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Abstract

Spatio-temporal log-Gaussian Cox process models play a central role in the analysis

of spatially distributed systems in several disciplines. Yet, scalable inference remains

computationally challenging both due to the high resolution modelling generally re-

quired and the analytically intractable likelihood function. Here, we exploit the spar-

sity structure typical of (spatially) discretised log-Gaussian Cox process models by

using approximate message-passing algorithms. The proposed algorithms scale well

with the state dimension and the length of the temporal horizon with moderate loss in

distributional accuracy. They hence provide a flexible and faster alternative to both

non-linear filtering-smoothing type algorithms and to approaches that implement the

Laplace method or expectation propagation on (block) sparse latent Gaussian models.

We infer the parameters of the latent Gaussian model using a structured variational

Bayes approach. We demonstrate the proposed framework on simulation studies with

both Gaussian and point-process observations and use it to reconstruct the conflict

intensity and dynamics in Afghanistan from the WikiLeaks Afghan War Diary.

Keywords: latent Gaussian models, log-Gaussian Cox process, variational approxi-

mate inference, expectation propagation, sparse approximate inference, structure learn-

ing, conflict analysis.
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1 Introduction

Dynamic models of spatially distributed point processes are widespread in scientific applica-

tions of computational statistics, ranging from environmental sciences (Wikle et al., 2001) to

epidemiology (Diggle et al., 2005; Ahn et al., 2014) and ecology (Hooten and Wikle, 2008)

to name but a few. The prevalence of such data is dramatically increasing due to advances

in remote sensing technologies, and novel application domains are fast emerging in the so-

cial sciences due to the large scale data sets collected, for example through social networks.

Log-Gaussian Cox processes (LGCPs) introduced in (Møller et al., 1998) are an important

modelling paradigm for such systems, due to their ability to elegantly explain event-based

data through the introduction of an auxiliary latent Gaussian field.

Despite their importance, inference in LGCPs remains computationally challenging.

Markov chain Monte Carlo (MCMC) is frequently employed and has desirable asymp-

totic properties; however, despite considerable advances (Andrieu et al., 2010; Girolami

and Calderhead, 2011; Yuan et al., 2012), the computational costs of sampling approaches

remain high for high-dimensional latent fields, and in the presence of heterogeneous data

sets. Deterministic approximations can provide a computationally effective alternative for

computing the posterior distribution over the latent field, which is often the computational

bottleneck in high dimensions. Current approaches can be broadly classified as blocked or

dynamic. Blocked approaches cast the (time-discretised) model as a latent (sparse) Gaussian

model with all state variables concatenated into a single large vector, and apply the Laplace

method (Rue et al., 2009; Lindgren et al., 2011) or a corresponding expectation propagation

(EP) algorithm (e.g., Cseke and Heskes, 2011). The computational cost of inference in the

blocked approach is dominated by a sparse partial matrix inversion (Takahashi et al., 1973);

these costs may become untenable for very high dimensions, and it is not always clear what

further (robust) approximations could be used to alleviate these problems (e.g., Wist and

Rue, 2006; Simpson et al., 2013). Dynamic approaches address the state inference prob-

lem using a filtering-smoothing (forward-backward) dynamic programming approach within

a variational or EP approximation framework (e.g., Zammit-Mangion et al., 2012a; Ypma

and Heskes, 2005; Hartikainen et al., 2011). Due to the non-conjugate likelihood, dynamic
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approaches also have to resort to approximations, typically exploiting the message passing

formulation of inference in graphical models (e.g., Lauritzen, 1996; Koller and Friedman,

2009). The cost of the forward-backward algorithm is typically cubic in the dimension of the

state space due to the predictive update step in the Kalman filter.

In this paper we build on the dynamic approach to inference in spatio-temporal LGCPs,

extending it in several ways in order to achieve efficiency in high-dimensional settings. First,

we cast the model as a dynamic latent Gaussian model using time discretisation and basis-

function projection, the weights of which define the state variables in a latent state-space

model representation. Following this we derive a variational, joint state-parameter infer-

ence method for approximating the full posterior distribution over the states and unknown

parameters. This approximate distribution is factored over states, parameters governing

the state-interaction structure, and noise parameters, respectively. In the case of LGCPs,

the message-passing algorithm for computing the approximate posterior distribution over

the states is not analytically tractable since the likelihood is non-Gaussian. The key con-

tribution of the paper is the derivation of an approximate message-passing algorithm for

dealing with this intractability that does not suffer from the computational limitations aris-

ing from high-dimensional state spaces. We achieve this by enforcing a sparse structure of

the messages, and adopting efficient sparse linear algebraic methods (Davis, 2006) in the

local computations of the message-passing algorithm. This circumvents the limitation of

typical forward-backward algorithms that invariably involve operations that destroy spar-

sity, for example due to matrix multiplication and marginalisation (as in the Kalman filter’s

update step). We show that the approximate message passing scheme we propose is an

instance of expectation propagation (Minka, 2001) that can also be derived from the view

of an expectation constrained approximate inference framework (Heskes et al., 2005; Opper

and Winther, 2005).

The method naturally allows for a compromise between computation speed and accuracy.

To show this we introduce a class of constraints that result in Gaussian messages having

precision structures that are increasingly representative: (i) diagonal (factored messages),

(ii) spanning tree (iii) chordal and finally (iv) fully connected (full messages). The latter case

(iv) corresponds to the filtering-smoothing type algorithm that uses expectation propagation
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to cater for the non-Gaussian parts of the model.

Comparisons in simulated case studies show that the proposed algorithms scale well with

state dimension and, depending on the complexity of the messages, we can carry out approx-

imate inference on thousands of state variables and hundreds of time-steps with reasonable

time and memory requirements.

The text is structured as follows. In Section 2 we introduce log-Gaussian Cox processes

and present the discretisation and numerical approximation steps that simplify this model

to a dynamic latent Gaussian model with non-Gaussian likelihood terms. In Section 3 we

describe the variational inference framework applied to this problem, and derive a class of

dynamic message-passing algorithms that exploit the sparsity resulting from the discretisa-

tion. In Section 4 we carry out extensive simulation studies, discuss the performance of these

algorithms and use them to extract the micro-dynamics of conflict events in the Afghan war

(Zammit-Mangion et al., 2012a). Section 5 concludes the work.

2 Model

In this paper we are interested in the dynamic modelling of two-dimensional point patterns.

The data consists of location- and time-stamped events Y = {(si, ti)}i where the locations

si are points in a two-dimensional compact domain S ⊂ R×R and the time-stamps ti are in

a time interval T = [0,max({ti}i)]. In order to model this type of data, we use log-Gaussian

Cox process models (Møller et al., 1998) discretised in both space and time. We discretise

the domain S by using a triangular lattice and using the corresponding piecewise linear finite

element functions as basis functions. We discretise time by first dividing the time interval T

into T time windows {Tt}t of equal size∆t, that is Tt = [t∆t, (t+1)∆t) and T∆t = max({ti}i).

We then treat the data Y as a set of spatial point processes indexed by t. Specifically, we let

Y = ∪tYt where each Yt contains the (spatial-only) events occurring in the window Tt. The

choice of ∆t is often determined by the application and is in practice a difficult choice with

potentially important computational repercussions. While a detailed discussion of this issue

is beyond the scope of this article, we note that this choice is often expert-driven; failing

that, non-parametric methods to quantify data autocorrelations (Zammit-Mangion et al.,
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Figure 1: An illustration of the spatio-temporal discretisation employed. The right panel illustrates
two basis functions defined according to the triangular finite element spatial discretisation. The
bases are shown for two nodes/vertices, one in the interior and one on the boundary of the domain.
The left panel illustrates the temporal connectivity for some of the nodes resulting from the spatio-
temporal discretisation described in Section 2. Similarly, the temporal connectivities are shown
only for an interior and a boundary node/vertex.

2012a) or other Bayesian model selection criteria (e.g., Kang et al., 2015) may be employed

to determine a suitable discretisation.

We define the log intensity function of the point process as a linear combination of the

n piecewise linear basis functions φj : S → R; j = 1, . . . , n. That is, λ(s, t) ≈ exp{xTt φ(s)},

where φ(s) = (φ1(s), . . . , φn(s))T and the weights (states) xt ∈ Rn. We further assume that

the weights xt follow a linear dynamical system

xt+1 = Axt + εt, (1)

where εt ∼ N (0,Q−1) with both A and Q sparse. This linear dynamical model for the

log intensity u(s, t) = log λ(s, t) can be derived from spatio-temporal models commonly

employed in practice, such as the integro-difference equation (IDE) (Wikle, 2002), and the

stochastic partial differential equation (SPDE) (Zammit-Mangion et al., 2012b). Sparsity in

A and Q follows either from gridding the domain or from employing a Galerkin reduction

on an infinite-dimensional system in u(s, t), s ∈ S, t ∈ T using the basis functions {φj(s)}j.

6



The likelihood of the intensity λ(s, t) can be written as

p(Y | λ) ∝ exp
{
−
∫
S×T

dsdt λ(s, t)
}
×
∏
i

λ(si, ti).

Using the spatial and temporal discretisation schemes outlined above, we re-write this like-

lihood as p(Y | λ) ∝
∏

t p(Yt | xt) where

p(Yt|xt) ∝∼ exp
{
−∆t

∫
S

ds ex
T
t φ(s)

}
×
∏
s∈Yt

ex
T
t φ(s)

= L1(xt)× L2(xt;Yt). (2)

This likelihood can be split into two components: the first component L1(xt) is directly

related to the void probability of the process. We adopt the approach in Simpson et al.

(2011) and numerically approximate the integral as:

logL1(xt) ≈ −∆t

p∑
j=1

η̃j exp(φT (s̄j)xt)

= −ηT exp(Wxt), (3)

where the vector η denotes the integration weights∆tη̃ and the matrixW = [φ(s̄1), . . . ,φ(s̄p)]
T

contains the values of the basis at the chosen p integration points {s̄j}j. The second com-

ponent of the likelihood, L2(xt;Yt), denotes the contributions from the observed events and

can be represented as

logL2(xt;Yt) =
∑
s∈Yt

φT (s)xt = hTt xt, (4)

where hjt =
∑
s∈Yt φj(s) is the sum of basis functions evaluated at the events’ spatial coor-

dinates. The approximate log-likelihood can hence be written, up to a constant, as

log p(Yt|xt) ≈ −ηT exp(Wxt) + hTt xt. (5)
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Both compact basis functions and gridded domains induce sparsity in W . In particular,

if one chooses the integration points to be the vertices of a triangulation or the centres of

gridded cells, then W simplifies to the identity matrix of size n × n, In×n, where n = p.

The integration weights η then correspond to the volumes (scaled by ∆t) of the basis with

unit weight (Simpson et al., 2011). Note from (5) that, since W is diagonal, the non-

Gaussian terms depend only on xjt . In the following we use ψt,j(x
j
t) = exp{−ηj exp(xjt)}

to denote the non-Gaussian component of the likelihood terms ψ̃t,j(x
j
t) = ψt,j(x

j
t) exp(hjtx

j
t)

appearing in (5).

In our settingQ is a diagonal matrix, while we assume that the structure of the transition

matrix A follows that of the neighbourhood graph that results from the discretisation. The

matrix A hence describes small-scale, possibly directional, spatio-temporal dynamics, and

it is reasonable to assume that A only has a select amount of non-zero elements on the

neighbourhood structure. For this reason we impose a spike and slab prior on these structural

elements by introducing a set of binary auxiliary variables Z = (zij)i,j with zij ∈ {0, 1} and

where Z, like A, has the same sparsity structure resulting from the discretisation. We

then define the conditional prior p(aij | zij, vslab) = N (aij; 0, vslab)zijδ(aij)
1−zij where δ(·) is

the Dirac delta function, and assume a Bernoulli prior p(zij | pslab) = Ber(zij; pslab) (spike

and slab prior). Consequently, we can use the posterior distribution of the variable zij to

quantify the relevance of the transition coefficient aij. We use a Gamma prior Gam(qii; k, τ)

for the diagonal elements of the precision matrix Q. We conclude our model specification

by letting x1 be Gaussian with mean m1 and covariance matrix V1. The hyper-parameters

θ = {m1,V1, vslab, pslab, k, τ} are fixed.

With the above assumptions we can write down the joint probabilistic model as

p(Y ,X,A,Z,Q | θ) = p(x1)
∏
t

p(xt+1 | xt,A,Q)
∏
j

ψ̃t+1,j(x
j
t+1) (6)

×
∏
i∼j

p(aij | zij,θ)p(zij | θ)
∏
j

p(qjj | θ),

where X = {xt}t and {aij}i∼j denotes all the structurally non-zero elements (following from
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the neighbourhood graph) in A. The prior distributions are given by

p(x1) =N (x1;m1,V1),

p(xt+1 | xt,A,Q) =N (xt+1;Axt,Q
−1),

p(aij | zij, vslab) =N (aij; 0, vslab)zijδ(aij)
1−zij ,

p(zij | θ) =Ber(zij; pslab),

p(qjj | θ) =Gam(qjj; k, τ).

3 Inference

In many application areas such as the ones mentioned in Section 1, the dimension of the

state space and the length of the time horizon is in the range of hundreds or thousands

which makes MCMC sampling from the posterior distribution computationally demanding.

For this reason, we resort to variational approximate inference methods; we seek structured

factorised approximations to the posterior distribution. Variational approximate inference

methods formulate inference as an optimisation problem by using the Kullback-Leibler diver-

gence D[·||p] as optimisation objective (e.g., Jordan et al., 1999). These methods have been

successfully applied in many areas of engineering and machine learning where large scale

analytically intractable probabilistic models are common. In latent Gaussian models they

provide tractable Gaussian approximations to analytically intractable Bayesan posteriors

(e.g., Opper and Archambeau, 2009; Saul et al., 1996).

To apply variational inference to our problem, we approximate the posterior distribution

p(X,A,Z,Q | Y ,θ) in (6) with a factored distribution

q(X,A,Z,Q | θ) = qX(X | θ)qAZ(A,Z | θ)qQ(Q | θ),

where the factors are the solution to the optimisation

minimise
qX ,qAZ ,qQ

D[qX(X | θ)qAZ(A,Z | θ)qQ(Q | θ) || p(X,A,Z,Q | Y ,θ)] . (7)
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To simplify notation, hereafter we omit the dependence of the distribution of interest on the

hyper-parameters θ.

The optimality conditions of (7) can be used to define a component-wise fixed point

iteration that is known to correspond to a coordinate descent towards a local optimum of

the objective. These updates are

qX(X)new ∝ p(x1)
∏
t,j

ψt+1,j(x
j
t+1) exp

{∑
t

〈log p(xt+1 | xt,A,Q)〉qAZ ,qQ
}
, (8)

qAZ(A,Z)new ∝
∏
i∼j

p(aij | zij)p(zij) exp
{∑

t

〈log p(xt+1 | xt,A,Q)〉qX ,qQ
}
, (9)

qQ(Q)new ∝
∏
i

p(qii | θ) exp
{∑

t

〈log p(xt+1 | xt,A,Q)〉qX ,qAZ
}
, (10)

where we use 〈·〉q to denote the expectation with respect to a distribution q. These updates

are performed in a circular fashion to achieve a coordinate descent in each step. If the first

and second moments of qX are known, then (9) and (10), and hence also the exponential

term in the update (8), can be easily found. However, non-Gaussian components of (8)

prevent us from directly computing the moments of qX .

To deal with the analytical intractability of qX , we propose to compute the required expec-

tations by applying further approximate inference techniques. We view qX from a graphical

model (Lauritzen, 1996) or factor graph (Kschischang et al., 2001) perspective and propose

a novel large-scale extension of an approximate inference technique called expectation prop-

agation (Opper and Winther, 2000; Minka, 2001). We show that the approximations we

arrive at can be embedded into the wider, principled framework of variational approximate

inference by using expectation constraints (Heskes et al., 2005; Opper and Winther, 2005).

We extend this framework to accommodate our structured variational inference approach

for the joint model p(X,A,Z,Q | Y ,θ). In the following sections we present the algo-

rithmic approach. A detailed, generic derivation of the proposed method is given in the

Supplementary Material.
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3.1 The model qX

The model for qX is a dynamic latent Gaussian model where the non-Gaussian terms

ψt,j(x
j
t) depend on only one state-space component xjt . We collect the Gaussian terms into

Ψt,t+1(xt,xt+1) ∝ exp{〈log p(xt+1 | xt,A,Q)〉qAZ ,qQ} × exp(hTt+1xt+1) and define qX as

qX(X) ∝
∏
t

Ψt,t+1(xt,xt+1)×
∏
t,j

ψt+1,j(x
j
t+1). (11)

The model is tree structured, and thus inference can be done by using the message-passing

algorithm (e.g., Lauritzen, 1996) or the sum-product algorithm (e.g., Kschischang et al.,

2001).

Message passing algorithms operate on so-called factor graphs. These are bipartite graphs

for which the node sets consist of factors of a probability distribution and the corresponding

variables (or groups thereof). A factor is connected to all variables (or groups thereof) that

are subsets of its arguments. Message passing is a dynamic programming algorithm that

computes marginal probability distributions in factor graphs with tree structure, that is,

that do not contain any loops. To each edge of this graph we assign a pair of messages, one

in each direction. The message from a variable node to a factor node is computed as the

product of all incoming messages from the other factors. The message from a factor node to

a variable node is the marginal of the product of the factor and all other incoming messages

to that factor. The dynamic nature of the algorithm guarantees that once all messages are

computed, the marginals over the variables (sometimes termed beliefs) can be formed as the

product of the factors and the incoming messages (e.g., Kschischang et al., 2001).

In our case, the factors are {Ψt,t+1}t and {
∏

j ψt,j}t, while the groups of variables are the

states {xt}t. The message passing updates corresponding to the factor graph representation

11



of this model (illustrated in Figure 2), read

λ0t+1,j(x
j
t+1) ∝ ψt+1,j(x

j
t+1),

ξt+1(xt+1) ∝
∫
dxt Ψt,t+1(xt,xt+1)ξ̂t(xt),

ηt(xt) ∝
∫
dxt+1 Ψt,t+1(xt,xt+1)η̂t+1(xt+1),

λlt+1,j(x
j
t+1) ∝

∫
dx
\j
t+1 ξt+1(xt+1)ηt+1(xt+1)

∏
k 6=j

λ0t+1,k(x
k
t+1),

ξ̂t(xt) ∝ ξt(xt)
∏
j

λ0t,j(x
j
t),

η̂t+1(xt+1) ∝ ηt+1(xt+1)
∏
j

λ0t+1,j(x
j
t+1).

The messages ξt+1, ηt and λ0t+1,j are factor-to-variable messages sent from Ψt,t+1 and ψt+1,j

to xt+1 and xt, while ξ̂t, η̂t+1 and λlt+1,j are the corresponding variable-to-factor messages.

By denoting αt = ξ̂t and βt = ηt and writing the marginal densities corresponding to the

factors as

qX(xt,xt+1) ∝ Ψt,t+1(xt,xt+1)αt(xt)βt+1(xt+1)
∏
j

λ0t+1,j(x
j
t+1), (12)

qX(xjt+1) ∝ ψt+1,j(x
j
t+1)λ

l
t+1,j(x

j
t+1), (13)

we can rewrite the algorithm in the following form:1

λ0t+1,j(x
j
t+1)

new λlt+1,j(x
j
t+1) ∝ qX(xjt+1), (14)

λ0t+1,j(x
j
t+1) λ

l
t+1,j(x

j
t+1)

new ∝
∫
dxtdx

\j
t+1 qX(xt,xt+1), (15)

αt+1(xt+1)
new βt+1(xt+1) ∝

∫
dxt qX(xt,xt+1), (16)

αt(xt) βt(xt)
new ∝

∫
dxt+1 qX(xt,xt+1). (17)

In the typical approach, one performs forward-backward updates w.r.t αt and βt whilst also

doing a λlt,j and λ0t,j update at each time step. This algorithm is analogous to the well known

1See Supplementary Material for details.
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Figure 2: Illustration of the factor graph and the message-passing algorithm for the model qX .

Rauch–Tung–Striebel smoothing algorithm for linear dynamical systems with a Gaussian

likelihood.

In order to make the message passing tractable with a non-Guassian likelihood, we use

Gaussian messages between the Gaussian and non-Gaussian terms. Moreover, we propose

to use messages with restricted precision structures between the Gaussian factors to exploit

sparsity and significantly reduce computing time; details are presented in the following sub-

sections and in the Supplementary Material.

3.1.1 Approximations for non-Gaussian likelihoods

Due to the non-Gaussianity of ψt+1,j, the updates (14)–(17) cannot be computed analytically.

To deal with this, we recast λ0t+1,j(x
j
t+1) as a Gaussian message by defining q̃t+1(x

j
t+1) ∝

ψt+1,j(x
j
t+1)λ

l
t+1,j(x

j
t+1), and, based on (14), introducing the approximation

λ0t+1,j(x
j
t+1)

newλlt+1,j(x
j
t+1) = Project

[
q̃t+1(x

j
t+1);N

]
. (18)

The operation Project[q(x); N ] is the projection of a distribution q(x) into the Gaussian

family N in the moment matching Kullback-Leibler sense, that is,

Project
[
q(x);N

]
= argmin

q̃∈N
D[q(x)||q̃(x)] .

13



This projection finds a Gaussian distribution q̃(x) that has the first and second moments

identical to those of q(x). Note that the method operates by projecting the marginal distri-

butions resulting from the message passing and not the messages themselves (Minka, 2001;

Heskes and Zoeter, 2002; Minka, 2005).

A natural consequence of the projection (18) is that the messages no longer compute

the marginals qX(xt,xt+1) and qX(xjt+1) given in (12) and (13), but instead local approxi-

mate marginals, which we denote as q̃t,t+1(xt,xt+1) and q̃t+1(x
j
t+1), respectively. A further

consequence of the approximation is that the resulting marginals only satisfy the weak con-

sistency conditions Project[q̃t+1(x
j
t+1);N ] = q̃t,t+1(x

j
t+1), that is, q̃t+1(x

j
t+1) and q̃t,t+1(x

j
t+1)

only match in their first two moments. This becomes apparent when the approach is derived

from an expectation constrained inference perspective, see Supplementary Material for more

details.

The resulting algorithm that caters for the non-Gaussian components of the likelihood

can be written as follows:

λ0t+1,j(x
j
t+1)

new λlt+1,j(x
j
t+1) ∝ Project

[
q̃t+1(x

j
t+1);N

]
, (19)

λ0t+1,j(x
j
t+1) λ

l
t+1,j(x

j
t+1)

new ∝
∫
dxtdx

\j
t+1 q̃t,t+1(xt,xt+1), (20)

αt+1(xt+1)
new βt+1(xt+1) ∝

∫
dxt q̃t,t+1(xt,xt+1), (21)

αt(xt) βt(xt)
new ∝

∫
dxt+1 q̃t,t+1(xt,xt+1), (22)

where, similar to (12) and (13),

q̃t,t+1(xt,xt+1) ∝ Ψt,t+1(xt,xt+1)αt(xt)βt+1(xt+1)
∏
j

λ0t+1,j(x
j
t+1), (23)

q̃t(x
j
t+1) ∝ ψt+1,j(x

j
t+1)λ

l
t+1,j(x

j
t+1). (24)

Note how, since the newly defined λ0t+1,j(x
j
t+1) is Gaussian, the computations for the forward

and backward approximate messages in (21) and (22) are now tractable. As such, from

an implementation point of view, the only modification to the algorithm of (14)–(17) is

the replacement of (14) with (18). The Project[q̃t+1(x
j
t+1);N ] step in (18) can be done
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by univariate numerical quadrature. Due to the accuracy of these univariate methods, the

numerical error in computing the moments is negligible. The (19) and (20) updates are

performed for all j at once; this corresponds to the so-called parallel EP scheduling in

Gerven et al. (2009) and Cseke and Heskes (2011).

Although the resulting message-passing algorithm is not exact, similar approximate

message-passing algorithms have been successfully used in various models (e.g., Murphy

et al., 1999; Minka, 2001; Heskes and Zoeter, 2002). These have been derived from different

perspectives for various tasks such as the cavity method in statistical physics (Opper and

Winther, 2000), assumed density filtering-based factor-graph inference (Minka, 2001, 2005)

or expectation constrained approximate inference (Heskes and Zoeter, 2002; Heskes et al.,

2005; Opper and Winther, 2005). In latent Gaussian models with log-concave likelihoods

(such as the model considered here), the fixed point iteration over the messages typically

exhibits fast convergence and provides good quality approximations (e.g., Minka, 2001; Kuss

and Rasmussen, 2005; Seeger, 2008).

3.1.2 Exploiting sparsity

The approximate messages introduced above make inference tractable since all messages (αt,

βt, λ
0
t+1,j, λ

l
t+1,j) and the relevant approximate marginals q̃t,t+1(xt,xt+1) become Gaussian.

However, in the case of large state spaces, the O(n3) computational and O(n2) storage costs

resulting from the computation of the temporal messages αt and βt can become prohibitive.

To lessen these costs, and thus render inference scalable, we propose further approximations

made possible by exploiting the structural sparsity of A and Q.

From (23) we can see that, by restricting the precision matrix of the temporal messages

αt and βt+1 to be sparse, one can keep q̃t,t+1(xt,xt+1)’s precision matrix sparse. This allows

us to use fast sparse linear algebraic methods, such as the sparse Cholesky factorisation and

partial matrix inversions, to compute the required moments. To introduce our proposed ap-

proximations which result in temporal messages with sparse precision structures, we proceed

as follows.

Let f(x) = (x1, . . . , xn, {−xixj/2}i∼j) denote the sufficient statistic of a Gaussian Markov

random field where i ∼ j follows the connectivity of a graph with n vertices, G(f), to
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be specified later. Let Project[q(x);Nf ] denote the Kullback-Leibler moment matching

projection to the Gaussian family with precision structure defined by G(f). We make use

of the form of (21) and (22) to define the approximate message updates

αt+1(xt+1)
newβt+1(xt+1) ∝ Project

[ ∫
dxt q̃t,t+1(xt,xt+1);Nf

]
, (25)

βt(xt)
newαt(xt) ∝ Project

[ ∫
dxt+1 q̃t,t+1(xt,xt+1);Nf

]
. (26)

These projections ensure that the forward and backward messages αt and βt have a sparse

precision structure, defined by G(f), at all times. Similarly to the approach presented in

the previous section, this new approximate message-passing algorithm (i.e., equations (19),

(20),(25) and (26)) is computed iteratively until a fixed point is reached. As in Section

3.1.1, once convergence is achieved, the above definition of the messages results in the weak

consistency conditions

Project
[ ∫

dxt−1 q̃t−1,t(xt−1,xt);Nf
]

= Project
[ ∫

dxt+1 q̃t,t+1(xt,xt+1);Nf
]
.

See Supplementary Material for details.

In the following we detail the computational issues related to the newly introduced ap-

proximate message-passing algorithm. Specifically, we show that (i) fast linear algebraic

methods can be applied to exploit sparsity and (ii) when and under which conditions on

G(f) we can do the projection Project
[
·;Nf

]
efficiently.

A. Efficient methods for moment computations.

In Section 3.1.1 we have already shown that we carry out (19) by computing the first and

second moments of q̃t,j using univariate numerical quadrature. The update (20) is performed

by computing the univariate canonical parameters corresponding to the marginal q̃t,t+1(x
j
t+1),

while updates in (25) and (26) are performed by computing the canonical parameters result-

ing from the projections to Gaussians with restricted precision structure. In the following we

show how the computation of these canonical parameters can be carried out using efficient

moment computations through sparse matrix inversion and log-determinant optimisation.

The computation of the marginal
∫
dxtdx

\j
t+1 q̃t,t+1(xt,xt+1) in (20), for all j, reduces
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to the computation of the marginal means and variances of xt+1 in q̃t,t+1(xt,xt+1), which

can be computationally expensive. The crucial idea that leads to significant computational

savings is that we perform the computations on the joint q̃t,t+1(xt,x+1) that now has a sparse

precision structure. Let (hαt ,Qαt) and (hβt+1 ,Qβt+1) denote the canonical parameters of the

messages αt and βt+1, respectively. Further, concatenate the parameters of λ0t+1,j into the

representation (hλ0t+1,·
,Qλ0t+1,·

) where, Qλ0t+1,·
is diagonal. Recall the definition of Ψt,t+1 from

(11) and that of q̃t,t+1 in (23). The linear parameter ht,t+1 and the precision matrix Qt,t+1

of q̃t,t+1(xt,xt+1) can be written as hTt,t+1 = [hTαt ,h
T
t+1 + hTβt+1

+ hT
λ0t+1,·

] and

Qt,t+1 =

 〈ATQA
〉
qAZ ,qQ

+Qαt −〈A〉TqAZ 〈Q〉qQ
−〈Q〉qQ 〈A〉qAZ 〈Q〉qQ +Qβt+1 +Qλ0t+1,·

 . (27)

To compute the required moments of xt+1, we (i) solve the system [Qt,t+1]
−1[ht,t+1]

and (ii) compute the diagonal of [Qt,t+1]
−1. We do this by a sparse Cholesky factorisation

of a fill-in reduction reordering of Qt,t+1 (Davis, 2006) followed by (i) solving triangular

sparse linear systems and (ii) doing a partial inversion by solving the Takahashi equations

(Takahashi et al., 1973). The Takahashi equations compute all the covariance elements that

correspond to non-zeros in the Cholesky factor, and thus to all non-zeros in Qt,t+1. This

property is pivotal to rendering the Project[ · ; Nf ] step computationally efficient.

In the following, we show how to derive the canonical parameters for αt+1; a similar

procedure is used to derive those for βt. From (25), it follows that we have to project

q̃t,t+1(xt+1) into the Gaussian family Nf . Let mt,t+1 = Q−1t,t+1ht,t+1 and Vt,t+1 = Q−1t,t+1.

Further, let m
[t+1]
t,t+1 and V

[t+1]
t,t+1 denote the marginal mean and variance of xt+1. Then,

Project[q̃t,t+1(xt+1);Nf ] reduces to finding the matrix Qαt+1 which solves

minimise
Qαt+1

tr
(
V

[t+1]
t,t+1Qαt+1

)
− log detQαt+1 (28)

s.t. [Qαt+1 ]ij = 0, for all (i, j) 6∈ G(f),

and hαt+1 = Q−1αt+1
m

[t+1]
t,t+1.

The optimisation (28) can be solved by gradient-based methods or the Newton method
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and the calculations are computationally expensive. However, when the graph G(f) is

chordal (e.g., Lauritzen, 1996), optimality conditions lead to equations that can be solved

exactly (without expensive optimisation) by using only the values [V
[t+1]
t,t+1 ]ij with (i, j) ∈ G(f)

(Dahl et al., 2008). Recall that the partial matrix inversion of Qt,t+1 always computes these

values, and hence no further covariance computations are needed. For this reason, in this

paper we especially consider restricting temporal messages to have chordal precision structure

(that is, we set G(f) to be chordal). The algorithm for computing Project[·;Nf ] for chordal

graphs follows from Dahl et al. (2008) and is presented in the Supplementary Material. It

has a complexity that scales approximately cubically with the largest clique size in G(f),

which is generally much less than n.

B. Choosing chordal structures for spatial applications.

In principle, any chordal graph structure can be used, however, since in this work we

are concerned with spatial applications, it is natural to motivate the choice of G(f) based

on the neighbourhood graph of the spatial lattice. In general, the neighbourhood graph

corresponding to a spatial lattice is not chordal. Therefore, in order to take advantage of

the efficient optimisation resulting from the use of chordal structures, we need to include

extra edges in the neighbourhood graph such that the resulting G(f) is chordal. Notice that

by the use of chordal completions we are using a larger family f than the neighbourhood

structure, so that no additional approximation error is introduced in this way.

It is well known that sparse Cholesky factorisations create chordal matrices that contain

the original sparse matrix structure (Davis, 2006). For this reason, we propose to construct

chordal graph structures by carrying out (symbolic) sparse Cholesky factorisations of the

adjacency matrix given by the spatial lattice. Our choice of chordal graphs is motivated by

computational arguments: we aim to construct chordal structures that include the neigh-

bourhood graph and are maximally sparse, so that the precision matrix in (27) is as sparse as

possible. There is a substantial literature on maximising the sparsity of the sparse Cholesky

factors by row-column permutations, see Davis (2006) and references therein. In this paper

we use (i) the approximate minimum degree permutation (Amestoy et al., 1996), denoted

by amd, (ii) the symmetric reverse Cuthill-McKee permutation (Cuthill and McKee, 1969),

denoted by rcm, and (iii) the nested dissection permutation (Brainman and Toledo, 2002),
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Figure 3: Illustration of the sparsity structures of the graph G(f) and the matrix Qt,t+1 on
the lattice model illustrated in Figure 1. The panels in (a) show the chordal completions of the
sparsity structure of the lattice obtained by symbolic Cholesky factorisations using “fill-in” reducing
permutations. Panels (b), (c) and (d) show the structure of Qt,t+1 for a choice of G(f) as well
as the structure of its Cholesky factors for various reordering permutations. For more details see
Sections 3.1.2 and 3.1.3.
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Figure 4: Computational complexities of sparse matrix operations as a function of state dimension.
The left panel shows the maximum clique size of the chordal graphs generated from a triangular
mesh by using amd and nd permutations. The right panel shows the empirical computational
complexity estimates for the partial matrix inversion of Qt,t+1.

denoted by nd.

The panels of Figure 3 show the sparsity structures of G(f), Qt,t+1 and the corresponding

Cholesky factor for various choices of row-column permutations for a triangular lattice with

n = 140. The matrix A corresponds to a lattice structure as illustrated in Figure 1 and

Q is diagonal. The group of panels (a) show the chordal graphs G(f) generated from the

lattice using the various permutations. The group of panels (b) show the structure of the

Qt,t+1s for which G(f) is the chordal completion of the neighbourhood graph following an

amd permutation. The top-left panel of this group showsQt,t+1, while the other panels in this

group show its corresponding Cholesky factors following the amd, rcm, and nd permutations.

The panels (c) and (d) consider different graphs G(f), diag and tsp, where diag corresponds

to a diagonal structure and tsp corresponds to a spanning tree of the neighbourhood graph.

These graph structures are discussed further in Section 3.1.3.

The panels of Figure 4 show the maximum clique size of the chordal graph generated from

a triangular mesh and the empirical computational complexity estimates for the partial

matrix inversion of Qt,t+1. We generated triangular meshes of various size on a circular

domain and used the amd and nd permutations to complete them to chordal graphs. The

left panel shows that the maximum clique size scales approximately as O(nγ) with γ ∼ 1/2
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for both permutations, implying that the time required to solve (28) scales approximately as

O(n3/2) or O(n2) at most (recall the cubic complexity of the projection step w.r.t. maximum

clique size). The right panel shows an estimate of the number of flops required for solving

the Takahashi equations given the sparse Cholesky factor of Qt,t+1. The chordal component

in this plot was generated by using amd and nd permutation-based chordal completions

for G(f) and an amd permutation for the sparse Cholesky factorisation on Qt,t+1. The

flop-count estimates show that the computational complexity of the chordal methods scales

approximately as O(n3/2) or O(n2) at most, and that the computational complexity of the

diag is significantly lower. These results are in line with the complexity estimates in George

(1973) and Rue and Held (2005).

3.1.3 Approximations and message passing schedules

The choice of G(f), and the scheduling of the updates in the fixed point iteration of equa-

tions (19), (20),(25) and (26), govern the accuracy and the computational complexity of the

inference algorithm. In the following we detail our choices and relate some of these to the

current literature.

The computational complexity of the approximations is dominated by the partial matrix

inversion of Qt,t+1, that is in turn directly determined by the structure of G(f). We thus

consider three classes of G(f): (i) full, where G(f) is fully connected, which corresponds to

an approximate inference approach of propagating full Gaussian messages (Ypma and Heskes,

2005), (ii) chordal, whereG(f) is a chordal graph, corresponding to messages having precision

matrices with restricted sparsity structure (the spanning tree structure tsp is a special case),

and (iii) diag, where G(f) is a disconnected graph, corresponding to factorised temporal

messages. With diag, only marginal means and variances are propagated, see Murphy and

Weiss (2001) for an algorithmically similar approach for models with discrete variables.

When G(f) is fully connected, (full temporal messages), Qt,t+1 has dense diagonal blocks,

and hence the computational complexity scales as O(n3T ). When G(f) is chordal, this

complexity is reduced; empirical studies showed that the resulting complexity is around

O(n2T ). In case of tsp and diag, we expect a complexity of around O(n3/2T ) (Rue et al.,

2009, Section 2.1).
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In terms of message scheduling we differentiate between the following choices: (i) Static.

Here the forward backward updates (25) and (26) for all time steps are iterated until con-

vergence and then the (19) and (20) updates are performed. In this scheduling, the forward-

backward (25)–(26) iteration corresponds to an approximate partial matrix inversion while

the updates (19) and (20) correspond to the EP steps in a blocked model (Minka, 2001;

Cseke and Heskes, 2011). (ii) Sequential. Here the (19) and (20) updates are iterated until

convergence at each time step, followed by a (25)-(26) update; these steps are performed in

a forward backward fashion. In this scheduling, the (19) and (20) steps correspond to an EP

algorithm approximating the Kalman update steps at each time point. (iii) Dynamic. Here,

in order to minimise the number of expensive partial matrix inversions, we use a greedy

scheduling strategy. With this strategy, at every step we select the message that has the

largest (last) update (in terms of canonical parameters), and update both the receiver and

the source of this message, be it either q̃t,t+1(xt,xt+1) or q̃t+1(x
j
t+1). For example, suppose

that αt has the largest recent update. Then, we update q̃t,t+1 and its outgoing messages βt

and αt+1 followed by an update of q̃t−1,t and its outgoing messages, thus providing a new

update also for αt. Simulation studies showing the computation savings of the greedy al-

gorithm are given in Section 4, while the scheduling options are discussed further un the

Supplementary Material.

By constructing longer scheduling queues (ranking the change in messages, instead of

choosing the maximal change), one can distribute the computation in the dynamic scheduling

scheme to several processing units and achieve a further reduction of computing time. We

distribute the computation by selecting and scheduling locally independent receiver-source

pair updates to different computational cores. We adapt the greedy approach by keeping

a ranking of the message updates and then in each cycle proceeding from the top of the

ranking in selecting pairs of approximate marginals q̃t,t+1 to update. We select as many

disjunct pairs as available computational units, proceed with the computation and repeat

these cycles until convergence. Currently, we can achieve about a five fold reduction in

computation time using eight cores in our Matlab2 implementation. We believe that this

can be further improved by fine-tuning our ranking and scheduling scheme and by making

2http://www.mathworks.com
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better use of Matlab’s distributed computing toolbox.

3.2 The models qAZ and qQ

In this paper we are interested in learning dynamics for models with diagonalQ, therefore, we

only present the inference for such models. For diagonal Q, the distribution qAZ factorises

over the rows of A (denoted ai) and the rows of Z (denoted zi), that is, qAZ(A,Z) =∏
i q
i
AZ(ai, zi) (see (9) in Section 2) with each qiAZ being a multivariate conditional Gaussian.

Due to the sparse lattice structure, qiAZ simplifies to a distribution with low, say 6 − 10,

dimensions, and therefore the marginal moments can be computed exactly in reasonable

time. The first and second moments of ai needed to update qX and qQ are computed from

qiAZ(ai), whereas qiAZ(zij) can be used as a measure of the relevance of aij. In cases whenQ is

not diagonal, the model for qAZ has a high dimensionality and exact inference is intractable.

In such cases we can resort once again to approximate message passing. The form of this

non-factorising model and the corresponding message-passing algorithm are outlined in the

Supplementary Material.

In general we choose conjugate priors for Q or we keep Q fixed. When Q is diagonal,

from (10) we can see that qQ factorises as qQ(Q) =
∏

i qQ(qii) and that due to conjugacy,

the marginals qQ(qii) are Gamma distributed.

4 Experiments

In this section we assess the speed and accuracy of the inference methods we introduced and

show the potential use of this approach in the WikiLeaks Afghan War Diary data studied

in Zammit-Mangion et al. (2012a). The algorithms have been coded in Matlab and for

partial matrix inversion we use the implementation of Gerven et al. (2011–2015), which is

implemented in the C programming language.
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4.1 Accuracy of state inference in 1D models

In this section we assess the accuracy of the state inference methods in 1D Gaussian and

Poisson models by using fixed parameters. Although, these models do not fall in the class of

models we discussed so far, they are well suited for an empirical assessment of the quality of

approximations we introduce. We use the Gaussian model to assess the accuracy of restricted

(temporal) message passing inference schemes diag and chordal by comparing them to the

exact full. By replacing the Gaussian likelihood with a Poisson likelihood we assess the loss

of accuracy due to non-Gaussian likelihoods. Note that the Poisson likelihood ay time t and

location j is formally identical to ψ̃t,j.

4.1.1 Models and accuracy measures

In both the Gaussian and the Poisson case, we consider a diffusion model on a 1D grid with

n− 1 grid intervals (n state space variables, xt ∈ Rn) and T time points. We define A as a

symmetric banded matrix with various bandwidths nneighb and aij = (1− εA)/(1 + 2nneighb)

with values for nodes close to the boundaries rescaled accordingly to obtain a constant row-

sum 1 − εA. We define the system noise inverse covariance Q as a linear combination of

a first order intrinsic field’s precision matrix and a unit diagonal matrix. We introduce a

parameter s to control the correlation decay in Q−1 and normalise Q−1 to obtain a chosen

variance value vx. Formally, Q is defined as

Q(vx, s) = v−1x
√

diag(R(s)−1)R(s)
√

diag(R(s)−1), where R(s) = I + 10sR1,

and R1 denotes the tri-diagonal precision matrix corresponding to the quadratic form∑
i(xi+1 − xi)2. The left panel of Figure 5 shows how s influences the correlation decay.

The observation models are defined as follows. In the Gaussian case we assume that we

observe the field with added Gaussian observation noise with variance vobs, and that the field

is only partially observed: we sample the locations of the observations from the n×T space-

time grid uniformly with probability pobs. In the Poisson case the observations are Poisson

random numbers with mean exp{xit} and we sample at all locations of the space-time grid.

As mentioned above, in the Gaussian case we focus on the accuracy of diag and chordal

and compare them to the exact full to assess the loss in accuracy due to the restricted
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temporal messages. Since the objective of the state inference method is to approximate the

two-time-slice marginals q̃t,t+1(xt,xt+1), the accuracy measure we choose is the symmetric

KL divergence w.r.t. the exact two time slice marginals pt,t+1(xt,xt+1) computed by full.

Therefore, we define the accuracy measure

S({pt,t+1}t, {q̃t,t+1}t) =
1

2(T − 1)

T−1∑
t=1

{
D[q̃t,t+1|| pt,t+1] + D[pt,t+1|| q̃t,t+1]

}
. (29)

In the Poisson case the quality of the approximation is affected both by the restricted tem-

poral messages and the non-Gaussian nature of the problem. Our aim here is to assess the

joint effect of both sources of inaccuracy.

In the Gaussian case the KL measure seems to be a reasonable choice to assess the dis-

tributional accuracy. However, in the Poisson case the exact marginals are not available,

therefore, we opt for the quantile-quantile (Q-Q) summaries as a measure of accuracy. Since

the accuracy measure should reflect the local nature (we only approximate marginals) of

the algorithm, we use the local Gaussian approximation q̃t,t+1(xt,xt+1) to compute the nor-

malised residuals ε̂t,t+1 w.r.t. the state values x̃t,t+1 used in the data generation. Formally,

we define the residuals as

ε̂t,t+1 = LTt,t+1(x̃t,t+1 −mt,t+1),

where mt,t+1 and Qt,t+1 = Lt,t+1L
T
t,t+1 are the mean and precision corresponding to

q̃t,t+1(xt,xt+1). We then use the quantile values to assess how well the standard normal

distribution fits ε̂jt,t+1 for all j and t. Specifically, we use the mean absolute deviation from

the standard normal quantiles as a measure of accuracy.

4.1.2 Simulation results

In the Gaussian case we considered models with n = 64, T = 100 and nneighb ∈ {1, 2, 4, 8}.

We chose a system noise variance vx = (0.5)2, an observation noise variance vobs = (0.25)2 and

we set pobs = 0.75. We chose s ∈ {−1, 0, 1} leading to the correlation functions shown on the

left panel of Figure 5. We simulated the models starting from a sample from the stationary
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Figure 5: Quantifying accuracy for the 1D Gaussian model. The left panel shows the correlation
decay in Q(1, s)−1 w.r.t. the location index i for s ∈ {−1, 0, 1} while the right panel shows the
average over nexp = 25 runs of the log10 of KL accuracy score (29) for various choices of nneighb
(colour) and s (line style) as a function of the message bandwidth nmsg. Lower values are indicative
of better performance.

distribution. All these parameter choices together with εA = 0.025 lead to simulated samples

with rich variations in the latent field {xt}t in the given time window. We simulated nexp = 25

runs for each model and we computed the KL based score in (29) for diag (nmsg = 0) and

for the chordal models corresponding to messages with bandwidths nmsg ∈ {1, 2, 4, 8, 16} in

their precision matrix, thus varying the accuracy of the approximation. Note that nmsg = 63

corresponds to the exact full method and due to the univariate nature of the problem,

all chordal methods (amd, nd and rcm) lead to the same banded structure in the temporal

messages’ precision matrix. For each inference method, the inference scheme was run until the

change in the maximum absolute value in the message parameters became smaller than 10−8.

The right panel of Figure 5 shows the average log KL accuracies w.r.t. the message bandwidth

nmsg for various choices of nneighb and s. The accuracy plots show that for the diag method

(nmsg = 0) the accuracy is dominated by s and that the chordal methods lead to a significant

improvement in accuracy. The general pattern in the variation of the accuracy w.r.t. nneighb

and s is that, as expected, smaller correlation in Q−1 and fewer neighbours in A lead to

better accuracy. For all cases the accuracy increases as the message bandwidth nmsg increases

thus validating the usefulness of the chordal inference methods.
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Figure 6: Quantifying accuracy for the 1D Poisson model. The left panel shows sampled Poisson
data from the model while the right panel shows the logarithm of the average (over nexp = 25 runs)
mean absolute quantile deviations (50 bins) for various choices of nneighb (colour) and s (line style)
as a function of message bandwidth nmsg. Lower values are indicative of better performance.

In the Poisson case we used the same latent diffusion model, generated Poisson obser-

vations (see the left panel of Figure 6) and used the same inference schemes and stopping

criteria as in the Gaussian case. For each run we constructed Q-Q curves using the residuals

ε̂jt,t+1 and 50 quantile bins and then measured the accuracy of the inference by computing the

mean absolute deviation of the curve from the diagonal. We then averaged all the deviations

over nexp = 25 experiments for each choice of nneighb, s and message bandwidth nmsg. The

resulting accuracies are shown in the right panel of Figure 6. The plots show that, similarly

to the Gaussian case, the quality of the approximation improves as we increase the message

bandwidth nmsg and that, typically, there is a significant increase in accuracy when moving

from diag to chordal methods. As in the Gaussian case, the weaker the diffusion (smaller

nneighb) the more accurate the method is, however, it seems that in this case correlation in

Q−1 leads to slightly improved accuracy—compare the performance of the chordal methods

with the diag one and note the bad performance of diag for s ∈ {0, 1}.

4.2 Accuracy and structure recovery in a 2D spatial model

In this section we consider a two-dimensional spatio-temporal model where we vary the

transition matrix A and a diagonal inverse covariance Q and we assess the accuracy of
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Illustrating A with w=0.7 on grid of 55 nodes 
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Figure 7: The top left panel illustrates the transition matrix A for a 2D model with w = 0.7 and
a state space of size n = 55. The rest of the panels show the log intensity and the simulated events
(open circles) corresponding to a sequence of 3 steps from a model with n = 362, w = 0.4 and
σ2 = 1 and a similarly structured transition matrix as in the top left panel. The resulting field,
and consequently the point patterns, exhibit a rotation motion.
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the state inference and the recovery rate of the network structure corresponding to A. In

order to obtain interesting dynamics, we define the field on a circular domain and choose

the structure of the matrix A such that the model gives rise to a rotating “motion” in the

Gaussian field. To achieve this, we define A as follows: we start from a symmetric structure

given by a triangular lattice, that is aij = aji for all i, j = 1, . . . , n, and for each node i we

eliminate all incoming edges (i, j) for which the corresponding vector in the lattice is not in

an anti-clockwise direction w.r.t. the domain’s center, see Figure 7, top-left panel. We then

set the elements of the i-th row of A according to

aii = w, and aij = (1− εw − w)/|N (i)|,

where N (i) denotes the set of neighbours of node i in this newly defined directed structure.

We set εw to a small value such that the row ai sums are lower than 1, thus resulting in

a zero stationary mean value for the states. We set εw = 0.05. The remaining panels of

Figure 7 show samples from the field u(s, t) =
∑

j φj(s)x
j
t and the event data generated from

it. We vary the diagonal values of A by choosing w ∈ [0, 1] and modify the system noise

Q−1 = σ2I by choosing σ2 ∈ {0.5, 1, 2}. The stationary mean and covariance of {xt}t are

given by

m∞ = Am∞ and V∞ = AV∞A
T + σ2I,

and the mean value of the stationary intensity is

〈λ∞(s)〉 = exp
{
φ(s)Tm∞ +

1

2
φ(s)TV∞φ(s)

}
.

We simulated artificial event data by using initial samples from the stationarity distribution.

The mean m∞ is typically sufficiently close to zero to be negligible; thus the mean intensity

is determined by V∞, that is, by w and σ2. In the first experiment we assess how the accuracy

of the state inference varies in terms of w and σ2, while in the second one we fix σ2 = 1 and

do joint inference for the parameters in A and the states in X.

We assess the accuracy of the state inference on models with n ∈ {362, 1008}. We
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Figure 8: Accuracy of the state space approximation in a 2D spatial model. The panels show
the Q-Q plots for a variety of parameter settings and methods in models with n = 362 (top) 1008
(bottom) and T = 50. The Q-Q plots were generated using the residuals ε̂jt,t+1, see Section 4.2.

generated a sequence of T = 50 state samples {x̃t}t starting from the stationary distributions

and sampled the event data by using a standard thinning method. We then ran the state

inference methods using the w and σ2 parameters the data was generated by. The panels

in Figure 8 show the Q-Q plots using the residuals ε̂jt,t+1 for various settings of w and

σ2. We can see that in this model the methods have very similar performance (the Q-Q

plots overlap) and there is a decrease in performance as the values of w and σ2 increase,

as expected. The overlap of the Q-Q plots can be explained by the diagonal nature of Q

(low noise correlation) and the magnitude of the Q-Q accuracies, see Figure 6 right panel.

The worsening of performance due to increasing w is negligible compared to that due to

increasing σ2, which can be explained by the fact that higher system noise leads to less

accurate approximations.

Recovering the structure of A is important in many spatio-temporal applications where
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Figure 9: Structure recovery. The panels of the figure show the ROCs for various settings of w
and T and for a variety of state inference methods, see Section 4.2. Colours denote the choices of
T while line types denote the inference method used for qX .

we want to infer how events spread over a certain geographic area, see for example the data

in Section 4.4. To test the quality of edge recovery, we generated data by using the above

described construction of A and a fixed σ2 = 1, and inferred the (approximate) posterior

distribution of X,A and Z. In Section 3 we mentioned that the (approximate) posterior

distribution of the variables zij can be used to quantify the relevance of an edge (i, j).

Here we use P (zij = 1) as classification scores to assess whether the correct edges have

been eliminated from the prior lattice structure, and we construct receiver-operator curves

(ROC) to assess the quality of the structure inference. These curves show the true positive

rate versus the false positive rate when varying the classification threshold between 0 and 1.

The panels in Figure 9 show the ROC curves for various choices of w, T and approximation

methods. We can conclude that, as expected, the quality of the recovery increases as T

increases for all values of w. As expected lower values of w and thus higher diffusion speeds

lead to better performance on structure recovery in a limited time window. The difference

in various state inference methods is hardly noticeable in these models and is well within

the expected statistical variation. This lack of difference can be explained by the accuracy

results discussed above.
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4.3 Running times and scalability

To determine the scalability of the algorithm as we vary n, we use the setting of Section 4.2

with A fixed to encode the neighbourhood graph. The results presented in this section are

insensitive to the specific parameter values. We used a set of parameters that, at stationarity,

result in around 1000 events per time frame; a typical count for large datasets.

The algorithms were tested on domains with varying mesh density, n ∈ {362, 562, 1008}

and computing times were recorded using Matlab’s profiler. The message passing was run

until every parameter in the message was not changed by more than 10−4 in successive

iterations. To ensure a fair comparison, all test results given here are with computations

restricted to a single processor core.3

The computing times for the sequential scheduling scheme are plotted in the left panel of

Figure 10. We segmented the computing times to correspond to the three main operations:

(i) temp-messages stands for the Project[·;Nf ] operation (28), (ii) overhead accounts for

initialisations, message updating and convergence monitoring, (iii) local lin-alg logs the time

for linear algebraic operations (dominated by the Cholesky factorisation and partial matrix

inversion), and (iv) local non-Gaussian stands for the univariate moment computations to

update λ0t,j in (19). For clarity, we omit results for the static scheduling case which were up

to an order of magnitude slower than the second worst-performing method.

The left panel in Figure 10 shows that, for small n, the full inference scheme is faster

than the other schemes due to the fact that it is implemented more efficiently in terms of

dense matrix operations (Matlab/LAPACK core routines). However, the situation changes

for n = 1008, where we see that the full is slower than the best chordal methods and much

slower than the tsp and diag. Note that the increase in total computing time is well below

cubic and at most quadratic for all methods other than the full. It is clear from this figure

that full will become untenable for large n (note the rate of growth w.r.t. n).

Although the scheduling itself does not affect the scalability of the algorithm, it can be

seen from Figure 10, right panel, that, as expected, the greedy scheduling can greatly reduce

the computing time. For instance, after the initial forward-backward, the full needed only a

few factor updates to achieve convergence within tolerance.

3All algorithms were tested on an Intel CoreTMi7-2600S @ 2.80GHz personal computer with 8GB of RAM.
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Figure 10: Left panel: Running times for various state space sizes and scheduling options. (left)
Running times for the inference schemes full, diag, and chordal schemes none, amd, rcm, nd and tsp.
Right panel: Comparison in terms of running times of the sequential (left bar) and greedy (right
bar) scheduling strategies. Local operations refer to the local linear algebra whilst the temporal
messages refer to the Project[·;Nf ] optimisation.

4.4 The Afghan War Diary

Spatio-temporal point-process methods have recently been shown to be a valuable tool in

the study of conflict. In Zammit-Mangion et al. (2012a), a dynamic spatio-temporal model,

inspired by the integro-difference equation, was used to obtain posterior estimates of conflict

intensity in Afghanistan and to predict conflict levels using an iterative state-parameter

update scheme on the WikiLeaks Afghan War Diary (AWD). Updates on xt were found

using an algorithm similar to the full described above. The spatial scales considered there

were on the order of a 100 km and thus, modelling of micro-scale effects such as relocation or

escalation diffusions in conflict were not possible. Conflict dynamics are known to occur at

much smaller scales (Schutte and Weidmann, 2011), even at resolutions of ≈10 km. The goal

of this section is thus primarily to show that we can perform inference at such high resolutions

and, in addition, estimate the dynamics on the required spatial and temporal scales.

4.4.1 State estimation using fixed parameters

Afghanistan has an area of over 500000 km2 and the WikiLeaks data set contains over 70000

events. The mesh we employed (using population density as a proxy for mesh density),

shown in Figure 11 has the largest triangles with sides of 22km and the smallest ones with
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sides of 7km. The total number of vertices amounts to n = 9398 in a system with T = 313

time points (weeks).

We constructed A using a Galerkin reduction with a mass lumping method (Bueche

et al., 2000; Lindgren et al., 2011) of a diffusion equation. For illustration purposes, the

diffusion constant was set to D = 10−4 with latitude/longitude as spatial units (all of A will

be estimated in the next sub-section). The matrix Q = 0.2 × I was taken as rough value

from the full joint analysis using a low resolution model, see Zammit-Mangion et al. (2012a)

for details. We carried out inference in the AWD with the diag algorithm, which took only

a few hours on a standard PC and consumed only about 4GB of memory.

A characteristic plot showing one week of the conflict progression (first week of October

2009) is given in Figure 11. At this point, in the conflict, activity in the south in Helmand

and Kandahar was reaching its peak and conflict at the Pakistani border was intensifying

considerably. The insets clearly show how detailed inferences can be made.

4.4.2 Learning conflict dynamics from the AWD

In the context of conflict, the dynamic behaviour of events is usually extracted from the data

by gridding the domain of interest in space and time and carrying out an empirical study on

the events per se. For example, one could analyse the pattern of cells which contain at least

one event at two consecutive time frames (Baudains et al., 2013; Schutte and Weidmann,

2011). Unfortunately, due to an explicit reliance on the use of multiple observations to

obtain a reliable estimator, these methods are only able to provide global assessments of the

dynamics, that is, assert whether phenomena such as escalation or relocation are present

everywhere on average. Here, on the other hand, we can provide spatially-resolved maps of

conflict patterns and, moreover, are able to assign a probability to the presence or absence

of dynamics.

The most important phenomena considered here are containment (events repeat in the

same location), escalation (events repeat and also spill over into surrounding areas), and

relocation (events move from one area to the next). All of these contagion phenomena may

be interpreted directly from our posterior beliefs on A and the diagonal elements of Q. For

example, a vertex with low values of qii and low values for the elements in its respective
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column in A, is indicative of an area where events do occur, but that do not escalate or

diffuse to surrounding areas. On the other hand, large values in ai are indicative of an

area that is susceptible to nearby conflict events whilst large values in a column of A are

indicative of an area that is a large potential contributor to conflict contagion.

The last interpretation is particularly interesting, not only for retrospective analysis

and prediction purposes, but also for generating insights into mechanisms which could be

employed to contain contagion. One may summarise the role of a region in conflict by

summing over the respective columns and rows in A (excluding the diagonal elements) in

order to obtain a source index and a sink index for each vertex. The difference between

these two indices can then be seen as a measure of how likely a region is to contribute to

conflict in the surrounding areas and how likely conflict in a region is due to conflict in a

neighbouring area.

As a proof of concept, we employ the full model to obtain a map of contagion for Helmand

using data between May 2006 and November 2009, shown in Fig. 12. It is beyond the

scope of this work to analyse the map in detail, however, three things are of note. First,

although not evident from this figure, there is no direct correlation between event intensity

and contagion, suggesting that the inference is able to distinguish between containment and

relocation/escalation. Second, all airports in the vicinity (three in this case: Kandahar in

the South East, Laskar Gah in the South West and Tarin Kowt in the North East) are

highlighted as a source of conflict, which is not surprising given the strategic importance

of airbases. Third, several of the source hot spots are on towns and villages which have

played a prominent role in the Afghan conflict, these include Naw Zad in the North West,

the location of multiple offensive operations by the International Security Assistance Force

(ISAF) in the latter part of the conflict and Sangin, one of the most hotly contested towns

in the conflict. We note that the interpretation of the inferred dynamics is fully dependent

on the spatial and temporal resolutions we employ, and may change for different mesh sizes

and temporal discretisations.

To evaluate whether the inferred connectivity in A makes any improvement on the ap-

proach where the evolution of xit are considered independent (diagonal A), we propose to

use the one step ahead predictive probabilities. We proceed as follows: we infer a connected
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A, Aconn, using a chordal method for state inference, and we also infer a diagonal A, Aindep.

We then use the mean values 〈Aconn〉 and 〈Aindep〉 to compute the predictive probabilities.

Note that in the latter case, the inference completely decouples into independent inference

tasks for all {xit}t and aii.

The one step ahead predictive probability at time t is given by

p(Yt+1 | Y1:t,A) =

∫
dxt,t+1 p(Yt+1 | xt+1)N (xt+1;Axt,Q

−1)N (xt;Q
−1
αt hαt ,Q

−1
αt ),

where hαt and Qαt denote the canonical parameters of the αt(xt) forward message corre-

sponding to the filtering algorithm. Clearly, the above quantity is not tractable, therefore,

we use the corresponding marginal likelihood approximation following from our approach.

The integral itself corresponds to expectation propagation based marginal likelihood ap-

proximation in latent Gaussian models and is known to be a good quality approximation

for a variety of (pseudo) likelihood terms (e.g., Kuss and Rasmussen, 2005; Rasmussen and

Williams, 2005). Similar latent Gaussian models where this approximation is shown to per-

form excellently are the stochastic volatility and spatial log-Gaussian Cox process models

in Cseke and Heskes (2011). The cumulative log values of the one step ahead prediction

approximations approximate the log evidence, and thus we can also use them to do model

comparison. In this way we can assess which model better explains the data.

Figure 13 shows how the one step ahead predictions p(Yt+1 | Y1:t, 〈Aconn〉) and p(Yt+1 |

Y1:t, 〈Aindep〉) compare. The plot shows that the corresponding predictive log likelihood ratio

is positive for most times and that the overall log likelihood ratio (sum of one step ahead

log likelihood ratios) is positive. Therefore, our qualitative conclusions about the benefit

of learning micro diffusions are supported by quantitative evidence: the (approximated)

predictive performance of the model increases and a connected model is more likely than an

independent one. As future work, we intend to focus on areas of high conflict intensity to

assess how the learned conflict dynamics varies w.r.t. the spatial resolution of the model.
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Afghan War Diary: log ratio of the one step ahead predictive probabilities

Figure 13: The log ratio of the (approximate) one step ahead predictive probabilities given by the
approximations of log p(Yt+1 | Y1:t, 〈Aconn〉) − log p(Yt+1 | Y1:t, 〈Aindep〉) for the AWD data. The
plot shows that the connected model generally achieves better predictive performance and that the
connected model is more likely overall—the sum of log ratios is clearly positive.

5 Conclusions

In this paper we propose a family of approximate inference methods for spatio-temporal log-

Gaussian Cox process models; the algorithms are based on variational approximate inference

methods and approximate message passing. Note that the method can be applied to any

similar latent Gaussian model (6) with general (pseudo) likelihood ψt,i(x
i
t). We show how

the sparsity in the underlying dynamic model can be exploited in order to overcome the

limitations in the standard forward-backward and block inference methods which can become

prohibitive for large n and T .

In this paper we employ two layers of approximation. The first is the variational approx-

imation to the posterior distribution, which is factored across the states and parameters.

The second one addresses the non-tractability and computational issues associated with the

resulting variational distribution over the states, qX . Approximations due to the variational

method and the EP updates for intractable likelihoods have been used extensively with

considerable success in several applications. As such, one could argue that the additional

approximation used in this work in order to retain sparsity in the message updates intro-
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duces further errors that may be hard to quantify. However, the advantage of the proposed

method is that it provides a wide range of options w.r.t. accuracy and both computational

and storage complexity; in particular we propose using messages with chordal precision

structures that serve as a good compromise in complexity between schemes using diagonal

and full precision matrix structures. A beneficial aspect of this framework is that one can

always choose to do away with these new approximations and revert to the full scheme

when this is not computationally prohibitive. In practice, as discussed in Section 4.1.2,

the quality of the sparse approximation may vary depending on the problem at hand and,

while in principle our method could be adjusted by selecting a wider bandwidth, in practice

accuracy/computational trade-offs may be inevitable. Finally, as shown in the Supplemen-

tary Material, these layers of approximation naturally follow from embedding the variational

method into the expectation constrained framework.

We applied the proposed methods to model conflict data and we showed that by using the

increased resolution resulting from our methods we can detect micro-diffusions in the Afghan

War Diary data. By learning these diffusion effects we can improve the predictive perfor-

mance and obtain plausible qualitative interpretations of conflict contagion. The proposed

methodology can also be applied to epidemic or environmental studies where sparse latent

spatial diffusion models—linear diffusions or linear approximations—can be formulated.

In the future we intend to explore the set of structures that lie between the fast and less

accurate spanning tree and the somewhat larger chordal structures employed in this work.

Currently, we are working on improving the distributed scheduling presented in Section 3.1.3.

This is the most important area of further research as the proposed message-passing algo-

rithm, by design, is particularly well suited to take advantage of distributed computing

environments. The ease of parallelisation is a major strength of our approach w.r.t. block

approaches relying on partial matrix inversions, as it is unclear how solution of the Takahashi

equations could be distributed. Another notable advantage of our approach, when compared

to the block model, is that it more adaptable to online settings, that is, to cases where we

have streamed data.
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