gated-CTs are shown in table 5.
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Table 5. Mean (min,max) Patlak K;p percentage differences between those derived
from the patient FDG PET data reconstructed with gated CT and the Cine-CT before
and after AFC. K;p values are the same order of magnitude as those found in table 3.

Kip
No AFC AFC
EXP 13.0 (2.5, 33.6) 7.7 (=2.5, 28.0)
MID —1.3 (1.5, —-5.6) —1.1(1.2, -3.6)
INS —8.1(-3.9, —16.1) —1.1 (3.7, —8.0)

Table 6. Mean (min,max) percentage differences between the concentration in the final
time frame representative of a clinical static acquisition. Percentage differences are
those derived from the patient FDG PET data reconstructed with gated CT and the
Cine-CT before and after AFC. Note the inversion of the sign before and after AFC.

Final time frame concentration

No AFC AFC
EXP 2.9(1.0,3.9) —1.7(~1.1,-2.2)
MID —0.5 (0.6, —2.6) —0.1(—=0.2, —0.6)
INS —54 (=32, -8.7) 1.5(0.1,2.7)

Table 7. The maximum percentage difference between the EXP and INS parameters
estimates from the FDG patient data. The errors are presented before and after AFC.

Parameter No AFC AFC

K 9.8% —6.4%
Ve 12.4% —-5.9%
ky —5.1% —5.1%
Kip —30.8% —23.6%
Final time point 13.8% —4.8%

The largest errors were found from the EXP curve. In all cases, the errors were found to be
lower after AFC.

Table 6 displays the percentage differences for the concentrations found in the final time
point (representing a clinical static study). In all patients, the INS concentration was found to
be underestimated (by up to 9%) with the reverse being true for the EXP concentrations. As
previously found (section 3.1), AFC appears to invert the signs and reduce the magnitude (by
a factor of 3) of the errors found in the non-AFC results.

The maximum percentage difference between the EXP and INS gate estimates of all the
parameters are shown in table 7. The greatest errors were found for K.

4. Discussion
Quantitative imaging in the thorax is known to be complex due to respiratory effects. While

motion correction has been extensively reviewed in the literature, little attention has been
given to density changes. In this paper, for the lung, it has been shown that not accounting for
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CT density changes within the lung can lead to significant errors in estimated parameters and
that these errors are dependent on the tracer distribution at the time of imaging, the extent of
the density variation and the volume change of the mismatched region.

The AFC attempts to account for density effects post reconstruction by removing the air
component within each voxel. Without this correction, true activity concentration in the lung
tissue will be underestimated. This method has been reviewed elsewhere and shown to improve
quantitative accuracy (Lambrou et al 2011, Win et al 2012a, 2014, Holman et al 2015). Here
it is the effect of the wrong AC-map on AFC that is of interest.

This work used XCAT phantoms to perform realistic simulations of dynamic and static
patient data with different tracer distributions. Analysis of patient data confirmed the XCAT
simulation results providing confidence in the conclusions drawn.

The effect of PET and CT mismatch on regions both within lung tissue (e.g. lung tumours)
and outside the lung tissue (e.g. the heart) were investigated (figure 1). In these regions,
simulations that included motion were excluded from analysis due to region edge delinea-
tion difficulties and partial volume effects. The density only simulations produced negligible
relative errors in parameter estimates and therefore lung density mismatches are unlikely to
affect these regions. Our results are in agreement with previous work which found that PET/
AC-map mismatch errors are mostly local (Thielemans et al 2008). Density mismatches are
therefore not considered a concern for studies involving solid lung tumours of any size. The
remainder of this discussion is limited to effects within the lung tissue and away from lung
boundaries.

With reference to table 2 and figure 3, PET and CT density mismatches were found to have
larger absolute parameter estimate errors irrespective of the tracer used when compared to
motion mismatches. Density only and motion only errors were also found to have opposite
signs. This is because the effect of overestimating lung size is an overestimation of the attenu-
ation due to increased path length, leading to an overestimation of the PET tracer concentra-
tion while an underestimation of density (large lungs at end inspiration where density is low)
results in an underestimation of the attenuation and hence the PET tracer concentration.

The overall motion and density errors were found to be less than the motion only and
density only errors alone due to the sign change discussed above (table 2). This implies that
if a lung imaging study is corrected for motion alone (i.e. use of registration without density
compensation) then the errors on the parameter estimates may be higher than they were before
the correction.

The errors in the motion and density TACs were found to be within 13% (figure 3) but the
extent of the error varied over time. It is therefore possible to obtain a TAC with a shape con-
siderably different to the truth. The result is that large errors in estimated kinetic parameters
are possible even with smaller changes in the TAC at any given time point (tables 3 and 5).

The AFC factor is derived from the CT and will be incorrect if the density is mismatched to
the PET. The observed result after incorrect AFC is that the TAC is overestimated at early time
points and underestimated at late time points if a CT map around end expiration is used (vice
versa around end inspiration) (figures 3 and 4). The result is that the shape of the error curves
vary depending on the tracer used, explaining the differences seen in the FDG and FMISO
parameter estimate errors (table 3).

The only rate constant affected by the AFC has been shown to be K| (and any parameter
containing K;) (Holman ef al 2015). It is therefore expected that this parameter may be more
sensitive to the wrong values being used for the correction factor when the PET and CT are
mismatched and this has been found to be true (tables 2—6 and figure 3). The errors in influx
rate constant and end time frame concentration (representative of SUV) were found to reduce
after AFC when compared to the non-AFC results. However, the extent of this reduction is
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dependent on p, tracer and activity distribution within the thorax. Therefore, while AFC is
clearly not a ‘correction’ for the effects of mismatch, the importance of applying the AFC in
reducing errors and providing more stable results for these parameters is clear (Lambrou ef al
2011, Win et al 2014).

The Patlak—Rutland influx rate constant is determined from the tail of the TACs only,
and is less affected by early curve errors discussed above. This parameter should therefore
be more accurate and stable than that from the compartment model as confirmed in table 3.
Nevertheless, in patient data, K;p was still found to have a 28% difference to that of the aver-
age Cine-CT after AFC table 5.

For patient image analysis, average Cine-CT was used to represent true matched CT.
This assumption requires acquisition of a ‘typical’ breathing cycle to match appropriately.
However, comparison of the early and late Cine-CTs acquired in the same patient displayed
small variations due to the short CT scan times (the fractional tissue volume change between
the two average scans was 0.03 £ 0.02). Nonetheless these variations in lung density between
the Cine-CTs were considerably lower than those resulting from the use of ‘snap-shot’ CTs
and therefore, Cine-CT is still considered one of the best solutions for matching the PET and
CT, although further validation is required.

Another limitation to this work is the use of 3 CT gates only to derive the EXP, MID
and INS gates in the patient data. This means that each gate is an average over a third of the
breathing cycle and does not reflect the extreme change in p-values that could occur in regu-
lar clinical practice. The patient results presented here may therefore be an underestimate of
the possible errors associated with PET/CT mismatch. Comparison of the patient and XCAT
simulations display the same trends in results and as the XCAT data simulate a larger density
change over the breathing cycle, they may provide more representative errors.

The p-value change over the breathing cycle could be considerable and is different between
patient groups. For example, the IPF patients in this study had a relative change in lung
density over the breathing cycle of 9%, but previous work Kauczor et al (2002) has found that
for healthy lungs this difference is 40% on average. However in the work by Kauczor et al
(2002) the density change is likely to be an overestimate when compared to free breathing as
it is calculated from forced end expiration and forced end inspiration. Our own data suggests
a 20% difference in density for free breathing.

The final limitation to this work is that only non-TOF PET was used for the analysis.
If TOF PET were used, it would be expected that these errors would reduce as it has been
shown that the TOF PET reconstruction is less sensitive than non-TOF to mismatches in the
PET and CT acquisitions (Conti 2011). Further work is required to ascertain if density change
leads to significant errors with TOF PET.

To reduce the errors due to PET and AC-map mismatch, it is recommended to use a
Cine-CT to allow for density changes over the respiratory cycle, the Patlak—Rutland tech-
nique to determine K; with the disadvantage that other parameters cannot be determined and
to apply the AFC as it provides results which are more stable and have lower bias. As an alter-
native to Cine-CT it is possible to gate the PET and only reconstruct the gate that matches to
the acquired CT or to train the patient such that a MID CT can be acquired. However, patient
compliance is difficult to achieve (Sun and Mok 2012).

The errors determined in this study are significant when utilised for monitoring disease
progression or for other clinical trials in which the patient is imaged multiple times. This is
because the AC-maps for each study may not be acquired at the same part of the breathing
cycle and may therefore increase test-retest error results. Accounting for CT density changes
to ensure parameter stability is therefore essential in these types of studies.
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Accounting for density PET/CT mismatch errors is also important for patient studies with
regional lung density variations such as those with IPF. The kinetic parameter errors within
these patients will vary across the lung, possibly limiting the extent of the analysis that can be
performed due to the need for small ROIs and therefore a large noise component. This will be
the subject of future work.

In gated PET studies, each gate is often reconstructed with a single CT acquisition how-
ever, the resulting mismatch in density between gated PET and CT will be larger than in the
ungated PET case studied in this paper, resulting in larger errors. If gated PET is to be used,
accounting for the density change over the breathing cycle is crucial for lung studies.

Finally, this study also has implications for PET/MR. In PET/MR, application of a true
p-map is impossible and instead AC-maps are derived from MR data (Wagenknecht ez al 2013).
These AC-map approximations may lead to significantly greater errors in lung PET quantita-
tion than observed in this work.

5. Conclusion

Respiratory induced lung density changes between PET and CT acquisitions are an important
contribution to the errors in lung tissue PET quantitation. The extent of these errors depends
on the tracer used, the density variation in the patient’s lung over the breathing cycle and the
tracer distribution within the thorax at the time of measurement. While correcting for motion
is vital, not accounting for density changes will give rise to errors in both static and kinetic
parameter estimates. In some cases, correcting for motion alone can lead to larger errors than
not correcting at all. Air Fraction Correction (AFC) has been shown to be less sensitive to
density mismatches, although errors are still appreciable.
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