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Abstract 

 

Huntington’s disease is a progressive neurodegenerative disease caused by a mutation in the 

huntingtin protein. Although the mutation has been identified, the molecular mechanisms 

underlying Huntington’s disease pathology are not fully understood. Dysfunction of cholesterol 

homeostasis has been previously associated with Huntington’s disease, however detailed 

examination of potential changes has not been undertaken. The aim of this project was to 

identify cholesterol homeostatic alterations in HD that may be relevant to mechanisms that 

underlie neurodegeneration, or potentially identify associated molecules to be used as 

biomarkers of Huntington’s disease. Using a novel triple quadrupole gas chromatography-mass 

spectrometry method, we have conducted 3 separate studies in R6/1 mice. Firstly, 

comprehensively characterising the physical phenotype and cholesterol homeostatic alterations 

during disease progression. These were then used for reference when R6/1 mice were subject 

to environmental enrichment, and anthocyanin dietary supplementation. Human HD post 

mortem tissue was also analysed for cholesterol synthetic precursors, metabolites and oxidation 

products. A progressive dysfunction of cholesterol synthesis was detected in both striatum and 

cortex of the R6/1 mouse. At later stages in the disease model, the major brain cholesterol 

metabolite, 24(S)-hydroxycholesterol, was also significantly reduced. Novel age-related changes 

pertaining to brain cholesterol homeostasis were also detected in these mice. Environmental 

enrichment of R6/1 mice attenuated the progression of motor dysfunction in male mice. 

Cholesterol oxidation products, markers of oxidative stress, were also reduced in the cortex of 

both wild type and R6/1 mice receiving enrichment. Dietary supplementation with anthocyanins 

also delayed the onset of motor dysfunction in female R6/1 mice. These studies have highlighted 

a potential sex differences in HD. Human HD post mortem tissue revealed a specific disturbance 

to cholesterol synthesis in the putamen, as well as elevated cholesterol oxidation products. 

Consistent with the R6/1 mouse model, 24(S)-hydroxycholesterol levels were significantly 



xv 
 

reduced in the striatum (caudate and putamen). Enzymes involved in brain cholesterol 

metabolism (cholesterol 24-hydroxylase) and synthesis (delta(24)-sterol reductase) were also 

significantly depleted in the putamen. In conclusion we have identified disturbances in 

cholesterol metabolic and synthetic pathways in both human and R6/1 mouse brain tissue. In 

addition to being potentially useful biomarkers of disease severity and progression, these 

alterations may provide further insight into the effects of lipid alterations in HD pathophysiology, 

and potentially other neurodegenerative disorders.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

Chapter 1                                          

Introduction 
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1.1 Cholesterol 

 

Cholesterol represents an important component of eukaryotic cell membranes; structurally, 

cholesterol modulates membrane fluidity and organisation (Yeagle, 1985) where it can alter 

signalling functions, membrane protein organisation and lipid raft structure (Moran & Miceli, 

1998; Sheets et al., 1999; Zajchowski & Robbins, 2002; Kannan et al., 2007).  Cholesterol is also 

involved in vitamin D production and synthesis of steroid hormones. Cholesterol has the 

common structure of a sterol, containing a carbon 3 hydroxyl group and a tetracyclic steroid 

ring. Specifically, cholesterol contains a 3β hydroxyl group and an isooctyl hydrocarbon tail 

(Figure 1.1). The opposing polarity of the hydroxyl group and hydrocarbon structure of the 

remaining molecule gives cholesterol its amphipathic nature. 

 

 

 

 

 

 

 

 

 

Figure 1.1 Chemical structure of cholesterol. The C3 hydroxyl group and tetracyclic steroid ring is shared 
by all sterols.  The 8 carbon branched alkyl chain adds to the nonpolar steroid ring; the resultant molecule 
is amphipathic. 

 

1.1.1 Cholesterol in cell membranes 

 

The opposing polarity of the cholesterol molecule facilitates its incorporation into the lipid 

bilayer of the eukaryotic cell membrane, where the hydroxyl group is exposed. The distribution 

of cholesterol in membranes is not random, rather it is found in discrete domains. The rigid, 
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polycyclic structure of cholesterol in the membrane can have the effect of restricting the 

movement of neighbouring hydrocarbon chains, introducing order. This can also disrupt tightly 

packed alkyl chains that make up the hydrophobic interior of the cell membrane. These chemical 

features of cholesterol are important when considering the dynamics of cholesterol in the cell 

membrane, and the potential disturbances caused by altered levels of cholesterol. 

1.1.2 Cholesterol in lipid rafts 

 

Lipid rafts are highly dynamic, heterogeneous, cholesterol and sphingolipid rich microdomains 

found in the lipid bilayer of membranes;  functioning to segregate and concentrate proteins that 

carry out cellular processes (Simons & Ikonen, 1997; Pike, 2006). Lipid rafts are associated with 

essential cellular functions, including signal transduction (Janes et al., 2000), membrane 

trafficking (Brown & London, 1998) and membrane associated proteolysis (Vetrivel et al., 2005). 

Lipid rafts are essential for normal brain function and have been identified in glia and neurons 

(Tsui-Pierchala et al., 2002; Gielen et al., 2006). The dysfunction of lipid rafts may have serious 

consequences in the brain, and this has been associated with several neurodegenerative 

diseases (Urano et al., 2005; del Toro et al., 2010; Fabelo et al., 2011). Since lipid rafts are 

enriched with cholesterol,  it has been proposed that altered cholesterol homeostasis in the 

brain may lead to a disturbance of lipid raft structure and their associated functions (Rojo et al., 

2006). 

 

1.2 Cholesterol in the brain 

 

The brain contains the highest concentration of cholesterol of any tissue in the body; accounting 

for approximately 25% of the total cholesterol, in an organ that only makes up 2% of the total 

body mass. The distribution of cholesterol is not homogenous in the brain, 70% is found in the 

myelinated axons of white matter, and the remaining 30% in the membranes of neurons and 



4 
 

glia (Norton & Autilio, 1965; Snipes & Suter, 1997). Although cholesterol is highly concentrated 

in the brain, it is not able to move across the blood brain barrier (BBB) (Jurevics & Morell, 1995). 

The isolation of the brain from peripheral sources of cholesterol suggests that strict cholesterol 

homeostasis is required within the brain to maintain function. A clear example of this is genetic 

mutations in cholesterol synthetic enzymes leading to severe neurological dysfunction 

(desmosterolosis and Smith-Lemli-Opitz syndrome) (Wassif et al., 1998; Waterham et al., 2001). 

Altered cholesterol metabolism has also been associated with several neurodegenerative 

diseases including Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease 

(HD) (Wahrle et al., 2002; Cordy et al., 2003; Gibson Wood et al., 2003; Lim et al., 2011). Whether 

this is a cause or effect has not been established. 

1.2.1 Synthesis of cholesterol in the brain 

 

Cholesterol cannot cross the BBB, therefore de novo synthesis is required to supply the brain 

with cholesterol (Jurevics & Morell, 1995). Brain cholesterol synthesis follows the same pathway 

as in peripheral tissues, a process where acetate is converted to cholesterol in over 20 steps. 

The major enzymes and intermediates of the lower ('post-squalene') cholesterol synthetic 

pathway are represented in Figure 1.2. The cholesterol synthetic pathway is split, with the last 

common precursor lanosterol. The Bloch pathway has a major intermediate of desmosterol, 

while the Kandutsch-Russell pathway utilises lathosterol (Bloch, 1965). Squalene occurs earlier 

in the pathway before cyclisation of the steroid ring. The rate limiting enzyme in the cholesterol 

biosynthetic  pathway has been previously identified as 3-hydroxy-3-methylglutaryl-coenzyme-

A reducatase (HMG-CoAred) (Snipes & Suter, 1997), which appears early in the pathway. 

Negative feedback regulates HMG-CoAred through degradation (Gardner & Hampton, 1999) 

and transcriptional control (Reynolds et al., 1984). As the cholesterol synthetic pathway is 

involved in producing multiple products along the pathway, more complex regulation is likely to 

occur. Recent studies specifically investigating the regulation of the "post-squalene" cholesterol 
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synthetic pathway, have suggested the synthetic enzyme delta(24)-sterol reducatse (DHCR24) 

to have regulatory roles beyond catalysing the final step in the Bloch pathway (Luu et al., 2015). 

As these findings are quite recent, the importance of DHCR24 levels in brain cholesterol 

homeostatic regulation is unknown.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Simplified pathway showing cholesterol synthesis, metabolism and free radical oxidation 
relevant to this thesis. Major “post-squalene” cholesterol synthetic precursors shown follow a branched 
pathway, the Kandutsch-Russell pathway or Bloch pathway. Cholesterol can be oxidised enzymatically to 
form 24(S)-hydroxycholesterol (24-OHC) or 27-hydroxycholesterol (27-OHC) by cholesterol 24-
hydroxylase (CYP46A1) and cholesterol 27-hydroxylase (CYP27A1) respectively. Reactive oxygen species 
(ROS) can oxidise cholesterol to form 7-ketocholesterol and 7β-hydroxycholesterol. The position of 
delta(24)-sterol reductase (DHCR24), a cholesterol synthetic enzyme is also shown. Broken lines indicate 
intermediates that have not been shown in this simplified scheme. 
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Although cholesterol synthesis and metabolism in peripheral tissues is relatively well 

understood, the difficulty of performing in vivo studies in brain tissue has left many cellular 

processes involving cholesterol synthesis and metabolism undefined. However, in vitro studies 

examining isolated neurons and glial cells have identified some brain specific processes involved 

in cholesterol regulation and trafficking. Embryonic neurons have been identified to synthesise 

cholesterol (Saito et al., 1987), however cholesterol synthesis in adult neurons is unsustainably 

low (Nieweg et al., 2009). These findings support the hypothesis that cholesterol synthesis is 

mostly abandoned in neurons shortly after foetal development during which the majority of 

cholesterol is synthesised in the brain (Pfrieger, 2002). As neurons have a high demand for 

cholesterol, specifically for axon growth (Hayashi et al., 2004), maintenance of dendrites (Fan et 

al., 2002), and synaptogenesis (Mauch et al., 2001); the source of neuronal cholesterol in the 

mature brain has been investigated. In vitro studies suggest neurons source cholesterol from 

astrocytes, and this has been demonstrated to be essential for neuron growth in vitro (Mauch 

et al., 2001; Nagler et al., 2001). Further support for the 'outsourcing' hypothesis has been 

demonstrated through the in vivo disruption of squalene synthase (an essential enzyme for 

cholesterol synthesis) in adult neurons, resulting in normal brain morphology in mice 

(Funfschilling et al., 2007). This indicates adult neurons are able to survive independent of their 

own cholesterol synthesis. Pfrieger et al. (2002) proposed that an apolipoprotein shuttle from 

astrocytes to neurons is the mechanism by which neurons obtain cholesterol, and there is 

evidence that neurons have the capability to process cholesterol in lipoprotein particles through 

the endosome-lysosome pathway (Parton et al., 1992; Brown et al., 1997). There may be several 

reasons that neurons outsource cholesterol synthesis to astrocytes. The high energy cost, and 

the need for a large number of enzymes in different cellular compartments, may explain why 

neurons, whose primary function is electrical synaptic transmission, abandoned cholesterol 

synthesis after foetal development. The elongated shape of the neuron may also hinder 

transport of cholesterol, from where it is produced in the cell body, to where it is needed 
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(synapses). Oligodendrocytes maintain cholesterol synthesis in adulthood and synthesise 

cholesterol at a rate that exceeds the level in astrocytes (Saito et al., 1987; Nieweg et al., 2009).  

It is unclear if neurodegeneration alters cholesterol synthesis in the brain and if intermediates 

accumulate or diverge into different metabolic pathways. There is evidence for decreased levels 

of cholesterol synthetic precursors in aging (Thelen et al., 2006) and AD (Kolsch et al., 2010), 

however, since many analytical techniques are unable to detect these low level compounds, 

much of the current literature does not contain enough information to interpret the extent of 

changes occurring.  

1.2.2 Cholesterol metabolism in the brain 

 

Cholesterol synthesis in the adult brain is slow, in the order of µg/h (Spady & Dietschy, 1983), 

which is surprising, as the brain is one of the most metabolically active tissues in the body. 

Although the rate of synthesis is low, excess cholesterol must still be removed from the brain. 

The BBB is impermeable to cholesterol, therefore simple diffusion of cholesterol into the plasma 

does not occur. It has been suggested that cholesterol can move into the cerebrospinal fluid 

(CSF) in apolipoprotein E (ApoE) particles and then into the plasma (Pitas et al., 1987a). However, 

this accounts only for a small amount of cholesterol removed to the periphery, indicating other 

mechanisms must be at play. 

1.2.2.1 Formation of 24(S)-hydroxycholesterol 

 

 A key finding in brain cholesterol homeostasis was the identification of a brain specific 

elimination mechanism involving the enzymatic hydroxylation of the cholesterol molecule 

(Lutjohann et al., 1996; Bjorkhem et al., 1997). The addition of a hydroxyl group to the alkyl 

chain of the cholesterol molecule significantly increases cell membrane permeability; side chain 

oxidised sterols move across membranes approximately 1500 times faster than cholesterol 

(Meany et al., 2002). 24(S)-hydroxycholesterol (24-OHC) is formed by the addition of a hydroxyl 
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group in the 24S position of cholesterol (Figure. 1.3). A cytochrome P-450, cholesterol 24-

hydroxylase (CYP46A1), expressed primarily in neurons, catalyses this reaction (Lund et al., 

1999). Although the liver is the site of most cholesterol metabolism in the body, CYP46A1 

expression is almost exclusive to neurons (Lund et al., 1999), suggesting a brain specific role in 

cholesterol metabolism.  Studies involving CYP46A1 knockout mice (Lund et al., 2003) and 18O2 

incorporation into 24-OHC  in rats (Bjorkhem et al., 1997), have estimated that 24-OHC is 

responsible for 40-60% of the cholesterol eliminated from the brain. A rise in 24-OHC levels 

between the brachial artery and jugular vein in human subjects is consistent with these findings 

that demonstrate there is a net flux from the brain into circulation (Bjorkhem et al., 1998). 

Taking into account mechanisms of cholesterol elimination from the brain, the complete 

turnover of cholesterol in the human brain is estimated to be in the order of 5 years (Bjorkhem 

et al., 1998).  

 

 

 

 

 

Figure 1.3 Chemical structure of 24(S)-hydroxycholesterol. 24(S)-Hydroxycholesterol (24-OHC) is the 
major elimination product of cholesterol from the brain, formed by the enzymatic hydroxylation of 
cholesterol by cholesterol 24-hydroxylase (CYP46A1).  
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1.2.2.2 Possible regulation of brain cholesterol homeostasis by 24(S)-hydroxycholesterol 

 

The current understanding of cholesterol synthetic regulation is that a complex interplay exists 

between sterol sensing elements [sterol regulatory element-binding proteins (SREBPs)] and 

transcription factors responsible for producing cholesterol synthetic enzymes (Brown & 

Goldstein, 1999). Whether these mechanisms are active in neurons and astrocytes has not been 

established. Ong et al. (2000) found that SREBPs are present in the neurons of the neocortex 

and hippocampus, however their function in terms of sterol regulation in these regions is 

unknown. The hypothesis that neurons import the majority of cholesterol from astrocytes is 

supported by several studies (Mauch et al., 2001; Funfschilling et al., 2007), and thus it is 

believed that a mechanism is in place to regulate this exchange (Vance & Hayashi, 2010). 24-

OHC is an activator of the nuclear receptor liver X receptor-β, that has the downstream effect of 

activating ATP binding cassette transporter A1 (Repa et al., 2000), a cholesterol transport 

mediator that resides in astrocytes. A convenient hypothesis suggests that metabolised 

cholesterol in the form of 24-OHC promotes the delivery of cholesterol from astrocytes to 

neurons (Figure 1.4) (Pfrieger, 2003), however there is evidence that synthesis and delivery of 

cholesterol are regulated by separate mechanisms (Abildayeva et al., 2006). Further research is 

necessary to elucidate the physiological importance of this mechanism, and potential impacts 

of altered cholesterol metabolism in the brain.  

1.2.2.3 27-Hydroxycholesterol 

 

27-Hydroxycholesterol (27-OHC) is a major metabolic product of cholesterol in peripheral tissue, 

entering the bloodstream to be further metabolised in the liver (Martin et al., 1993; Lund et al., 

1996). 27-OHC is formed by the enzymatic hydroxylation of cholesterol at the 27 carbon position 

(Figure 1.5) by the cytochrome P450, cholesterol 27-hydroxylase (CYP27A1). This reaction takes 

place in all cells; however the expression of CYP27A1 in the brain is significantly less than in 
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other tissues (Lein et al., 2007). A concentration gradient results in a net movement of 27-OHC 

from circulation into the brain (Heverin et al., 2005), where it is quickly metabolised into more 

polar products (including dihydroxysterols and cholestenoic acids), catalysed by the enzymes 

CYP27A1 and 5-hydroxycholesterol 7-α-hydroxylase (CYP7B1) (Meaney et al., 2007). These 

products then move back into circulation where they are efficiently absorbed by the liver (Lund 

et al., 1996; Meaney et al., 2007). It has been previously demonstrated that circulating levels of 

27-OHC are positively correlated to cholesterol levels in the blood (Babiker et al., 2005). It is 

unknown if increased levels of 27-OHC entering the brain from circulation are detrimental, and 

this is potentially relevant to neurodegenerative diseases as hypercholesterolemia has been 

associated with AD and PD (Kivipelto et al., 2001; Hu et al., 2008).  

 

 

 

Figure 1.4 A hypothesised mechanism of cholesterol regulation between neurons and astrocytes 

(Pfrieger, 2002). 24(S)-Hydroxycholesterol (24-OHC) binds the nuclear receptor LXR which activates the 

cholesterol transport mediator ABCA1. It is unknown what promotes cholesterol synthesis in this 

mechanism. Adapted from Bjorkhem (2006). 
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Figure 1.5 Chemical structure of 27-hydroxycholesterol. 27-Hydroxycholesterol (27-OHC) is a cholesterol 
metabolite primarily produced in peripheral tissue where it enters the bloodstream to be further 
metabolised in the liver. 27-OHC is formed by the enzymatic hydroxylation of cholesterol by cholesterol 
27-hydroxylase (CYP27A1). 

 

 

1.2.3 Toxicity of cholesterol metabolites 

 

Several in vitro experiments have shown that cholesterol metabolites also have cytotoxic 

activity. It is unknown what causes specific changes in brain cholesterol metabolism resulting in 

the production, or excess production of potentially toxic oxysterol species. 27-

hydroxycholesterol is toxic to human monocyte-macrophages in vitro (Clare et al., 1995); 

similarly 24-OHC  has toxic effects towards differentiated neuroblastoma cells (Kolsch et al., 

2001). 24-OHC is a major endogenous cholesterol metabolite in the brain, however, as the 

majority of studies rely on in vitro models, the importance of this potential toxicity is yet to be 

established in vivo. 
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Figure 1.6 The major movements of 24(S)-hydroxycholesterol and 27-hydroxycholesterol across the 
blood-brain barrier. The blood brain barrier is impermeable to cholesterol and requires side chain 
oxidation to move across this membrane. Cholesterol is metabolised to 24-hydroxycholesterol (24-OHC) 
by cholesterol 24-hydroxylase (CYP46A1). This pathway represents the major route of cholesterol 
elimination from the brain. The formation of 27-hydroxycholesterol (27-OHC) is catalysed by cholesterol 
27-hydroxylase (CYP27A1) and occurs primarily in peripheral tissues. A concentration gradient causes a 
net flux of 27-OHC into the brain where it is further metabolised to cholestenoic acids. Cholesterol 
metabolites are removed from circulation in the liver where they are converted to bile acids. Enzymes are 
shown in italics.  

 

1.3 Cholesterol oxidation products 

 

'Cholesterol oxidation products' (COPs) is an arbitrary classification within this thesis, classifying 

cholesterol oxides that are formed by reactive oxygen species (ROS) and not endogenous 

enzyme activity. The most susceptible location on the cholesterol molecule is the area 

surrounding the 5,6 double bond (Smith, 1991), where the addition of an epoxide, ketone and 

hydroxyl functional group can occur. 7β-Hydroxycholesterol (7β-OHC) and 7-ketocholesterol (7-
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KC) are formed by ROS attack at the 5,6 double bond (Fig. 1.7). These are elevated in diseases 

and pathological models that involve oxidative stress including atherosclerosis (Iuliano et al., 

2003; Jenner et al., 2007), cystic fibrosis (Iuliano et al., 2009) and retinal photodamage 

(Rodriguez & Fliesler, 2009). In vitro studies describe toxicity of 7-KC and 7β-OHC towards 

neuroretinal and cerebellar granule cells (Chang & Liu, 1998b; Chang & Liu, 1998a), however the 

concentrations at which these compounds were toxic was 1000 times greater than 

concentrations found in plasma (Zieden et al., 1999) and 100 times greater than in brain tissue 

(Tint et al., 1998). Due to the high concentration of cholesterol in the brain, COPs represent 

potentially important biomarkers for neurodegenerative diseases. 

Figure 1.7 Chemical structure of 7β-hydroxycholesterol and 7-ketocholesterol. These compounds are 
formed by oxygen free radical attack at the 5,6 double bond of cholesterol. 7β-hydroxycholesterol and 7-
ketocholesterol have been previous used as lipid peroxidation biomarkers in plasma and represent 
potentially powerful oxidative stress biomarkers in the brain due to the large concentration of cholesterol 
in this tissue.  

 

1.4 Phytosterols 

 

Phytosterols are plant derived sterols exhibiting a similar structure to cholesterol. Common 

phytosterols found in food are campesterol, β-sitosterol and stigmasterol (Phillips et al., 2005; 

Dreher & Davenport, 2013). Although structurally similar to cholesterol, phytosterols have a 

greater degree of branching on the alkyl chain, and in the case of stigmasterol and brassicasterol 

the presence of a double bond (Figure 1.8). High levels of phytosterols in the diet have been 
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found to compete with intestinal cholesterol absorption, reducing plasma levels of cholesterol 

(Ikeda et al., 1988; Katan et al., 2003). The reduction of cholesterol solubility in phospholipid bile 

salt micelles in the presence of β-sitosterol demonstrated by Ikeda et al. (1988) is also explained 

by the thermodynamically favourable interaction of phytosterols with micelles (Armstrong & 

Carey, 1987). Dietary phytosterols present a viable option in lowering cholesterol absorption 

from diet, which is also accompanied by increased phytosterol absorption and incorporation 

into various tissues in the body (Plat et al., 2008). Phytosterols are able to cross the BBB and 

have been measured in animal brain tissue (Plat et al., 2008). The long-term cellular effects of 

phytosterols incorporated into the brain have not been established and further studies are 

necessary to examine their impact on human health. 

Figure 1.8 The chemical structure of common phytosterols; campesterol, β-sitosterol, stigmasterol and 
brassicasterol. Phytosterols are produced in plants and share a similar structure to cholesterol, differing 
in the degree of branching and presence of double bonds on the alkyl chain (highlighted). Phytosterols 
are absorbed from food and accumulate in tissues including the brain.    
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1.5 Cholesterol and neurodegenerative disease 

 

Cholesterol is an essential molecule for cellular function; however, excess cholesterol circulating 

in the body can be harmful. It has been established that high levels of cholesterol in the blood 

contributes to a number of diseases, in particular atherosclerosis and cardiovascular disease. 

The influence of altered cholesterol homeostasis in neurodegenerative diseases is however, not 

as well understood. Cholesterol levels have been reported to alter in vitro protein aggregation 

relevant to PD (Bar-On et al., 2008). Several studies have also highlighted altered brain 

cholesterol levels in AD (Mason et al., 1992; Wahrle et al., 2002; Cordy et al., 2003), and may  

influence amyloid beta formation by altering the physical properties of cell membranes (Rojo et 

al., 2006). It is also hypothesised that cellular redistribution of cholesterol without changes in 

total cholesterol levels may play a role in AD (Gibson Wood et al., 2003). Due to conflicting 

reports of cholesterol levels in neurodegenerative brain tissue, the exact influence of altered 

cholesterol homeostasis in neurodegenerative diseases is currently unknown.   

1.5.1 Huntington's disease 

 

HD is an autosomal dominant, progressive, neurodegenerative disease characterised by the 

expansion of a trinucleotide repeat on the N-terminus of the huntingtin protein (HTT). The 

cytosine-adenine-guanine (CAG) repeat, coding for glutamine, is located on exon 1 of the HTT 

gene (MacDonald et al., 1993). Full penetrance of the disease is observed when an individual 

has 42 or more repeats (Brinkman et al., 1997), with 36-41 repeats resulting in incomplete 

penetrance (Kremer et al., 1994; Rubinsztein et al., 1996; Brinkman et al., 1997). Although 

disease symptoms are not associated with a repeat number of 29-35, CAG repeat expansion in 

successive generations is possible (Trottier et al., 1994; Ranen et al., 1995). Expansion of CAG 

repeats occurs almost exclusively during spermatogenesis, causing the appearance of HD in 



16 
 

individuals without a family history of the disease. Juvenile onset HD, characterised by a long 

CAG expansion (~100), is also much more likely from paternal inheritance (Kremer et al., 1995).  

1.5.2 Symptoms 

 

HD was previously known as Huntington's chorea due to the involuntary movements exhibited 

by patients (Huntingon, 1872).  Mutant gene carriers show subtle symptoms before clinical 

diagnosis in a period referred to as pre-manifest, pre-symptomatic or pre-diagnostic. Pre-

manifest HD patients have been shown to have dysfunction in tongue force, grip strength and 

finger tapping tasks (Bechtel et al., 2010; Reilmann et al., 2010a; Reilmann et al., 2010b). The 

first overt symptoms of HD  are typically involuntary movements, usually accompanied with 

depression (Kirkwood et al., 2001). Other symptoms include abnormal eye movement (Penney 

et al., 1990) and clumsiness (Kirkwood et al., 2001). During progression there is weight loss 

(Sanberg et al., 1981; Morales et al., 1989; Djousse et al., 2002), cognitive decline, speech 

difficulties and memory loss (Kirkwood et al., 2001). In late stages of the disease, HD patients 

have difficulty swallowing; the aspiration of food into the lungs is a major cause of death in these 

cases (Sorensen & Fenger, 1992). The progression and severity of disease after onset does not 

correlate strongly with CAG repeat length in the range of 40-60 (Squitieri et al., 2002). However, 

the correlation between the age of onset and CAG repeat length is well established (Ranen et 

al., 1995). Rare juvenile cases of HD with 100+ CAG repeats do, however, have accelerated 

progression of the disease (Squitieri et al., 2002).  

1.5.3 Neuropathology 

 

The neuropathological progression of HD was classified in detail by Vonsattel et al. (1985), and 

was adopted to grade HD brain tissue. This revealed the disease progressed from the caudate 

nucleus and putamen (striatum) with degeneration moving in a lateral basal direction. Early 

changes include moderate astrocytosis of the caudate nucleus and putamen in grade I, followed 
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by macroscopic atrophy and neuronal loss in grade II. Neuron loss continues in grade III with 

overt shrinkage of the striatum. Grade IV was classified by extreme shrinkage of the striatum, 

including the globus pallidus. Astrocyte numbers were also increased compared to control at 

this stage in the disease. Brain mass was also found to be negatively correlated to the disease 

grade, with an average 20% reduction in brain mass by grade IV. More sensitive magnetic 

resonance imaging (MRI) techniques have also identified volume reduction in the hippocampus, 

cerebral cortex and amygdala of HD patients, with the cerebellum relatively spared (Rosas et al., 

2003). Along with neuron loss, astrocytosis and increased oligodendrocyte densities are also 

observed in severely affected regions of the HD brain (Myers et al., 1991). 

1.5.4 Huntingtin protein 

 

HTT is made up of >3100 amino acid residues and has a molecular mass of approximately 349 

kDa depending on the length of the CAG repeat (Gil & Rego, 2008). HTT is expressed throughout 

the body, with the highest expression in the brain and testes (Strong et al., 1993; 

Landwehrmeyer et al., 1995). It is localised to a number of subcellular compartments and has 

functions in intracellular trafficking, clathrin mediated endocytosis, transcriptional regulation 

and cell signalling (Harjes & Wanker, 2003; Li & Li, 2004). The protein is believed to be essential 

for early development in mice, as knockout of the HTT mouse homologue (Hdh) is embryonically 

lethal (Leavitt et al., 2001).  

1.5.5 Toxicity of mutant huntingtin 

 

The exact role of the CAG mutation on the HTT protein in HD pathogenesis is still debated. It is 

not completely clear if mutant huntingtin (mHTT) has a toxic gain of function or if a loss of 

function is responsible for disease, or possibly a combination of both factors. The heterozygous 

disruption of the HTT gene does not cause a HD phenotype in human cases, suggesting the loss 

of function in one allele is not entirely responsible for disease pathology (Ambrose et al., 1994). 
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Expression of normal length HTT can reduce the toxicity of mHTT in mice (Leavitt et al., 2001), 

also suggesting compensation for loss of function. Another confounding finding is that human 

mHTT can rescue the embryonic lethality of the Hdh knockout mouse (Leavitt et al., 2001). 

However, this may simply be a reflection of the role of HTT in developmental processes, similar 

to the human disease where patients develop normally, only manifesting symptoms later in life.  

Another debated hypothesis of mHTT toxicity involves protein aggregation. Aggregation of 

mHTT is a hallmark of HD, however, this may not be an accurate predictor of cell death. 

Aggregate formation is higher in cortical neurons, which are relatively spared compared to the 

selectively vulnerable striatal neurons that contain fewer aggregates (Kuemmerle et al., 1999). 

In vitro studies investigating mHTT aggregation have also reported neuronal death without the 

formation of inclusions, and that cells forming inclusions had reduced risk of death (Arrasate et 

al., 2004). In this study, cells forming inclusions had reduced levels of mHTT in the rest of the 

cell, suggesting that inclusion formation may be protective. Although inclusions may not be 

directly linked to cell death, other lines of evidence suggest that proteasomal disruption in cells 

caused by mHTT aggregates may be neurotoxic (Jana et al., 2001; Waelter et al., 2001). It is also 

possible that undiscovered neurotoxic aggregates are too small for detection by light microscopy 

as suggested by Bates (2003).  

1.5.6 Mouse models of Huntington’s disease 

 

Prior to the HTT gene identification in 1993 (MacDonald et al.), the primary rodent models of 

HD were based on the production of brain lesions by neurotoxin injections into the striatum. 

Injection of glutamic acid, kainic acid (McGeer & McGeer, 1976; Schwarcz & Coyle, 1977)  and 

quinolinic acid (Beal et al., 1986) replicated some of the biochemical changes observed in the 

human HD brain, and highlighted a potential involvement of NMDA mediated excitotoxicity in 

HD pathogenesis. Since the identification of the HTT gene and the expanded CAG repeat that 

causes HD, genetic models were generated for more accurate replication of the human 
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condition. Common mouse models have used multiple approaches to model HD, including 

knock-in models and transgenic models expressing full length and truncated forms of human 

HTT. 

The R6 mouse models are widely used to study HD pathology and therapeutic interventions. 

These mice were generated by the insertion of a truncated form of human HTT that codes for a 

CAG expansion and 67 amino acids of exon 1 human HTT under the human promoter (Mangiarini 

et al., 1996). The R6/1 mouse expressing truncated HTT with approximately 115-120 CAG 

repeats, and the R6/2 with 140-150 repeats, are the best characterised variants of this model. 

R6 mice mimic several pathological hallmarks including early striatal degeneration, and physical 

phenotypes of HD such as motor dysfunction and uncontrolled movements (Mangiarini et al., 

1996). These features and the relatively short disease onset are reasons why this model has 

been widely used in the study of HD. Instability of the CAG repeat between generations can 

result in CAG expansion. This can cause variation in the specific CAG repeat length between 

colonies (Mangiarini et al., 1997). Selectively breeding mice without expanded repeats is able to 

control CAG expansion in subsequent generations.  

A model expressing full length expanded human HTT was also generated using a yeast artificial 

chromosome (YAC). These mice expressing HTT with a normal number of repeats (18), and 

expanded CAG repeats (46, 72, and 128), have also been characterised to have striatal 

degeneration, motor deficits, exhibit motor abnormalities and mHTT aggregation (Hodgson et 

al., 1999; Slow et al., 2003). 

Knock-in of a CAG repeat expansion into the Hdh gene has also been used to generate HD models 

that express an expanded form of mouse HTT under endogenous transcriptional control 

(Wheeler et al., 1999; Wheeler et al., 2000). Heterozygous and homozygous knock-in mice 

expressing 92 (HdhQ92) and 111 (HdhQ111) CAG repeats have been commonly examined in 
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previous literature; knock-in models also exhibit degenerative pathologies (Wheeler et al., 

2002). 

There are benefits and drawbacks in each model; this includes the severity of the disease in mice 

where R6 models are most representative due to the long CAG repeat that causes a relatively 

rapid onset of symptoms. HTT sequences found in transgenic models (R6 and YAC) however, 

become randomly inserted into the genome and therefore do not have the endogenous mouse 

promoter as well as the endogenous protein still being expressed. Therefore models that knock 

in expanded CAG repeats into the mouse HTT sequence (e.g. HdhQ111) more accurately 

represent the disease from a genetic perspective. 

1.5.7 Cellular and fly models of Huntington’s disease 

 

Several models of HD have been generated in Drosophila where an expanded fragment of exon 

1 human HTT is expressed (Httex1pQ93 and Htt128Q). These models have been used in several 

studies as they provide a number of phenotypes including photoreceptor degeneration, motor 

abnormalities as well as reduced lifespan (Steffan et al., 2001; Lee et al., 2004). A number of cell 

models expressing forms of expanded HTT have been developed since the identification of the 

affected gene. A model developed in yeast that expresses exon 1 HTT with 75 CAG repeats has 

been used to assess HTT aggregation (Ehrnhoefer et al., 2006). A model in a neuronal cell line 

(PC12) developed to express exon 1 HTT has also been used to examine the effects of mutant 

huntingtin on extracellular signalling (Aiken et al., 2004; Maher et al., 2011). 

1.5.8 Alteration of cholesterol homeostasis in Huntington's disease 

 

While it is not fully understood how the polyglutamine expansion causes cellular dysfunction in 

HD, mHTT has been identified to alter membrane order (del Toro et al., 2010) and HTT-

phospholipid interactions (Kegel et al., 2009).  Despite the genotypic identification of mHTT 

carriers, there is a lack of reliable biomarkers to predict HD progression or effectiveness of 
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therapies. Several studies have identified that cholesterol synthesis and metabolism in HD cell 

lines and animal models is significantly disturbed and suggest these to be potential biomarkers 

of HD (Valenza et al., 2005; Valenza et al., 2007b; Valenza et al., 2010), but the mechanisms and 

metabolic pathways affected have not been fully examined in human or mouse models of HD. 

1.5.9 Alterations of cholesterol biosynthesis in Huntington's disease 

 

Gene transcription profiles of HTT-inducible cells identified a possible dysregulation of lipid 

homeostasis in HD (Sipione et al., 2002). This study reported the reduction of several mRNAs 

coding for cholesterol biosynthetic enzymes, including that of 7-dehydrocholesterol reductase 

(DHCR7), the final enzyme of the Kandutsch-Russell pathway (Sipione et al., 2002). Further 

investigation into HD fibroblasts, R6/2 mice and HD post mortem brain tissue, identified a 

consistent reduction of several other mRNAs coding for enzymes in the cholesterol synthetic 

pathway (Valenza et al., 2005). The active nuclear form of SREBP was also found to have a 50% 

reduction in human HD fibroblasts and in brain tissue of mice (Valenza et al., 2005). Brain lipid 

analysis of R6/2 and YAC 128 mice has also revealed a consistent reduction in the cholesterol 

synthetic precursors lathosterol and lanosterol (Valenza et al., 2007a; Valenza et al., 2007b). 

Further association of brain cholesterol synthesis and mHTT was demonstrated by a CAG repeat 

dependant reduction of lathosterol in YAC mice, and reduced levels of lathosterol in the 

homozygous knock-in mouse (HdhQ111/111) compared to the heterozygous knock-in (Valenza et 

al., 2010). The current understanding of cholesterol biosynthesis in HD has been previously 

limited by the analysis of a small number of synthetic precursors in a pathway with over 20 steps. 

Analysis of a wider range of synthetic precursors is likely to provide a more complete story of 

the potential changes occurring in HD. In addition to this, a detailed analysis of cholesterol 

synthetic precursors in human post mortem tissue is yet to be reported in the literature.  
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1.5.10 Cholesterol levels in Huntington's disease 

 

Although a significant reduction of cholesterol biosynthetic precursors were observed 

previously in these mouse models, the total level of brain cholesterol remains relatively stable. 

Unchanged levels of cholesterol were observed in the striatum or whole brain of R6/1 and R6/2 

models (Valenza et al., 2007b; del Toro et al., 2010), while only a small reduction in brain 

cholesterol levels were observed in the HdhQ111, YAC72 and YAC128 mice (del Toro et al., 2010; 

Valenza et al., 2010). A previous study examining cholesterol levels in human HD post mortem 

tissue identified an increase in cholesterol, however the sample size (n = 3) was too small to 

draw a firm conclusion regarding cholesterol levels in human HD brain (del Toro et al., 2010). 

Mechanisms to eliminate cholesterol may also be downregulated to maintain constant 

cholesterol levels in the brain, highlighting the potential involvement of altered cholesterol 

metabolism in HD. 

1.5.11 Cholesterol metabolic alterations in Huntington's disease 

 

The major elimination product of cholesterol in the brain, 24-OHC, is also believed to have an 

important role in cholesterol homeostatic regulation in the brain. Reduced brain levels of 24-

OHC have been consistently demonstrated in multiple rodent models of HD, including knock-in 

models and transgenic models expressing truncated and full length HTT (Valenza et al., 2007a; 

Valenza et al., 2010). Plasma measurements of 24-OHC in the YAC 128 model reflect the reduced 

level in brain (Valenza et al., 2007a); plasma studies in HD patients have also identified reduced 

24-OHC levels in symptomatic individuals (Leoni et al., 2008; Leoni et al., 2013). Since CYP46A1 

expression is primarily localised to neurons (Lund et al., 1999), it has been suggested that 

generation of 24-OHC (as measured in plasma) is a marker of metabolically active neurons in the 

brain (Bjorkhem, 2006). Recent evidence suggests that changes in CYP46A1 and 24-OHC brain 

levels may play a role in neurodegeneration (Kolsch et al., 2002; Papassotiropoulos et al., 2003; 
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Brown et al., 2004; Tian et al., 2010), however, the exact role this might play in HD pathogenesis 

has not been established. Comprehensive examination of cholesterol synthesis and metabolism 

in human HD, beyond plasma biomarkers is currently lacking in the literature.  This represents a 

significant gap in the current knowledge that would help confirm the validity of rodent HD 

models examining this particular metabolic pathway in relation to HD pathology.  

1.5.12 Proposed mechanisms altering cholesterol homeostasis in Huntington's disease 

 

Consistent demonstration of cholesterol homeostatic perturbation in HD models has led to the 

identification of several associations of HTT and mHTT with cholesterol synthetic regulation. A 

hypothesised mechanism of reduced cholesterol biosynthesis in HD involves an interaction of 

mHTT with SREBPs (Kaltenbach et al., 2007). It has been suggested that the CAG expansion 

causes a diminished capacity of mHTT to translocate SREBP to the nucleus where it has functions 

to activate cholesterol synthetic genes (Guan et al., 1995; Lloyd & Thompson, 1995). HTT is 

known to have cellular trafficking properties, and this hypothesis is consistent  with the finding 

that transgenic HD cells contain less active nuclear SREBPs than controls (Valenza et al., 2005).  

Another factor causing reduced cholesterol synthesis is related to decreased levels of brain-

derived neurotrophic factor (BDNF) that have been observed in human HD and HD mouse 

models (Zuccato et al., 2001; Spires et al., 2004; Zuccato et al., 2005). BDNF is known to increase 

cholesterol content of lipid rafts in vitro and increase neurotransmitter release dependant on 

BDNF-elicited cholesterol (Suzuki et al., 2007). In vivo, abnormal synaptic plasticity in R6/2 mice 

(Murphy et al., 2000; Picconi et al., 2006) may also be related to dysfunction of BDNF-mediated 

cholesterol levels in the cell. 

With the complex control of cholesterol homeostasis in the brain, it is likely that other 

undiscovered factors, potentially involved with cholesterol metabolism, may be involved in 

altering cholesterol synthesis in the presence of mHTT. Further investigation into cell-type 



24 
 

specific cholesterol homeostatic alterations will also contribute to understanding how these 

altered pathways affect whole tissue.   

1.6 Therapeutics in Huntington's disease mouse models 

 

There is currently no cure or effective therapies for the treatment of HD. Due to the late onset 

and possibility of early identification of mHTT carries, there is a relatively long timeframe 

(decades) to implement potential therapies for HD suffers. It also allows for close study of the 

manifestation of neurodegenerative pathologies that may be relevant to understanding 

'sporadic' neurodegenerative diseases such as AD. Mouse models of HD, particularly the R6 

models, have been used to examine several therapeutic strategies including dietary 

supplementation (Ehrnhoefer et al., 2006; Maher et al., 2011), tissue transplantation (van Dellen 

et al., 2001), drug treatments (Ferrante et al., 2002; Schiefer et al., 2002) and gene therapies 

(Popovic et al., 2005). This thesis will focus on the use of environmental enrichment (EE) and 

dietary supplementation in HD.  

1.6.1 Environmental enrichment and Huntington's disease  

 

Increased cognitive activity is believed to be a factor in reducing the risk of developing dementia 

and neurodegenerative diseases later in life (Karlsson et al., 1988; Stern et al., 1994; Evans et 

al., 1997). Substantial evidence also suggests that increased physical, sensory-motor and 

cognitive activity associated with EE has positive effects in the brain to improve memory, 

cognition and reduce the severity of neurodegenerative phenotypes in animal models 

(Wainwright et al., 1993; Kempermann et al., 2002; Jankowsky et al., 2005; Lazarov et al., 2005). 

Recently it has been discovered that EE may also be beneficial in HD.  Studies in mouse models 

of HD illustrate that EE delays onset of physical phenotypes (van Dellen et al., 2000), improves 

motor co-ordination (Hockly et al., 2002; Spires et al., 2004) and improves survival (Carter et al., 

2000), compared to mice with standard housing. Rodent studies utilising EE usually involves a 
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larger cage with a greater number of animals, the addition of novel objects (toys), tunnels, 

additional nesting materials and in some cases running wheels (van Praag et al., 1999; van Dellen 

et al., 2000; Hockly et al., 2002; Hockly et al., 2003; Spires et al., 2004). A study in human 

populations has also identified that environmental factors also influence the age of onset of HD 

(Wexler & Res, 2004). Increased neurogenesis in the hippocampus has been identified to explain 

some of the positive effects on memory seen in EE animal studies (van Praag et al., 1999; Lazic 

et al., 2006), however specific mechanisms improving the disease severity in HD, which involves 

striatal atrophy, requires further investigation. Whether cholesterol homeostatic perturbations 

observed in mouse models are altered by EE is currently unknown. 

1.6.2 Flavonoid supplementation 

 

Flavonoids are phenolic micronutrients in foods derived from plants. A large area of study has 

identified multiple health benefits of dietary flavonoids with potential beneficial effects in 

cardiovascular diseases (Nakagawa et al., 1999; Ruel et al., 2005) and cancer (Murphy et al., 

2003; Ferguson et al., 2006). Recently dietary supplementation of flavonoids and other plant 

derived phytochemicals have revealed an influence on the brain, including positive effects on 

cognitive function in human studies (File et al., 2001; Duffy et al., 2003; Casini et al., 2006) and 

improvement of neurodegenerative phenotypes in animal models of AD (Li et al., 2015; 

Nakajima et al., 2015; Sabogal-Guaqueta et al., 2015). 

1.6.2.1 Anthocyanins and Huntington's disease 

 

Anthocyanins are a class of flavonoid that have the backbone structure of an anthocyanidin 

(Figure 1.9), with the addition of a glycoside (O-linked sugar). Anthocyanins found in plants are 

primarily 3-glycosides of anthocyanidins. In addition to the location and species of sugar, 

different structures of anthocyanins are derived from the position of hydroxy and methoxy 

functional groups on the anthocyanindin backbone. Berries, including blueberries, blackberries, 
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and blackcurrants, are rich in a variety of different anthocyanins; several predominant species 

in these berries are cyanidin 3-glucoside, cyanidin 3-rutinoside, dephinidin 3-glucoside and 

delphinidin 3-rutinoside (Figure 1.10) (Wu & Prior, 2005; Scalzo et al., 2008). Dietary 

supplementation with berry extracts (BE) has been previously shown to improve motor and 

cognitive function in rodents during ageing (Joseph et al., 1998; Casadesus et al., 2004; Galli et 

al., 2006; Duffy et al., 2008). Fruit extracts that are rich in phenolic phytochemicals have also 

been demonstrated to ameliorate the disease pathology of a cell, fly and mouse model of HD 

(Ehrnhoefer et al., 2006; Maher et al., 2011). However, the specific benefits of BE 

supplementation, rich in anthocyanins, has not been previously investigated in HD models. 

While the benefits of flavonoids and BE supplementation are measureable from the physical 

phenotype and biological markers, the exact mechanisms through which these phytochemicals 

confer benefit is not well established, particularly in the context of HD neurodegeneration.  

 

 

 

 

 

 

 

Figure 1.9 The basic chemical structure of an anthocyanidin. Anthocyanins share the same backbone 

structure with the addition of a glycoside, commonly at the R3 position. Hydroxy and methoxy functional 

groups are also typically present on the aromatic rings.  
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Figure 1.10 The chemical structure of anthocyanins predominantly found in berries (blueberry, 

blackberry, blackcurrant). Different structures of anthocyanins arise from the arrangement of hydroxy 

and methoxy functional groups on the anthocyanidin backbone, and the location and species of sugar that 

is attached to the molecule. In the pictured molecules the glycosides are glucose and rutinose.  

 

1.7 Biological markers of neurodegeneration 

 

Diagnosis is an essential process in order to apply the correct treatment to combat disease. 

Currently there is a need for diagnostic tests for neurodegenerative diseases, not only due to 

their inevitably fatal nature, but also due to the increasing prevalence of these diseases. Ideally 

biomarkers can be obtained from saliva, urine or blood as these require little or no invasive 

procedures to obtain. Although more invasive procedures such as CSF samples or a brain biopsy 

may result in a faster, more sensitive diagnosis, the stress on the body is usually unjustifiable. In 
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the case of HD where mutant carriers can be easily identified, biomarkers are of most benefit to 

therapeutic trials in assessing the efficacy of treatment. In human patients a plasma biomarker 

is ideal; however, examining post-mortem brain tissue from human and animal models may give 

insight into changes that can be measured in the circulation. Post mortem brain biomarkers are 

also useful in assessing treatments in animal trials where brain tissue is available from test 

subjects. Since HD, as well as other neurodegenerative diseases have a significant association 

with altered cholesterol metabolism in the brain, cholesterol metabolites and synthetic 

precursors are potentially useful to track the progression of disease. 24-OHC levels in brain 

tissue and plasma reflect turnover of cholesterol in the brain, however further investigation into 

this metabolite is required before its clinical usefulness can be established. This is due to 24-

OHC plasma levels being variable in humans, dependant on hepatic metabolism and brain:liver 

mass ratio (Bretillon et al., 2000a). It is known that 24-OHC is reduced in plasma of HD patients 

and correlates to volume loss in the striatum (Leoni et al., 2008); however longitudinal studies, 

that would be most effective in tracking brain metabolic dysfunction over time, currently do not 

exist. Little is known about the concentration and location of other cholesterol synthetic 

precursors and metabolic products in the HD brain, these being potentially powerful indicators 

of disease severity and progression. Further investigation into biomarkers that correlate well 

with HD severity will clearly increase the current understanding of fundamental mechanisms of 

HD pathology and invariably accelerate the search for effective therapies. 

 

1.8 Aims 

 

The aim of this thesis was to investigate the involvement of brain cholesterol homeostasis in HD, 

and identify sterol-related biomarkers associated with the disease using a novel and highly 

sensitive analytical technique. We aimed to comprehensively quantify changes in brain 

cholesterol metabolites and synthetic precursors during the progression of HD, by investigating 
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the R6/1 mouse model over 5 stages of the disease. We also aimed to investigate the 

effectiveness of EE and BE supplementation to attenuate the physical phenotype and 

cholesterol homeostatic perturbation in the R6/1 model. Finally we aimed to identify changes 

to brain cholesterol homeostasis in human HD by conducting a comprehensive analysis of 5 

regions of HD post mortem brain tissue. 
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Chapter 2                                               

General materials and methods 
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2.1 Methods of sterol analysis  

 

The specific method of sterol analysis used in this thesis is a novel and important aspect that 

requires further explanation. Qualitative and quantitative analysis of chemical compounds is key 

to identifying and understanding reactions in biological systems. Different analytical methods 

have various strengths and weaknesses depending on compounds analysed, concentration of 

the analytes and the speed and expense of analysis. Only a small number of the established, and 

well characterised cholesterol metabolic products and synthetic precursors have been analysed 

in vivo and in vitro, therefore data pertaining to a limited number of sterols has been discovered. 

A number of techniques have been previously employed, however, sensitivity is crucial for the 

analysis of cholesterol metabolites and synthetic precursors that are usually found at 

concentrations 103-106 times less than cholesterol (Micheletta & Iuliano, 2006). 

Proton nuclear magnetic resonance has been used to quantify cholesterol in bile acids 

(Srivastava et al., 2005). Although successful, this method is limited to highly abundant sterols 

(µ-mg.mL-1), and may not be sensitive enough for low level intermediates and metabolic 

products that typically require measurement of ng.mL-1 concentrations (Dzeletovic et al., 1995).  

Gas chromatography coupled with mass spectrometry (GC-MS) has been demonstrated as a 

sensitive analytical tool in a study identifying 9 cholesterol oxides in plasma (Dzeletovic et al., 

1995). By using deuterated internal standards corresponding to each analyte, the study was able 

to achieve a high level of precision, with the ability to measure concentrations of 0.5-6 ng.mL-1. 

This method has been employed in a number of studies that examine the concentration of 24-

OHC and 27-OHC in plasma (Lutjohann et al., 1996; Bjorkhem et al., 1998). These metabolites 

are found in higher abundance relative to other known cholesterol metabolites (Dzeletovic et 

al., 1995), and thus sensitivity is not a limiting factor. In order to measure the low level 

intermediates involved in synthesis, metabolic pathways and mechanisms of oxidative damage, 

a higher degree of sensitivity is required.  
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2.1.1 Triple Quadrupole GC-MS 

 

Previously, gas chromatography and mass spectrometry has been used separately for qualitative 

and quantitative analysis. However, when coupled, GC-MS presents a powerful analytical tool. 

Triple quadrupole GC-MS (GC-MS/MS) operates on the same fundamental principles of a single 

quadrupole GC-MS, however, structurally it has two quadrupoles aligned in series, separated by 

a collision cell. Specific ions (formed by analyte ionisation) can be filtered by the first quadrupole, 

fragmented in the collision cell, and then filtered again in the third quadrupole. The ability to 

filter specific ions after two fragmentations gives high specificity towards the analyte of interest 

and often increases sensitivity due to an improved signal to noise ratio. GC-MS/MS has not been 

widely used as an analytical method for the detection of cholesterol synthetic precursors, 

metabolites and oxidation products, therefore the ion transitions required for analysis has not 

been previously established. The process of developing a multiple reaction monitoring (MRM) 

method for GC-MS/MS is purely experimental, as ion formation and fragmentation is dependent 

on chemical structure and difficult to be calculated theoretically. MRM transitions involve the 

formation of a precursor ion during ionisation, followed by fragmentation in the collision cell to 

form a second fragment known as the product ion. Precursor ions are fragmented by the 

collision with inert gas, typically N2 or Ar, at a specified collision energy (CE) (Hopfgartner et al., 

2004). High CEs commonly form small mass fragments; these fragments can have a higher signal 

than larger mass fragments, however they are less specific to the compound being measured 

(Hopfgartner et al., 2004). One ion transition is used for quantitation, however to increase 

confidence in identification, one or more 'qualifier' ion transitions can also be monitored. The 

presence and ratio of specific qualifier ion transitions is used to identify and measure 

compounds with a high degree of specificity.  With this high sensitivity, GC-MS/MS has  the 

potential to measure in the femtogram range (Agilent, 2008). 
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It is clear that new methods need to be established that have the ability to reliably measure low 

concentrations of sterols before any certainty can be reached regarding cholesterol metabolic 

and synthetic pathways and how they are disturbed in HD. This is especially crucial for the 

measurement of biomarkers which may only show small changes in concentration. 

 

2.2 Materials  

Materials  

Desmosterol-d6, zymosterol-d5, zymosterol and lanosterol-d6 were obtained from Avanti lipids 

(Alabaster, AL, USA). Tert- butylhydroxytoluene (BHT), cholesterol, -cholestane, 7–

hydroxycholesterol, 7-dehydrocholesterol and 7-ketocholesterol and squalene were from Sigma 

(St. Louis, MO, USA). Lathosterol, lanosterol, desmosterol, 27-hydroxycholesterol, campesterol, 

brassicasterol, -sitosterol and stigmasterol were obtained from Steraloids (Newport, RI, USA). 

Campesterol-d3, 7–hydroxycholesterol-d7, lathosterol-d4, -sitosterol-d7 and 7-

ketocholesterol-d7 were purchased from CDN Isotopes (Quebec, Canada). 27-

hydroxycholesterol-d5, 24-hydroxycholesterol and 24-hydroxycholestero-d7 were from Medical 

Isotopes, Inc. (Pelham, AL, USA). Squalene-d6 and 24,25-dihydro lanosterol-d6 were obtained 

from Toronto research chemicals (TRC, Ontario, Canada). All standards obtained were of the 

highest purity (>95%). Methanol, hexane, methyl tert-butyl ether (MTBE), acetonitrile, toluene, 

formic acid and NaOH were purchased from Ajax Finechem (Thermo Fisher Scientific, AU). 

CUQAX223 UCT Clean-Up QAX2 solid phase extraction columns and N,O-bis(trimethylsilyl) 

trifluoroacetamide (BSTFA) + 1% trimethylchlorosilane (TMCS) was purchased from PM 

Separations (Qld, Australia). 
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2.3 Methods 

 

2.3.1 Mice  

 

Transgenic R6/1 male mice were provided by Professor Anthony Hannan (The Florey Institute, 

Melbourne) and bred with CBB6 (CBA x C57/B6) F1 female mice at Australian Bio-Resources 

(Mossvale, Australia). Mice were genotyped at 4 weeks from ear clippings. Equal numbers of 

male and female R6/1 and wild type (WT) littermates were transported to the University of 

Wollongong animal housing facility at the age of 5 weeks. Unless otherwise stated, mice were 

housed in standard small rodent cages with a wire lid (30 cm x 12 cm x 13 cm), containing 

sawdust, pine shavings and a PVC tube. Mice were provided with standard rodent diet ("rat & 

mouse nut", Vella Stock Feeds, NSW, Australia) and water available ad libitum. All procedures 

that were undertaken conformed to the standards of the University of Wollongong ethics 

committee (ethics approval number: AE 13/20). 

2.3.2 RotaRod 

 

A RotaRod apparatus (TSE systems, Bad Homberg, Germany) was used to measure motor 

performance of mice. The RotaRod used consisted of a single rod (30 mm diameter, hard plastic 

with longitudinal grooves) divided into 5 lanes, allowing the simultaneous testing of multiple 

animals. Mice were acclimatised to the RotaRod over two days before initial testing. During the 

acclimatisation, mice were allowed to balance on the RotaRod without any rotation for 5 

minutes. The RotaRod was then operated at a slow speed of 4 RPM for 1 minute. Following this, 

the accelerating testing program was run (4 RPM for 5 sec followed by a linear acceleration from 

4 to 40 RPM over 200 sec). During the testing period mice from the same cage were placed on 

the rod before the accelerating testing program was initiated. The latency to fall was measured 

automatically by the RotaRod using light beam sensors. Once all mice had fallen from the rod 
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the procedure was repeated (5 times in total) and the average of the two longest run times was 

recorded for analysis. The RotaRod apparatus was cleaned with 70% ethanol and dried between 

test subjects. Testing was performed between 9 am to 11 am over the testing period.  

2.3.3 Hind paw clasping 

 

The hind paw clasping phenotype was tested by suspending the mouse by the tail and applying 

a light tap to the animals back with a finger (also known as tail test or tail suspension test). Mice 

that clasped both hind paws tightly to their body were considered to have a complete clasp 

phenotype. Mice that clasped one paw or both paws in an interrupted manner were considered 

to have a "half clasp" phenotype. 

2.3.4 Tissue collection 

 

At specific experimental time points mice were euthanised using slow flow CO2 asphyxiation. 

Perfusion of the mouse was performed by perforating the right atrium and injecting ice cold 1 x 

PBS into the left ventricle until the perfusate was clear (approximately 20-30 mL). The head was 

then excised and the whole brain removed and weighted. Cerebral cortex and striatum was 

dissected and snap frozen in liquid N2 and stored at -80oC prior to analysis. Brain dissection was 

performed on an aluminium block on ice.  

2.3.5 Lipid extraction 

 

Frozen brain tissue (~5-10 mg) was weighed directly into a 0.5 mL polypropylene tube containing 

5 Zircosil® ceramic beads (1.3 mm) (Klausen Pty Ltd, NSW, Australia), 150 µL methanol (0.01% 

BHT) and internal standards (4oC). Tissue was homogenised at 4°C using a Precellys 24 

homogeniser (Bertin Technologies) (2 x 20 s at 5,000 rpm) and the homogenate was transferred 

to a clean glass vial. The tube and ceramic beads were washed with 100 µL methanol (4°C) and 

was added to the homogenate with 250 µL of NaOH (1 M). The sample was hydrolysed at room 
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temperature for 16 h in the absence of light and then acidified with 330 µL of 1 M formic acid. 

The sample was made up to a final volume of 3 mL by the addition of 2.2 mL milliQ water. The 

final solution had a methanol concentration of 8% (v:v) and pH 4.5. Solid-phase extraction (SPE) 

was carried out on a 200 mg mixed C8/anion exchange quaternary amine column (CUQAX223, 

UCT Inc.) that had been preconditioned with 2 mL methanol and then 2 mL 40 mM formic acid 

buffer (pH 4.5). The lipid extract was loaded and the column washed with 2 mL methanol in 40 

mM formic acid (40:60). The SPE column was dried with N2 gas flow for 5 min. Sterols and 

oxysterols were eluted with 2 mL hexane followed by 2 mL hexane/MTBE (50:50).  

 

2.3.6 Triple quadrupole GC-MS sterol analysis 

 

The sterol/oxysterol fraction was dried under N2 gas flow at 37°C and derivatised by the 

addition of 20 µL acetonitrile and 20 µL BSTFA + 1% TMCS  for one hour at 37oC. Samples were 

dried under N2 and immediately reconstituted in 40 µL toluene for GC-MS/MS analysis. 

Selective reaction monitoring (SRM) analysis of sterols/oxysterols was carried out on an 

Agilent 7000B triple quadrupole mass selective detector interfaced with an Agilent 7890A GC 

system gas chromatograph. A 20 m long Rxi-5sil MS column (Restek corp., Bellefonte, PA, USA) 

was used for chromatography. Analysis of all compounds except cholesterol was performed in 

a single chromatographic run using a splitless injection. The GC parameters used were as 

follows: Initial temperature of 200oC to 273oC at a rate of 50oC/min. This was followed by an 

increase to 300oC at a rate of 2.25oC/min. The flow rate was 0.8 mL/min. The mass 

spectrometer source temperature was 280oC with an electron energy of -60 eV. Cholesterol 

was quantified using the internal standard α-cholestane in a separate injection and 

chromatographic run using a 1:30 split ratio. The GC parameters used were as follows: Initial 

temperature of 240oC to 305oC at 50oC/min. This was held for 6 min. The flow rate was 1 

mL/min. The mass spectrometer source temperature was 280oC with an electron energy of -70 
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eV. Quantification was performed by Agilent Masshunter Quantitative software (V B.05.00) by 

comparison of specific SRM transitions of each compound with their corresponding heavy 

isotopes and using relative response factor calibration. A typical chromatogram of each analyte 

measured in mouse brain tissue is presented in Figures 1-2. Relative molar response factors of 

all analytes were calculated from calibration curves constructed from 5 different 

concentrations of authentic oxysterol mixed with deuterated standards in triplicate. The 

assayed concentrations - sterols/oxysterols (0.1-300 ng) and cholesterol (25 to 150 ug) covered 

the range expected from brain tissue. The linearality of standard curves was excellent as 

determined by simple linear regression (r2 > 0.985). Peak area of a single target transition was 

used for quantification, with at least one other transitions used for qualification. The 

calibration curve for each compound was constructed with the lowest calibration being at least 

5-10 fold lower than the analyte measured in the sample. No significant matrix effects that 

impacted on analysis were detected. This method has been fully validated for reproducibility, 

accuracy and sensitivity according to International Committee for harmony guidelines 

(International Council for Harmonisation, 2005). Method validation was performed on 6 mg 

tissue aliquots of a single pool of mouse cortex homogenate (60mg/ml), that was spiked with 

different concentrations of sterol. Percent recovery ranged between 89-104 %. Intra and inter 

day assay CV % was 0.1 - 7.9 and 1.5 – 8.1 respectively (Jenner, A.M. 2015, unpublished data). 
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Figure 2.1 Typical chromatograms of sterol compounds analysed by triple quadrupole GC-MS. These 
chromatograms are representative of lipid extracted from mouse striatum. 
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Figure 2.2 Typical chromatograms of sterol compounds analysed by triple quadrupole GC-MS. These 
chromatograms are representative of lipid extracted from mouse striatum. 

 

 

 

 

Brassicasterol Campesterol Stigmasterol 

β-Sitosterol 7-Ketocholesterol 7β-OH Cholesterol 



40 
 

Chapter 3                                              

Association of cholesterol metabolism 

with Huntington's disease progression in 

R6/1 transgenic mice 
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3.1 Introduction 

Significant research has been invested into determining HD pathology that involves a number of 

neurophysiological changes that manifest as behavioural, motor and cognitive impairments. 

These changes have been classified over the progression of the disease in humans and in a 

limited number of mouse models. Distinct biochemical alterations are also present in the HD 

brain. Among these changes is a defect in cholesterol biosynthesis and metabolism that has been 

consistently demonstrated in several mouse models. These models include mice expressing an 

expanded fragment of human HTT (R6/2), full length human HTT (YAC) and expanded mouse 

hungtingtin (hdhQ111). Due to the complexity of the cholesterol synthetic pathway (Bloch, 1965), 

previous studies have only measured a small number of synthetic intermediates and are unable 

to describe the full extent of the alterations that occur. 

In this chapter the R6/1 mouse model expressing a CAG expanded exon 1 of human HTT (~115-

120 repeats) was characterised in terms of cholesterol synthetic and metabolic changes. Physical 

phenotypic changes were also examined including, impaired motor performance, weight loss, 

reduced brain mass and involuntary clasping. Analysis of multiple time points and brain regions 

aimed to establish when specific alterations to the cholesterol synthetic and metabolic pathways 

occur, and the potential influence these have in the disease. A comprehensive analysis of sterol 

compounds was also undertaken to identify any potential biomarkers associated with HD in R6/1 

mice, to be used for future studies.  
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3.2 Materials and Methods 

 

Materials: Materials used in this study are listed in 2.2.  

Mice: R6/1 mice were generated as outlined in 2.3.1. Male and female mice (5-6 per group) were 

housed in cages of 4-5 mice, with at least 2 mice of each genotype per cage. Standard laboratory 

housing was provided (sawdust, pine shavings and a single PVC tube) with standard rodent diet 

(see 2.3.1) and water available ad libitum. Mice were acclimatised over 1 week and this included 

brief handling and weighing. All animal experiments were conducted with approval from the 

University of Wollongong ethics committee (ethics number AE 13/20). 

Body weight: Mouse weight was recorded every 4-5 days from 7 weeks of age until sacrifice. 

Hind paw clasping: Hind paw clasping was tested every 5-10 days following the procedure 

outlined in 2.3.3.   

RotaRod: Motor performance was measured using the RotaRod protocol outlined in 2.3.2. The 

RotaRod performance of mice was tested at 6, 11, 15, 19 and 23 weeks of age.  

Tissue collection: Mice were sacrificed at 5 time points (6, 12, 20, 24 and 28 weeks) using slow 

flow CO2 asphyxiation. Brain tissue was dissected and collected as described in 2.3.4. 

Lipid extraction and GC-MS/MS analysis of sterols: Quantification of cholesterol synthetic 

precursors, metabolites, oxidation products and phytosterols was performed as outlined in 2.3.5 

and 2.3.6. 

Statistical Analysis: Linear regression analysis was used to identify the rate of weight gain 

between genotypes and identify the relationship between age and sterol changes in mice. A 2-

way ANOVA was used to analyse RotaRod performance, body weight, brain lipid and brain mass 

data. Bonferroni post-tests were used to compare means at individual time points.  A student’s 

t test was also used to compare means at individual time points in the sterol data. P < 0.05 was 
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considered significant. All analyses were performed in Graphpad PRISM v5.0 (Graphpad 

Software Inc., USA). 

 

3.3 Results 

 

3.3.1 Physical phenotype 

 

The cohort of R6/1 and WT littermates housed until 28 weeks of age (n = 5 per genotype and 

sex) were tested periodically for physical changes that characterise the progression of the HD 

phenotype. These results are represented in Figures 3.1, 3.2 and 3.3.   

3.3.1.1 Weight loss in R6/1 mouse 

 

Mouse body weight was recorded every 4-5 days (Figure 3.1); male and female R6/1 body weight 

was significantly reduced compared to WT mice over the course of the study (p < 0.0001). The 

mean body weight of R6/1 mice did not increase after 16 weeks of age in males, and 19 weeks 

in females. Prior to weight loss (7-19 weeks) the rate of weight gain was significantly less in 

female R6/1 mice compared to WT (p = 0.00012). No significant difference in the rate of weight 

gain was detected between male R6/1 and WT mice in the 6-16 week period (p = 0.073). By the 

28 week time point the average weight increase in R6/1 mice from the earliest measurement (7 

weeks) was 8% in males and 19% in females.  
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Figure 3.1 Weight loss in R6/1 mice during HD progression. R6/1 mice had significantly reduced body 
weight compared to WT over the course of the study (p < 0.0001) (2-way ANOVA). The R6/1 weight loss 
phenotype is more severe in male mice compared to females. Male R6/1 mice began to lose weight after 
16 weeks compared to 19 weeks in females.  The average weight gain over 28 weeks was less in male R6/1 
mice (8%) compared to female R6/1 mice (19%). The rate of weight gain prior to weight loss was 
significantly slower in R6/1 females compared to WT (p = 0.00012) (linear regression analysis) while no 
difference was observed in male mice. n = 5 per group. Error bars represent + SEM. 
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3.3.1.2 Hind paw clasping phenotype  

 

The hind paw clasping phenotype previously observed in R6/1 and R6/2 mice (Mangiarini et al., 

1996) was also tested over the course of the study (Figure 3.2). The clasping phenotype was first 

observed at 12 weeks in males, with the percentage of mice showing positive for the phenotype 

increasing to 60% at the end of the study. Female R6/1 mice first exhibited the clasping 

phenotype at the age of 17 weeks. The percentage of female R6/1 mice showing the phenotype 

increased to 60% by the end of the study. A small proportion of WT mice showed positive to a 

"half clasp" phenotype at varying times throughout the study. 

3.3.1.3 Motor performance 

 

 A RotaRod apparatus was used to test motor performance in R6/1 mice (Figure 3.3). The 

average latency to fall from the RotaRod was significantly less in R6/1 mice compared to WT in 

both males (p = 0.0016) and females (p = 0.0004) over the course of the study. A significant 

difference at the 23 week time point was detected between male R6/1 mice and WT (p < 0.01). 

No difference in the RotaRod performance was detected between sexes of the same genotype 

(p = 0.81). 

3.3.1.4 Brain mass 

 

 Mouse brain (extracted for sterol analysis at each time point) was weighed prior to dissection. 

The brain mass of both male and female R6/1 mice was significantly less than WT littermates at 

later time points (Figure 3.4). The difference between WT and R6/1 male mice was highly 

significant at 20, 24 and 28 weeks (p < 0.0001). In female mice a significant difference was 

detected at 12 and 20 weeks (p < 0.05), becoming highly significant at 24 and 28 weeks (p < 

0.0001).  
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Figure 3.2 Hind paw clasping phenotype in R6/1 mice. R6/1 mice develop a phenotype where the hind 
paws are clasped to the body when suspended by the tail. Male R6/1 mice exhibited the phenotype prior 
to females; the occurrence of the phenotype increased in the population during disease progression with 
60% of the R6/1 mice showing a positive clasping phenotype by 28 weeks. A small proportion of WT mice 
appeared to exhibit a half clasp phenotype during the course of the study. n = 5 per group. 
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Figure 3.3 RotaRod motor performance of R6/1 mice. A progressive decline in motor performance was 
observed in both male and female R6/1 mice compared to WT littermates (p = 0.0016 and 0.0004 
respectively). No difference between male and female mice with the same genotype was detected. n = 5 
per group. Error bars represent ± SEM. 2-way ANOVA Bonferroni post-test ** p < 0.01.  
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Figure 3.4 Brain mass of R6/1 mice during disease progression. Whole brain mass was significantly 
reduced in both R6/1 male and female mice compared to WT. The difference between WT and R6/1 in 
male mice was highly significant at 20, 24 and 28 weeks. In female mice a significant difference was 
detected at 12 and 20 weeks, becoming highly significant at 24 and 28 weeks. The brain mass was 
measured from mice sacrificed at each time point of lipid analysis. Each point represents 5-7 mice. Error 
bars represent ± SEM. 2-way ANOVA Bonferroni post-test *p < 0.05 ***p < 0.0001 
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3.3.2 Sterol analysis of R6/1 brain tissue 

 

No major differences in sterols (cholesterol synthetic precursors, metabolites, oxidation 

products and phytosterols) were found between sexes in R6/1 or WT mice. To increase statistical 

power both sexes were combined and reanalysed. The level of all sterols measured for the 

individual sexes can be found in Appendix 1-3. The following results summarise the data for 

combined sexes. The sterol related compounds were detected in the brain tissue at 

concentrations ranging from 0.1 – 80 ng.mg-1 tissue. This consistent with the several compounds 

that have been previously investigated in mouse brain (Valenza et al., 2007b; Valenza et al., 

2010). 

3.3.2.1 Cholesterol synthetic precursors 

 

Several cholesterol synthetic precursors were significantly decreased in R6/1 striatum and 

cortex compared to WT (Figures 3.5A-D, 3.6A-D). Lathosterol levels were significantly reduced 

from the pre-symptomatic age of 6 weeks in R6/1 striatum (p < 0.001) and cortex (p < 0.05) 

when compared to WT mice. Lathosterol was consistently reduced in both cortex and striatum 

of R6/1 mice compared to WT in all later time points (12, 20, 24 and 28 weeks; p < 0.001). 

Lanosterol and zymosterol followed a similar consistent reduction; a significant difference in 

lanosterol levels was first detected at 12 weeks in striatum and cortex of R6/1 (cortex p < 0.05, 

striatum p < 0.01). R6/1 striatum exhibited an early reduction in zymosterol at 6 weeks (p < 

0.01), and at all later time points. The level of zymosterol in cortex tissue was only significantly 

reduced compared to WT at 28 weeks of age (p < 0.05). The cholesterol synthetic precursor 

24,25 dihydro lanosterol was not significantly altered in the R6/1 striatum or cortex although it 

was detected at lower mean levels than WT at all time points examined.  
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3.3.2.2 Cholesterol synthetic precursors during ageing 

 

Lanosterol, lathosterol, zymosterol and 24,25 dihydro lanosterol levels decreased at a similar 

rate over time in the striatum of WT and R6/1 mice (p < 0.01), however no significant difference 

in the slope was detected between R6/1 and WT (Figure 3.5A-D).  

Cortex tissue showed a different profile compared to striatum in terms of changes in cholesterol 

synthetic precursor levels over time. Both zymosterol and lanosterol decreased over time in 

R6/1 mice (p = 0.0184 and p < 0.0001 respectively) while WT levels did not significantly change 

(Figure 3.6B, C.).  Analysis of the linear regression confirmed the slopes of R6/1 were significantly 

different to WT (zymosterol p = 0.005 and lanosterol p = 0.0078). The level of 24,25 dihydro 

lanosterol did decrease significantly over time in R6/1 mice (p = 0.0018), however no difference 

in the rate of change was detected between WT and R6/1 (Figure 3.6D). Lathosterol decreased 

both in R6/1 and WT mice at a similar rate (Figure 3.6A). The correlation of cholesterol synthetic 

precursor change over time in WT and R6/1 mice is summarised in Table 3.1.  

Unlike upstream sterols in the cholesterol synthetic pathway, desmosterol levels did not 

significantly decrease over time in the striatum of R6/1 mice, being either elevated or unchanged 

at specific time points. Linear regression analysis identified that the rate of change in WT and 

R6/1 desmosterol levels was significantly different (p = 0.005); with R6/1 desmosterol levels not 

decreasing significantly over time (Figure 3.5E).  Comparing the means at individual time points 

identified desmosterol was significantly elevated in R6/1 striatum at 20 and 28 weeks compared 

to WT (t-test, p = 0.046 and p = 0.0138). Desmosterol levels in cortex were not altered over time 

in both WT and R6/1 mice, however there was a small but significant elevation of desmosterol 

in R6/1 mice at 28 weeks (t-test, p = 0.0431) (Figure 3.6E).  7-dehydrocholesterol levels did not 

decrease over time in cortex or striatum of R6/1 mice, and no difference between R6/1 and WT 

mice was detected at any time point (Figures 3.5F, 3.6F). 
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Figure 3.5: Cholesterol synthetic precursor levels in striatum tissue of R6/1 and WT littermates. 
Extracted sterols were quantified using heavy isotope mass dilution GC-MS/MS. (A) Lathosterol, (B) 
lanosterol and (C) zymosterol  levels were significantly reduced early in the R6/1 mice compared to WT. 
(D) 24,25 dihydro lanosterol showed a trend to be decreased in R6/1 mice however there was no 
significant difference between WT and R6/1 at any time point. Lanosterol, lathosterol, zymosterol and 
24,25 dihydro lanosterol decreased over time in both R6/1 and WT mice (p < 0.01). Genotype had no 
effect on the rate of change over time.  The rate of change over time in (E) desmosterol levels in WT and 
R6/1 was significantly different (p = 0.005). Desmosterol did not significantly decline in R6/1 mice, and 
was significantly elevated at 20 and 28 weeks compared to control. (F) 7-Dehydrocholesterol did not 
significantly decline in R6/1 mice and no significant differences were detected between R6/1 and WT at 
any time point examined. Each data point represents combined results from male and female mice, n = 
10-13 per group.  Error bars represent ± SEM. 2-way ANOVA Bonferroni post-test *p < 0.05 **p < 0.01 
***p < 0.0001. t-test Ψp < 0.05 
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Figure 3.6:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Cholesterol synthetic precursor levels in cortex tissue of R6/1 and WT littermates. Extracted 
sterols were quantified using heavy isotope mass dilution GC-MS/MS. (A) Lathosterol and (B) lanosterol 
levels were significantly reduced early in R6/1 mice compared to WT. (C) Zymosterol was significantly 
reduced in R6/1 at the end time point. (D) 24,25 dihydro lanosterol  had a trend to be reduced however 
there was no significant difference between WT and R6/1 at any time point. Zymosterol and lanosterol 
decreased in R6/1 over time while WT levels remained unchanged (p < 0.01). Lathosterol levels decreased 
both in R6/1 and WT at a similar rate. 24,25 dihydro lanosterol levels were not detected to change over 
time. The rate of change in (E) desmosterol levels over time was not significantly different between R6/1 
and WT; however desmosterol was elevated in R6/1 mice at 28 weeks. (F) 7-Dehydrocholesterol did not 
significantly decline in R6/1 mice and no significant differences were detected between R6/1 and WT at 
any time point examined.  Each data point represents combined results from male and female mice, n = 
10-13 per group.  Error bars represent ± SEM. 2-way ANOVA Bonferroni post-test *p < 0.05 **p < 0.01 
***p < 0.0001. t-test Ψp < 0.05 
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3.3.2.3 Cholesterol  

 

 Total cholesterol levels were not significantly altered between R6/1 and WT mice in this study. 

However, an increase in cholesterol levels over time was observed both in striatum and cortex 

of WT and R6/1 mice. Striatum WT (p = 0.0003), R6/1 (p = 0.0005). Cortex WT (p = 0.048), R6/1 

(p = 0.0075) (Figure 3.7). Analysis of the slope revealed the rate of change over time was not 

significantly different between R6/1 or WT mice in either striatum or cortex. The correlation 

coefficient of cholesterol levels over time is provided in Table 3.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Cholesterol levels in cortex tissue of R6/1 and WT littermates. Extracted sterols were 
quantified using heavy isotope mass dilution GC-MS/MS. No difference between cholesterol levels was 
detected between WT and R6/1 mice. The absolute level of cholesterol did increase with time in cortex 
and striatum of both WT and R6/1 mice. [Striatum WT (p = 0.0003), R6/1 (p = 0.0005). Cortex WT (p= 
0.048), R6/1 (p=0.0075).] The rate of change over time was not significantly different between R6/1 or 
WT mice in either striatum or cortex. Each data point represents combined results from male and female 
mice, n = 10-13 per group.  Error bars represent ± SEM.  
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3.3.2.4 Cholesterol metabolites 

 

The brain specific cholesterol elimination product 24-OHC was significantly reduced in the 

striatum of R6/1 mice at the end time point of 28 weeks (p < 0.01, Figure 3.8). No other time 

point or brain region measured showed an effect of genotype on 24-OHC levels. 24-OHC levels 

increased in both striatum and cortex of WT and R6/1 mice over time (p < 0.01) however there 

was no difference between the rate of change between R6/1 and WT (linear regression slopes 

were not significantly different, Figures 3.8, 3.9) 

27-OHC, a predominantly peripheral metabolite of cholesterol was consistently depleted in R6/1 

striatum from the age of 12 weeks (p < 0.05) and in all later time points (20 weeks p < 0.01, 24 

weeks p < 0.05, 28 weeks p < 0.05, Figure 3.8). 27-OHC levels were not significantly altered in 

cortex tissue of R6/1 mice when compared to WT at any of the 5 time points examined. 27-OHC 

levels in both striatum and cortex showed a small increase over time in WT mice (p = 0.0288 and 

p = 0.0399 respectively) but not in R6/1 (Figures 3.8, 3.9). When comparing WT and R6/1 directly, 

no difference in rate of change was found in cortex or striatum. The correlation of 24-OHC and 

27-OHC changes over time is summarised in Table 3.1.  
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Figure 3.8: Cholesterol metabolites in striatum tissue of R6/1 and WT littermates. Extracted sterols were 
quantified using heavy isotope mass dilution GC-MS/MS. 24(S)-Hydroxycholesterol was significantly 
reduced in striatum of R6/1 mice compared to WT at the end stage of the study. A significant reduction 
in 27-hydroxycholesterol levels was detected early (12 weeks), and was consistently reduced until 28 
weeks. The level of 24-OHC increased during ageing in both WT and R6/1 mice (p < 0.01), the rate of 
change was not different between genotypes. Each data point represents combined results from male 
and female mice, n = 10-13 per group.  Error bars represent ± SEM. Bonferroni post-test *p < 0.05 **p < 
0.01  
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Figure 3.9: Cholesterol metabolites in cortex tissue of R6/1 and WT littermates. Extracted sterols were 
quantified using heavy isotope mass dilution GC-MS/MS. R6/1 cortex did not have significantly altered 
levels of 24-OHC or 27-OHC at any time point examined. 24-OHC levels increased in WT and R6/1 mice 
during ageing (p < 0.01), the rate of change was not different between genotypes. Each data point 
represents combined results from male and female mice, n = 10-13 per group.  Error bars represent ± 
SEM. 
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Table 3.1 Age/sterol correlation in R6/1 and WT mice. Sterols were analysed at five time points 
(6, 12, 20, 24 and 28 weeks) in striatum and cortex tissue of R6/1 and WT mice. Each time point 
consisted of combined male and female mice from both R6/1 and WT mice (n = 10-13 per group). 

 Striatum - correlation 
coefficient (r) 

Cortex - correlation 
coefficient (r) 

WT R6/1 WT R6/1 

Cholesterol synthetic precursors 

Lathosterol -0.63* -0.82* -0.31* -0.54* 

Lanosterol -0.31* -0.67* -0.047 -0.61* 

Zymosterol -0.63* -0.69* 0.22 -0.32* 

24, 25 Dihydro lanosterol -0.40* -0.44* -0.26 -0.42* 

Desmosterol -0.64* -0.26 0.0066 -0.047 

7-Dehydrocholesterol -0.30 0.076 0.022 0.083 

Cholesterol metabolites 

24(S)-Hydroxycholesterol 0.53* 0.36* 0.49* 0.33* 

27-Hydroxycholesterol 0.29* 0.060 0.28* 0.066 

 

Cholesterol 0.48* 0.47* 0.27* 0.36* 
*Indicates compounds with a significantly non-zero gradient (p < 0.05, linear regression analysis) 

3.3.2.5 Cholesterol oxidation products 

 

Free radical generated oxidation products of cholesterol were also measured over the course of 

the study. No significant differences in the level of 7-KC and 7β-OHC were detected between 

R6/1 and WT in any brain region or timepoint measured. The level of 7-KC and 7β-OHC were not 

significantly altered over time in cortex or striatum in either genotype (Appendix 1-3).  

3.3.2.6 Phytosterols 

 

Plant-synthesised sterols that are derived from the diet share a similar structure to cholesterol 

and can be measured in brain tissue. A small accumulation of phytosterols was observed in 

cortex and striatum during ageing in both WT and R6/1 (Appendix1-3). This reached significance 

in campesterol and brassicasterol. No effect of genotype on the on the level of phytosterols 

(campesterol, β-sitosterol, stigmasterol and brassicasterol) in cortex or striatum was detected 

in this study  
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3.4 Discussion 

 

Brain cholesterol homeostasis is maintained by de novo synthesis and brain-specific excretion 

pathways. Brain cholesterol is also isolated from peripheral cholesterol levels as the BBB is 

impermeable to cholesterol (Bjorkhem & Meaney, 2004). These regulatory mechanisms indicate 

that maintaining cholesterol levels is essential for normal brain function. This is indeed the case 

as cholesterol has essential functions involving synaptogenesis (Mauch et al., 2001), axon 

growth (Hayashi et al., 2004), membrane fluidity (Yeagle, 1985) and lipid raft structure relevant 

to cell signalling (Sheets et al., 1999; Zajchowski & Robbins, 2002; Kannan et al., 2007). Genetic 

defects in cholesterol synthetic enzymes also cause severe neurological impairment in diseases 

such as Smith-Lemli-Optitz (Wassif et al., 1998) and desmosterolosis (Waterham et al., 2001). 

A defect in cholesterol synthesis was first described in HD transgenic cells that identified several 

genes involved in cholesterol biosynthesis downregulated, including HMGCR and DHCR7 

(Sipione et al., 2002). Several HD mouse models have also been generated that express either: 

an expanded fragment of human HTT (Mangiarini et al., 1996), an expanded full-length human 

HTT (Hodgson et al., 1999; Slow et al., 2003), or an expanded mouse huntingtin (Wheeler et al., 

1999). A similar deficit in cholesterol biosynthesis has generally been reported in these models, 

identified through a reduction of cholesterol synthetic precursors (Valenza et al., 2005; Valenza 

et al., 2007a; Valenza et al., 2007b; del Toro et al., 2010; Valenza et al., 2010) and, in some cases, 

total cholesterol levels (Valenza et al., 2007a).  

The current literature has mostly used the R6/2 transgenic mouse model that expresses exon 1 

of human HTT with a 140-150 CAG repeat and has a rapid onset of symptoms. This mouse has 

been characterised in terms of phenotypic progression and potential changes in only a limited 

number of cholesterol synthetic precursors and metabolites. We have however, chosen to 

examine the R6/1 model which expresses a shorter CAG expansion (115-120) of exon 1 HTT. The 

R6/1 mouse has a later onset of motor dysfunction and a longer life span, therefore providing a 
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model that more accurately reflects the late onset and long timeline (15-30 years) of disease in 

human patients (Foroud et al., 1999). The R6/1 model has already been characterised in terms 

of behavioural phenotype and some molecular changes including, glycosphingolipid 

abnormalities (Denny et al., 2010), gene expression profile alterations (Hodges et al., 2008), 

cannabinoid receptor changes (Naver et al., 2003) and serotonin transporter deficits (Pang et 

al., 2009). Cholesterol synthesis and metabolism has not been comprehensively examined prior 

to experiments undertaken in this chapter. 

3.4.1 Cholesterol synthesis and metabolism  

 

Previous studies examining brain cholesterol changes in mouse models typically investigated a 

limited number of compounds at one or two time points during disease progression, in a single 

brain region or whole brain homogenate. In addition to this, potential differences between sexes 

have not been explored. A comprehensive analysis is required to assess whether alterations of 

cholesterol synthesis are a driving factor or a secondary event involved in HD pathogenesis. 

In this study we have analysed cortex and striatum in male and female R6/1 mice at 5 time points 

over the course of the disease, from a pre-symptomatic age (6 weeks) to end stage (28 weeks). 

Mass dilution GC-MS/MS analysis was used to quantify a larger number of cholesterol synthetic 

precursors, major metabolites, cholesterol oxidation products and phytosterols. This is the first 

study to comprehensively examine sterol changes in the R6/1 mouse, and the most 

comprehensive sterol analysis of any HD mouse model to date.  

3.4.1.1 Cholesterol synthetic precursors 

 

Significant differences between sexes were not detected in the sterol profile of either R6/1 or 

WT mice, and for simplicity the following discussion describes changes occurring when sexes 

were combined. Analysis of combined sexes also increased the statistical power, and detected 

significance in compounds exhibiting small changes. Although this study was not able to detect 
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differences between sexes in sterol levels of R6/1 mice, increasing the "n" number for future 

studies may identify small but significant differences that may explain the differences in the 

behavioural phenotype observed between sexes.  

Sterol analysis of R6/1 cortex and striatum showed a significant reduction in several cholesterol 

synthetic precursors over the course of the disease. The significant reduction of lathosterol and 

zymosterol in the striatum of R6/1 mice at 6 weeks of age represents the earliest detectable 

change in the R6/1 sterol profile, and appears before the onset of overt motor dysfunction 

measured on the RotaRod. Changes to zymosterol are more specific to the striatum compared 

to other precursors that decrease early in both cortex and striatum. This highlights zymosterol 

as a possible specific biomarker of early striatal changes in HD mice. 24,25 Dihydro lanosterol 

levels were not significantly altered between R6/1 and WT mice however the mean 

concentration in R6/1 mice was consistently lower than WT at all five time points. This sterol is 

found at low concentrations in the brain (0.1-0.4 ng/mg tissue), and while the GC-MS/MS 

method we have developed can sensitively detect this compound at these levels, it may be 

prone to greater concentration variation between individuals at any time, and statistically 

significant differences would therefore be difficult to detect with the current study size.  

Synthetic precursor levels were more severely affected in striatum compared to cortex in our 

study; changes occurred earlier and were of a greater magnitude in striatum (lathosterol 

decreased by 80% in striatum compared with 50% in cortex). This observation is consistent with 

previous studies in the YAC and R6/2 models (Valenza et al., 2007a; Valenza et al., 2007b), as 

well as the striatum in humans being the earliest and most severely affected brain region in HD 

(Vonsattel et al., 1985). Absolute cholesterol and cholesterol synthetic precursor levels were 

also previously shown to be higher in striatum compared to cortex (Zhang et al., 1996; Valenza 

et al., 2007b). For this reason it has been hypothesised that disturbed cholesterol homeostasis 

in HD may lead to specific vulnerability of the striatum (Valenza et al., 2007b). Significant sterol 
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changes early in the striatum of the R6/1 mouse suggest that alterations to the cholesterol 

biosynthetic pathway in the brain occur very early; with the possibility that these changes may 

even be present during embryonic development. This has implications for brain development as 

the majority of brain cholesterol is synthesised during prenatal life (Dietschy & Turley, 2004). If 

this is the case in HD, neurodegeneration may be seeded early with individuals only becoming 

symptomatic later in life. 

 A current hypothesis suggests that errors in myelination during development may be a factor 

in human HD, taking many years to manifest before onset due to compensatory mechanisms 

that function early but become overwhelmed in the aged brain (Bartzokis et al., 2007). 

Alternatively, early changes may be independent of the pathological processes in HD and 

investigating changes that occur during overt motor dysfunction may provide further insight into 

the involvement of altered cholesterol synthesis in the disease. 

This study has also examined 7-dehydrocholesterol and desmosterol; the immediate precursors 

to cholesterol in the Kandutsch-Russell and Bloch pathways respectively (Figure 1.2). Contrary 

to a previous finding that desmosterol decreases in YAC 128 mice (Valenza et al., 2007a), 

desmosterol levels were significantly elevated in R6/1 striatum and cortex by the end stage in 

our study. This may be an artefact of the different mouse models expressing different forms of 

mHTT, however it may also be due to the previous study using single quadrupole GC-MS (Valenza 

et al., 2007a), a technique that has lower specificity in discriminating between similar sterols 

(especially 7-dehydrocholesterol) compared to GC-MS/MS used in our study. However, it is 

unlikely that the elevated desmosterol levels we observe are due to a higher throughput of 

synthesis, as cholesterol levels did not increase in our study or in a previous study examining 

R6/1 mice (del Toro et al., 2010). A plausible explanation for this accumulation is the reduced 

activity of the enzyme (DHCR24) that catalyses the conversion of desmosterol to cholesterol.  

Previous studies in R6/2 mice do not report desmosterol levels and therefore it is unknown if 
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desmosterol accumulation also occurs in the longer exon 1 CAG repeat mouse model (Valenza 

et al., 2007b). 7-Dehydrocholesterol, similarly to desmosterol did not decrease over time as seen 

in upstream precursors, and the levels were not significantly altered between WT and R6/1 mice 

at any time point or brain region. Considering lathosterol levels are substantially reduced (the 

immediate precursor of 7-dehydrocholesterol) and 7-dehydrocholesterol levels were 

unchanged, we suggest that the enzyme that converts 7-dehydrocholesterol to cholesterol 

(DHCR7) may also be less active or at lower abundance in R6/1 mice. Our current study gives a 

novel insight into 7-dehydrocholesterol levels which have not been previously reported in HD 

mouse brain; most likely due to analytical difficulties in resolving the structures of desmosterol 

and 7-dehydrocholesterol, achieved only in this study by high resolution GC-MS/MS.  

 Previously it has been suggested that the absolute level of cholesterol synthetic precursors 

(lathosterol and lanosterol) in the brain are markers of cholesterol synthesis (Thelen et al., 2006; 

Valenza et al., 2007b), however our results which describe an accumulation of penultimate 

precursors suggest there is likely to be more complex regulation at various points of the 

synthetic pathway than previously believed. How this regulation affects lanosterol and 

lathosterol levels is unknown, and therefore the measurement of these precursors alone to 

interpret synthetic rate may be potentially confounding. The regulation of "post-squalene" 

cholesterol synthesis has been investigated recently showed that the two terminal enzymes in 

the pathway interact functionally, DHCR24 regulating the activity of DHCR7 (Luu et al., 2015). 

The idea of synthetic enzymes interacting physically supports the hypothesis of a 

"cholestesome" of cholesterol synthesis; which would involve a discrete group of enzymes 

acting on cholesterol synthetic precursors as they are converted to a final product (Sharpe & 

Brown, 2013). DHCR24 is also believed to have further regulatory roles upstream in the pathway 

(Luu et al., 2015), however these roles have not been fully established. It is clear that the 

cholesterol synthetic pathway has more complex regulation than previously believed, and while 
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recent studies have identified synthetic enzyme interactions in cells derived from the periphery, 

the specific details of cholesterol synthetic regulation remains to be fully understood in the 

brain.  

3.4.1.2 Age related changes to cholesterol synthetic precursors 

 

Cholesterol synthetic precursors lanosterol, lathosterol, zymosterol and 24, 25 dihydro 

lanosterol in the striatum decrease at a similar rate during ageing in WT and R6/1 mice. This was 

also evident in cortex however the correlation was weaker. Consistent with our results in mouse 

brain, a negative correlation in lathosterol and lanosterol levels has been observed in human 

brain tissue during ageing (r = -0.5) (Thelen et al., 2006). Whether this suggests an overall 

decrease in cholesterol levels with ageing is discussed below (3.4.1.4).  

 Interestingly 7-dehydrocholesterol levels did not decline over time in WT or R6/1 mice in cortex 

or striatum in our study. In contrast, desmosterol levels declined in WT striatum over 28 weeks, 

while remaining stable in R6/1. The regional specificity of this change highlights desmosterol 

accumulation (or reduction in DHCR24 levels or activity), as a more specific indicator of 

cholesterol synthetic alterations in the R6/1 mouse compared to upstream cholesterol synthetic 

precursor changes. Desmosterol, as measured in this study may also represent a reliable marker 

of DHCR24 activity in brain tissue of HD, or other neurodegenerative disorders.  

3.4.1.3 Cholesterol levels in the R6/1 mouse 

 

Our study did not detect any significant alterations in the cholesterol levels of the striatum and 

cortex of R6/1 mice compared to WT at any time point or brain region analysed. This is 

consistent with previous studies in the striatum of R6/1 (del Toro et al., 2010) and R6/2 mice 

(Valenza et al., 2007b). Previous studies also describes conflicting results; a small but significant 

decrease in cholesterol levels was measured in whole brain homogenates of YAC 128 mice at 10 

months of age (Valenza et al., 2007a), and a significant increase of striatal  cholesterol was 
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detected in HdhQ111 mice (del Toro et al., 2010). The apparent contradictions in cholesterol level 

changes previously reported could be explained by several factors. The different mouse models 

varying in the length and species of huntingtin expressed (YAC, R6 - human HTT, HdhQ111-mouse 

huntingtin), may cause different metabolic effects that alter total cholesterol in the brain. 

Detection and quantification methodologies (enzymatic, colorimetric, mass spectrometry) and 

sample preparation differs between studies, and have been shown to affect the result obtained 

(Marullo et al., 2012). Of these methods, mass spectrometry was previously found to be the 

most sensitive and reliable method for cholesterol quantification (Marullo et al., 2012). Tissue 

samples are also varied between studies; from discrete brain regions such as the striatum, to 

whole brain homogenates. Different brain regions vary in total volume and cholesterol content 

(10-30 µg/mg tissue) (Zhang et al., 1996; Valenza et al., 2007b). The use of whole brain 

homogenates may obscure changes in discrete regions as well as potentially giving a false 

positive if non-disease-specific changes occur in a large brain region. Analysis of brain 

cholesterol in HD models would benefit from the use of standardised methods in collecting 

discrete brain regions and using specific analytical methods such as a mass spectrometry 

method developed by our laboratory (Abbott et al., 2013). This would allow more accurate 

comparisons to be made between laboratories studying different HD models.  

Unchanged levels of cholesterol in the R6/1 brain compared to WT that we observe does not 

necessarily rule out an altered cholesterol synthetic rate in this tissue. The concentration of 

cholesterol in the brain is relatively high (μg.mg-1), and the rate of synthesis slow in the adult 

brain (ng.h-1.mg-1) (Spady & Dietschy, 1983), therefore significant alterations to total cholesterol 

levels may not take place during the short life span of these mice. This idea is consistent with 

total cholesterol changes only being observed in models with a longer lifespan (Valenza et al., 

2010).  
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 Metabolism of cholesterol to 24-OHC occurs mainly in neurons (Lund et al., 1999) and altered 

rates of metabolism may compensate for declining synthesis which is discussed in more detail 

in 3.4.1.5. It is also possible that although the concentration of cholesterol does not change in 

whole tissue samples, cholesterol is redistributed within the cell as previously observed in 

cultured striatal cells derived from the R6/2 mouse model (del Toro et al., 2010). The discrete 

cellular and regional pools of cholesterol in the brain are diverse and vary in concentration. 

Myelin contains 70-80% of cholesterol in the brain (Norton & Autilio, 1965; Snipes & Suter, 

1997); it is formed early in development and is possible that this is not greatly affected by the 

HD mutation. Neuronal cholesterol and that synthesised in astrocytes represents a smaller mass 

of cholesterol however is more dynamic (Bjorkhem et al., 1997). Small alterations in cholesterol 

formation and delivery between astrocyte and neuron may not be easily detected in whole 

tissue samples and is one limitation of examining whole tissue. Ideally, individual cell types could 

be examined from in vivo sources, however this is technically challenging. While in vitro cell 

culture experiments provide the ability to control cell types and the extracellular environment, 

essential cholesterol shuttling between astrocytes and neurons as well as ageing, cannot be 

accurately replicated. This is an important consideration when examining cholesterol 

homeostasis in vitro.  

3.4.1.4 Age related alteration to cholesterol levels in the brain 

 

Interestingly a small, but significant increase in cholesterol was observed over time in the 

striatum and cortex of WT and R6/1 mice over the 28 week study. Mice in this study are not 

significantly aged (28 weeks old, representing early adulthood) and therefore it is difficult to 

deduce the influence of further ageing on cholesterol levels in these mice. Striatal cholesterol 

levels have been reported to increase during ageing in rats; regional age-related differences 

were also noted with cerebellum and hippocampus remaining unchanged (Zhang et al., 1996). 

Whether cholesterol levels and the biosynthetic rate changes over time in the human brain has 



66 
 

not been established; too few studies have examined brain cholesterol during ageing, those that 

do have found unchanged levels (Soderberg et al., 1990; Thelen et al., 2006), or a decrease in 

cholesterol (Svennerholm et al., 1994). Cholesterol synthetic precursors have been shown to 

decrease with age, however a significant alteration of cholesterol levels was not detected due 

substantial variation between individuals (Thelen et al., 2006). Previous inconclusive findings are 

likely the result of brain regional differences, high variation within the human population and 

lower "n" numbers of post-mortem tissues studied in different publications. An association 

between cholesterol homeostasis and AD have been highlighted previously (Cutler et al., 2004; 

Gamba et al., 2011; Gamba et al., 2014) ; however, no consensus has been reached regarding 

cholesterol changes in these settings. Previous literature examining cholesterol changes in 

human HD brain is similarly inconclusive, probably due to low numbers of samples and the high 

variation between samples leading to a loss of statistical power (del Toro et al., 2010). While 

total cholesterol levels in tissue may be unchanged, altered distribution of cholesterol within 

the cell may have a very significant influence. Studies depleting cholesterol in cell membranes 

observe significant changes to cell signalling (Kabouridis et al., 2000). Primary striatal cultures of 

HD mice also show increased cholesterol concentration at the cell membrane while the overall 

concentration remains unaltered (del Toro et al., 2010). These findings are potentially important 

and require more investigation in the HD context.  

3.4.1.5 Cholesterol metabolite changes in ageing and Huntington’s disease 

 

24-OHC has been marked as a molecule of interest after being identified as a major and specific 

elimination product of cholesterol from the brain (Lutjohann et al., 1996; Bjorkhem et al., 1998). 

24-OHC is formed enzymatically from CNS cholesterol catalysed by CYP46A1, which is primarily 

expressed in neurons (Lund et al., 1999). 24-OHC levels in plasma have been suggested as a 

biomarker of several neurodegenerative diseases including AD (Bretillon et al., 2000b), PD 

(Bjorkhem et al., 2013), multiple sclerosis (Teunissen et al., 2003) and recently HD (Leoni et al., 
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2008; Leoni et al., 2013). Our study identified a significant (25%) reduction of 24-OHC levels in 

the R6/1 striatum at 28 weeks of age. We believe the relative decline of 24-OHC in R6/1 mice 

compared to WT is progressive over the course of the disease becoming more pronounced at 

later stages. Previous studies have also identified a reduction of this metabolite in the brain and 

plasma of several other HD mouse models (Valenza et al., 2007b; Valenza et al., 2010).  

Aside from differences between genotypes, 24-OHC levels increase in cortex and striatum of 

R6/1 and WT during ageing. This data supports the finding that CYP46A1 enzyme levels increases 

during ageing in the mouse brain (Lund et al., 1999). Human CYP46A1 does not show such a 

strong age related increase (Lund et al., 1999), this is consistent with plasma 24-OHC 

measurements in humans being independent of age after the 2nd decade (Lutjohann et al., 

1996). 24-OHC levels during ageing in the brain have not been measured extensively and our 

data constitutes the first evidence of age-related 24-OHC accumulation in HD mouse brain. 

Age-related changes during HD are important to examine, as measuring only a single time point 

can produce potentially misleading results. When examining one time point in our study, the 

reduction of 24-OHC  in R6/1 mice could be assumed to compensate for reduced levels of 

cholesterol synthetic precursors, therefore maintaining equal cholesterol levels between WT 

and R6/1 mice. However by examining multiple time points in our study we have identified that 

both 24-OHC and total cholesterol levels increase with age in both R6/1 and WT mice. This 

suggests a more complex system maintaining cholesterol levels, potentially involving another 

mechanism that regulates cholesterol excretion from the brain via ApoE (Pitas et al., 1987b). 

ApoE has been reported to be altered during neurodegeneration (Roses, 1996), and evidence 

from mouse models suggests that ApoE is reduced during HD pathology (Valenza et al., 2010). 

ApoE has been suggested to have neuroprotective properties (Pedersen et al., 2000; Horsburgh 

et al., 2002), with expression trending to increase during ageing (Masliah et al., 1996). Potential 

interactions of 24-OHC and ApoE have not been explored in HD, however this represents 
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another possible influence of altered cholesterol metabolism observed in the HD brain. Further 

investigation is required to elucidate the underlying mechanisms responsible for cholesterol 

metabolic changes during ageing; these studies will ultimately provide greater insight into lipid 

alterations occurring during neurodegeneration that typically takes place in the aged brain.  

A predominantly peripheral metabolite of cholesterol, 27-OHC, was also significantly reduced in 

R6/1 striatum by the age of 12 weeks, while cortex tissue had no significant alterations. 27-OHC 

has a net movement from circulation into the brain (Heverin et al., 2005) and reduced levels 

seen in R6/1 might be explained by a whole body metabolic dysfunction that is known to occur 

in HD (Lodi et al., 2000; Chen et al., 2007). However, this is unlikely as cortex did not exhibit the 

same reduction of 27-OHC levels observed in striatum. It is possible that enzymes that further 

metabolise 27-OHC are upregulated, or enzymes capable of forming 27-OHC in brain are 

downregulated in striatum, however we have no experimental evidence to support this, and 

requires further investigation.  

3.4.1.6 Cholesterol oxidation product changes in ageing and HD 

 

Oxidation of cholesterol in the 5,6 position generates 7β-OHC and 7-KC. These products 

represent stable and reliable markers of cholesterol oxidation, previously assayed in plasma 

(Iuliano et al., 2003). In contrast to our results that showed no change in COPs, a study in the 

striatum of R6/1 mice did observe a time dependant increase of lipid peroxidation (Perez-

Severiano et al., 2000). While the different methodology used (lipid soluble fluorescence vs GC-

MS/MS in our study) may derive a different result, we would expect that as cholesterol is highly 

abundant in the brain, the presence of oxidative stress would increase the formation of the COPs 

we have measured. Until multiple laboratories using reliable analytical techniques can 

consistently demonstrate the presence of oxidative stress in the brain of R6/1 mice, the role of 

lipid peroxidation in the HD pathogenesis of this mouse model is still in question.  
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3.4.1.7 Phytosterol changes during ageing and HD 

 

Phytosterols are derived from the diet and share a similar structure to cholesterol. They are 

known to slowly accumulate in brain and other peripheral tissues (Plat et al., 2008). Phytosterol 

levels were variable between R6/1 and WT over the course of the study and no significant effect 

of genotype was observed. A small accumulation of campesterol and brassicasterol over time in 

both WT and R6/1 mice was observed in both regions, consistent with previous studies in rats 

(Plat et al., 2008). As these compounds can only be taken up from the circulation, they may 

represent a useful post mortem indicator of a disturbed BBB that would result in higher 

phytosterols levels present in HD brain tissue.   

3.4.2 Physical phenotypic changes in the R6/1 mouse 

 

In this study we have also investigated the R6/1 phenotype in detail over the course of the 

disease, from 6 to 28 weeks of age. Previous literature has typically studied either male or female 

R6/1 mice, in separate studies. Here we have examined both sexes in parallel to more directly 

assess sex differences in the HD phenotype that have been previously reported. 

3.4.2.1 Weight loss 

 

Human and mouse metabolism is quite different yet the CAG expansion in transgenic R6/1 mice 

causes weight loss in line with observations in human HD patients (Sanberg et al., 1981; Morales 

et al., 1989). Weight loss may not be directly involved in neuronal dysfunction; however 

monitoring the effect of mHTT on peripheral metabolism may give an insight into relevant 

effects in the brain. Consistent with previous literature we have observed a milder weight loss 

phenotype in females compared to male R6/1 mice (Clifford et al., 2002; Naver et al., 2003). In 

our study female weight gain in R6/1 mice was significantly slower than WT mice prior to weight 

loss suggesting a metabolic abnormality from early life; however after a certain age a dramatic 

weight loss is seen. Due to a high variation in body weight of male R6/1 mice, a significant 
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difference in weight gain prior to weight loss was not detected. Food intake of R6/1 mice was 

not measured in this study to reduce stress on animals being isolated and reunited. We do not 

believe the primary cause of weight loss is a lack of feeding as it has been reported that R6/1 

mice have a similar food intake to WT mice however still exhibit a distinct weight loss profile 

(Mangiarini et al., 1996), similar to that described in our study.  

3.4.2.2 Hind paw clasping phenotype 

 

The hind paw clasping phenotype measures an involuntary clasping of the hind paws when R6/1 

and R6/2 mice are suspended by the tail (Mangiarini et al., 1996). Female mice had a later onset 

of hind paw clasping with a lower percentage of mice exhibiting the phenotype until the very 

end of the study where 60% of both male and female R6/1 mice showed a positive phenotype. 

Hind paw clasping has been described previously, however the onset is variable. Mangiarini et 

al. (1996) and Naver et al. (2003) observe hind paw clasping from 16-20 weeks in R6/1 mice, 

while other studies have observed the phenotype much later at 30 weeks (Clifford et al., 2002). 

In this study we have categorised hind paw clasping into a full clasp or half clasp. A half clasp is 

a less severe phenotype, where one or two hind paws are clasped in an interrupted manner. 

This behaviour was seen prior to full clasping (two paws clasped continuously) and was used to 

create a distinction between the severities of clasping. Although hind paw clasping is limited to 

producing binary data of 'positive' or 'negative', it is a fast and simple test that is able to examine 

a reflex response that is not measured by the RotaRod. 

3.4.2.3 Motor performance 

 

During the progression of disease in the R6/1 mouse, a progressive motor dysfunction was 

observed and this was quantified using data derived from the RotaRod experiments. Both male 

and female R6/1 mice showed progressive loss of motor skills that were quantified by the time 

taken to fall from a rotating, accelerating rod. While all mice were treated under the same 
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conditions, variation between mice of the same test group did exist, and therefore any sex 

differences in the progression of the motor phenotype could not be conclusively demonstrated. 

However, the impaired motor performance at the end time point was comparable between 

male and female R6/1 mice.  

The RotaRod provides an objective and quantitative measure of forced motor function, however 

comparison of data obtained in different laboratories can be difficult. Dependant on the 

manufacturer, the fundamental design of the apparatus can be slightly different. The RotaRod 

manufactured by Ugo Basile (Italy) [used in previous studies (Carter et al., 1999; Hockly et al., 

2003; Spires et al., 2004; Hodges et al., 2008)] and Panlab RotaRod (Barcelona, Spain) are open 

designs without an enclosed box around the apparatus. The RotaRod from TSE systems (Bad 

Homberg, Germany) and Sandigeo instruments (USA) are enclosed in a darkened box. The rod 

diameter for mice is usually 30 mm, however these specifications are not always defined in the 

literature. This specification will affect surface speed (as RotaRod is controlled in RPM) and also 

the available surface area for the animal to balance on. The material of which the rod is made 

can also potentially influence performance. A RotaRod made from hard plastic with longitudinal 

grooves has been used (Carter et al., 1999; Spires et al., 2004) and a modified version achieved 

by covering the rod with a bicycle inner tube (Hockly et al., 2002; Hodges et al., 2008), has also 

been described. The specific acceleration and speed protocol is another important variable that 

influences the difficulty of the task. A single standard protocol is not defined in the literature; 

past studies have used a range of acceleration profiles [3-44 RPM over 410 sec (Hodges et al., 

2008); 4-40 RPM over 570 sec (Hockly et al., 2002); 3.5-40 RPM over 110 sec (Spires et al., 2004); 

4-40 RPM over 180 sec (Lazic et al., 2006); 5-44 RPM with undefined acceleration (Carter et al., 

1999)]. These differences make it difficult to compare absolute run times of mice between 

studies. Even if the specific RPM at which a mouse fell, is known, the increased difficulty of faster 

acceleration must still be considered. Aside from comparisons between other studies, these 
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factors need to be considered when testing the effects of interventions. A slower accelerating 

rod with a rubber covering may be less challenging for HD mice at later stages and may be more 

sensitive to detect smaller improvements in motor function. Alternatively this may create a 

ceiling effect early in the disease progression, and subtle differences in the age of onset may be 

missed. Care should be taken when interpreting and comparing the result of RotaRod 

experiments from other laboratories, as well maintaining strict consistency within a particular 

experiment.  

3.4.2.4 Brain mass 

 

Both male and female R6/1 mice had a similar profile of brain mass changes during disease 

progression; being significantly reduced from 20 weeks of age until the 28 week time point, 

where both male and female R6/1 mice had a 17% reduction in brain mass compared to WT. 

This is similar to the 19% reduction in the brain mass of R6/2 mice that has been previously 

reported (Mangiarini et al., 1996). In this study no regionally specific atrophy was observed, 

rather an overall shrinkage of the brain was reported (Mangiarini et al., 1996). In a more recent 

study utilising MRI, specific shrinkage of the striatum and cortex was detected in R6/1 mice 

(Rattray et al., 2013), similar to the atrophy observed in human HD (Vonsattel et al., 1985; Rosas 

et al., 2003). Further investigation into specific cell loss and the striatal microenvironment of 

R6/1 mice is required to confirm that neuron loss and astrocytosis, as seen in human HD (Myers 

et al., 1991), also occurs in the mouse model.  

3.4.3 Correlation of phenotype and sterol changes during HD progression 

 

Marked changes in synthetic precursors (lanosterol, lathosterol, zymosterol) were detected at 6 

weeks, a point at which the behavioural tests we have performed did not distinguish between 

R6/1 and WT mice. A subtle, early difference between the exploratory behaviour of R6/1 and 

WT mice at 4 weeks of age has been shown (Bolivar et al., 2004), and suggests that other neural 
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changes are present at this early age. It is possible that the cholesterol synthetic changes we 

have detected are independent of HD pathology; however it must also be considered that 

progressive reduction in cholesterol synthesis has a cumulative effect that only becomes 

apparent after a threshold is reached. If precursor changes do reflect disease, they are 

potentially useful post mortem biomarkers for assessing the efficacy of intervention studies. 

Currently no studies exist that examine the modulation of the cholesterol synthetic deficit in HD 

models through therapeutic intervention. Changes to other synthetic precursors (desmosterol) 

and cholesterol metabolites 24-OHC and 27-OHC were detected later in the disease once motor 

symptoms were present in our current study. These compounds are potentially useful to assess 

the effect of therapy, specifically in preclinical animal trials as measurement of these compounds 

must be taken from brain tissue. Examining cholesterol synthetic rate in vivo in the brain is 

technically challenging, alterations to specific stages of the cholesterol synthetic pathway is 

more so difficult in vivo and has not been previously reported. After assessing the progression 

of the R6/1 model used in this study, future experiments examining progressive brain sterol 

changes would benefit from investigating a 15-16 week time point that marks the onset of (or 

just prior to) hind paw clasping and severe motor decline.  

3.4.4 Conclusion 

 

In this study we have comprehensively profiled cholesterol synthetic and metabolic changes in 

R6/1 mice using GC-MS/MS and found similar reductions in the limited cholesterol synthetic 

precursors previously reported in the R6/2 model. The novel measurement of desmosterol and 

7-dehydrocholesterol in this study has highlight that there may be more complex regulation of 

the cholesterol synthetic pathway, as not all "post-squalene" precursors were reduced equally 

in brain tissue. It has also highlighted the specific accumulation of desmosterol levels in R6/1 

mice that is potentially due to a reduced activity of DHCR24. Along with levels of the brain 

specific cholesterol metabolite, 24-OHC, being significantly reduced in striatum of R6/1 mice, we 
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have successfully quantified 27-OHC levels and identified a striatum specific depletion of this 

metabolite in R6/1 mice. This suggests that multiple pathways of cholesterol metabolism are 

perturbed in the R6/1 brain. Phytosterols and COPs were not altered between genotypes, 

suggesting an intact BBB and absence of lipid peroxidation in R6/1 mice. The multiple time points 

measured in this study have not only avoided potentially misleading conclusions that are 

possible in single time point studies, but also identified previously unreported age-related 

changes to many sterols in the brain. A milder weight loss and hind paw clasping phenotype was 

observed in female R6/1 mice compared to male R6/1 mice, however no significant difference 

in the loss of brain mass or motor dysfunction was detected between sexes. The physical 

phenotype in these mice did not correlate exactly to cholesterol synthetic and metabolic 

alterations, however it is possible that molecular changes are cumulative and reach a threshold 

before overt symptoms occur. Comprehensive and sensitive analysis of sterol compounds in the 

brain of R6/1 mice has given a new insight into synthetic and metabolic changes occurring in this 

model of HD. It has also provided novel data on age-related changes occurring in the brain, which 

are not only useful for further investigating HD, but also other neurodegenerative processes that 

typically manifest in the aged brain.  
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Chapter 4                                                 

The effect of environmental enrichment 

on cholesterol homeostasis and motor 

phenotype in the R6/1 HD mouse model 
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4.1 Introduction 

 

An active lifestyle is believed to be important in reducing the risk of many peripheral diseases 

including, cancers, cardiovascular diseases and diabetes (Duncan et al., 1997; Lee et al., 1999; 

Shephard & Balady, 1999). Several epidemiological studies have highlighted that increased 

cognitive use and physical activity also reduces the risk of AD, PD and other dementias (Stern et 

al., 1994; Evans et al., 1997; Lindsay et al., 2002). However, due to environmental and genetic 

heterogeneity in the human population, these studies are limited in their ability to discover 

specific aspects of the environment that cause beneficial effects in the brain and the 

mechanisms involved. Previous animal studies involving EE report similar findings to 

epidemiological studies, delaying disease onset and reducing the severity of neurological 

disorders (Kempermann et al., 2002; Jankowsky et al., 2005; Lazarov et al., 2005). Animals 

housed with EE exhibit improved memory and learning, and numerous neurophysiological 

changes including increased synaptic plasticity, neurogenesis and reduced oxidative stress in the 

brain (Jones et al., 1999; van Praag et al., 1999; Fernandez et al., 2004). The use of EE in HD 

mouse models has been reported to improve motor function and improve molecular deficits 

including amelioration of reduced levels of BDNF in the striatum (Spires et al., 2004). In addition 

to essential roles in neuronal growth and survival, BDNF is believed to play a role in cholesterol 

homeostasis in the brain, being potentially relevant to HD mouse models that exhibit a 

significant cholesterol synthetic and metabolic perturbation. Therefore in this study we have 

investigated the influence of EE on the cholesterol homeostatic alterations in the R6/1 mouse 

model. The influence of EE on the physical phenotype in R6/1 mice was also examined, which 

includes: motor dysfunction, the hind paw clasping phenotype, and brain and body weight loss.  

 

 



77 
 

4.2 Materials and Methods 

 

Materials: Materials used in this study are listed in 2.2.  

Mice: R6/1 mice were generated as outlined in 2.3.1. Mice were randomly assigned into cages 

of control or EE housing (4-5 animals per cage, 7-8 animals per group). Both male and female 

mice were used in this study. Control housing used a standard small mouse cage (30 cm x 12 cm 

x 13 cm) with a wire lid. Control cages contained sawdust, pine shavings and one PVC tube. EE 

housing used a larger cage with a wire lid (48 cm x 12 cm x 18cm), and contained novel objects 

with different textures and shapes. These included additional bedding material (tissue paper, 

wool, paper), cardboard tubes, wooden, metal and plastic objects (See Figure 4.1 for an 

example). Novel objects were replaced with new objects twice per week. Mice were provided 

with standard rodent diet (see 2.3.1 for details) and water available ad libitum in both housing 

conditions. Mice were housed with at least 2 of each genotype per cage.  

Body weight: Mouse weight was recorded every 4-5 days from 7 weeks of age until sacrifice. 

Hind paw clasping: Hind paw clasping was tested every 5-10 days following the procedure 

outlined in 2.3.3.   

RotaRod: Motor performance was measured using the RotaRod protocol outlined in 2.3.2. The 

RotaRod performance of mice was tested at 6, 11, 15, 19 and 23 weeks of age.  

Tissue collection: Mice were sacrificed at 26 weeks of age using slow flow CO2 asphyxiation. Brain 

tissue was dissected and collected as described in 2.3.4. 

Lipid extraction and GC-MS/MS analysis of sterols: Quantification of cholesterol synthetic 

precursors, metabolites, oxidation products and phytosterols was performed as outlined in 2.3.5 

and 2.3.6. 
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Statistical Analysis: Linear regression analysis was used to identify a difference in the rate of 

weight gain in mice. A 2-way ANOVA was used to analyse RotaRod performance and body 

weight. A student's t-test was used to compare means of brain mass, cholesterol synthetic 

precursors, metabolites, oxidation products and phytosterols between R6/1 and WT mice. All 

analyses were performed in Graphpad PRISM v5.0 (Graphpad Software Inc., USA). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Enriched and control housing conditions. (A) Control housing in a standard small mouse cage 
(30 cm x 12 cm x 13 cm) contained sawdust, pine shavings and a single PVC tube. (B) Environmentally 
enriched housing was provided in a larger cage (48 cm x 12 cm x 18cm) with the addition of novel objects 
replaced 2 times per week. 4-5 mice (at least 2 of each genotype) were housed per cage. 
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4.3 Results 

 

4.3.1 Phenotype 

 

The effect of EE on the progression of the HD phenotype in R6/1 mice was examined from 7-26 

weeks of age. Body weight, hind paw clasping and RotaRod performance was tested over this 

period (n = 7-8 per group). The brain mass of mice was measured at the completion of the study 

at 26 weeks of age when all mice were sacrificed.  

4.3.1.1 Weight loss 

 

Body weight was recorded every 4-5 days (Figure 4.2). Progressive weight loss is known to occur 

at 15 weeks in R6/1 mice (Mangiarini et al., 1996). 

 EE did not significantly alter weight gain between male WT and R6/1 mice, or have an overall 

effect on the weight loss phenotype although the baseline levels were higher in EE mice. Prior 

to weight loss, weight gain in both EE and control R6/1 males was significantly less than WT in 

both housing conditions (p < 0.001). EE had no effect on body weight in WT males when 

normalised to baseline measurements.  

Female R6/1 mice in EE housing had a significantly greater weight gain prior to weight loss (7-15 

weeks) when compared to control R6/1 and WT mice (p < 0.0001), and a similar weight gain to 

enriched WT female mice. Although the average bodyweight at baseline was higher in EE mice, 

when considering the full course of the experiment, the weight loss profile was not significantly 

altered between EE and control R6/1 mice. EE significantly increased the rate of weight gain in 

WT females compared to control WT female mice (p < 0.0001). 
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Figure 4.2 The effect of environmental enrichment on weight loss in R6/1 mice. Environmental 
enrichment (EE) did not significantly alter weight gain or weight loss in WT and R6/1 male mice. Female 
R6/1 mice housed with EE had a significantly greater weight gain prior to weight loss compared to control 
R6/1 female mice (7-15 weeks) (p < 0.0001), however there was no overall effect by the final time point. 
EE increased the weight gain in WT female mice compared to control WT females (p < 0.0001) n = 7-8 per 
group. Error bars represent + SEM 
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4.3.1.2 Hind paw clasping 

 

The percentage of male R6/1 mice housed with EE that exhibited a clasping phenotype was 

consistently lower than control R6/1 mice over the course of the study. At 26 weeks, 50% of EE 

male R6/1 and 80% of control R6/1 mice were positive for the clasping phenotype (Figure 4.3). 

Female R6/1 mice from both EE and control housing had a similar onset of hind paw clasping at 

22 weeks of age.  The percentage of EE female R6/1 mice exhibiting a clasping phenotype 

between 23-26 weeks was less than control mice, however, the difference was relatively small 

over this short period (35% vs 50%, Figure 4.3). No influence of housing was observed in WT 

mice with several mice from both enriched and control housing showing a half clasp phenotype 

at various time points during the study (Figure 4.3).  
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Figure 4.3 The effect of environmental enrichment on the hind paw clasping phenotype in R6/1 mice. 
R6/1 mice develop a phenotype where the hind paws are clasped to the body when suspended by the 
tail. Environmental enrichment (EE) did not alter the onset of hind paw clasping in male R6/1 mice, 
however the percentage of mice showing positive for the phenotype was consistently lower than control 
R6/1 mice during disease progression. Hind paw clasping at 22 weeks in female R6/1 mice and the small 
attenuation of hind paw clasping in the EE female R6/1 mice was not considered significant. A small 
proportion of WT mice appeared to exhibit a half clasp during the course of the study independent of 
housing treatment. n = 7-8 per group. 
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4.3.1.3 RotaRod 

 

A small but statistically significant improvement in motor performance was detected in EE male 

R6/1 mice compared to control R6/1 males (p = 0.0032). While R6/1 males kept in both housing 

conditions did show significant motor decline over the entire study, R6/1 mice housed with EE 

had a delayed motor decline and a consistently higher average RotaRod time compared to 

control R6/1 mice (Figure 4.4). EE housing did not have a significant effect on the RotaRod 

performance of female R6/1 mice; both EE control mice had a similar motor decline over the 

course of the study (Figure 4.4). A small improvement in the average RotaRod time of EE R6/1 

females at 20 and 24 weeks was observed, however this did not reach statistical significance. 

The RotaRod performance of WT animals was not influenced by the housing treatment in either 

male or female mice.  

4.3.1.4 Brain mass 

 

The reduction of brain mass previously observed in R6/1 mice (Chapter 3) was not altered by EE 

housing. Male and female R6/1 mice housed in EE or control housing had a highly significant 

brain mass reduction of 17-18% compared to WT mice of the same sex and housing treatment 

(p < 0.0001). Absolute brain mass values can be found in Table 4.1.  

 

Table 4.1 Brain mass of R6/1 and WT mice with environmentally enriched or control housing.  Values 
represent mg ± SEM. n = 7-8 per group. EE = environmental enrichment 

 

 

 

 Control housing EE 

WT R6/1 WT R6/1 

Male 476 ± 6 391 ± 7 493 ± 6 401 ± 5 

Female 480 ± 5 399 ± 7 483 ± 8 402 ± 8 
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Figure 4.4 The influence of environmental enrichment on RotaRod motor performance of R6/1 mice. 
Environmental enrichment (EE) caused a delay in the onset of motor dysfunction in male R6/1 mice 
compared to control R6/1, and improved the average latency to fall from the RotaRod over the course of 
the study (p = 0.0032). No effect of housing treatment was detected between female EE and control R6/1 
mice. The RotaRod performance of WT animals was not influenced by the housing treatment in either 
male or female mice.  n = 7-8 per group. Error bars represent + SEM. 
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4.3.2 Sterol analysis of R6/1 brain tissue 

 

All mice were sacrificed at 26 weeks of age and solvent extracted lipids from the cortex and 

striatum were analysed using GC-MS/MS for cholesterol synthetic precursors, metabolites, 

oxidation products and phytosterols. Sterol compounds examined in this study included; 

[cholesterol synthetic precursors (lathosterol, lanosterol, zymosterol, 24,25 dihydro lanosterol, 

desmosterol, 7-dehydrocholesterol), metabolic products (24-OHC, 27-OHC), oxidation products 

(7-KC, 7β-OH), phytosterols (campesterol, β-sitosterol, stigmasterol, brassicasterol)]. Quantified 

values for all sterols measured can be found in Appendix 4-6. 

4.3.2.1 Cholesterol oxidation products 

 

Male R6/1 mice housed with EE had significantly reduced levels of 7β-OH in cortex tissue 

compared to control R6/1 mice (p = 0.0343) (Figure 4.5). Male R6/1 and WT control mice did not 

significantly differ in 7β-OH levels (Figure 4.5). Although the effect of EE was not statistically 

significant in male WT mice, a similar profile to that of R6/1 male mice was observed. No 

difference in the level of cholesterol oxidation products was detected between housing 

treatments in female R6/1 mice. Combining the sexes in WT mice revealed a significant 

reduction of 7β-OH levels in cortex tissue (p = 0.0389) (Figure 4.6). Significant alterations to 7β-

OH or 7-KC were not detected in any other brain region in either genotype or sex.  

4.3.2.2 Cholesterol synthetic precursors, metabolic products and phytosterols 

 

EE had no detectable influence on the level of cholesterol synthetic precursors, metabolic 

products or phytosterols in cortex or striatum of male and female R6/1 mice. No differences in 

these compounds were detected between EE and control WT mice. The sterol profile of R6/1 vs 

WT mice was consistent to the results obtained in Chapter 3 at a similar time-point of 24 weeks.  
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Figure 4.5 The influence of environmental enrichment on cholesterol oxidation products in male cortex. 
Environmental enrichment (EE) significantly decreased the level of the cholesterol oxidation product 7β-
hydroxy cholesterol (7β-OHC) in the male R6/1 cortex when compared to control R6/1 males (p = 0.0343). 
No difference was detected between WT or R6/1 mice in either housing condition. n = 7-8 per group. Error 
bars represent +SEM. *p < 0.05 
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Figure 4.6 The influence of environmental enrichment on cholesterol oxidation products in cortex of WT 
mice. When sexes were combined there was a small but significant decrease in the cholesterol oxidation 
product 7β-hydroxy cholesterol (7β-OHC) in cortex tissue of WT mice housed with environmental 
enrichment (EE) (p = 0.0389). n = 14-16 per group.  Error bars represent +SEM. *p < 0.05 
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4.4 Discussion 

 

Previous studies investigating EE in R6 mice have reported several neurophysiological 

changes, including, increased neurogenesis (Lazic et al., 2006) and neurotrophin 

expression (Spires et al., 2004) in EE mice. In this study we have examined the effect of 

EE on R6/1 mice by characterising physical phenotypic changes as well as molecular 

changes to cholesterol homeostasis and oxidative stress.  

4.4.1 Motor performance 

 

In this study we have detected improved motor performance in R6/1 male mice housed with EE.  

The improvement observed was in conjunction with a milder hind paw clasping phenotype over 

the course of the study. A similar finding was reported where EE delayed the onset and overall 

severity of the clasping phenotype in R6/1 mice (van Dellen et al., 2000). Since then, several 

studies have found improved motor co-ordination (RotaRod) and grip strength in both R6/1 and 

R6/2 mice housed with EE (Hockly et al., 2002; Spires et al., 2004). In the past, studies testing 

motor performance using the RotaRod have reported varying results in the latency to fall from 

the rod (Spires et al., 2004; Lazic et al., 2006). These differences may result from different 

RotaRod protocols (as previously discussed in 3.4.2.3), or differences in husbandry protocols 

between laboratories that have been demonstrated to influence animal behaviour (Logge et al., 

2014; Sorge et al., 2014). It may also be the result of different enrichment protocols, where the 

type of environment (toys, tunnels, and nesting materials), cage size, and presence of exercise 

equipment may result in different outcomes (van Praag et al., 1999; Zajac et al., 2010). This then 

poses the question, what is environmental enrichment? It has been defined as 'a sustained 

increase in daily, cognitive and sensory-motor and physical activity' by Mattson et al. (2001), 

however we also consider that EE could involve increased sensory and cognitive stimulation in 

the absence of high levels of physical activity. This is consistent with human epidemiology that 
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finds increased cognitive function (by measure of education level and occupational status) 

reduces risk of dementia (Stern et al., 1994; Evans et al., 1997). This question also highlights the 

idea that various aspects of EE may have different effects in specific brain regions. This is evident 

in a study where the presence of a running wheel alone improved brain neurogenesis 

differentially to a large cage containing novel object stimuli (van Praag et al., 1999). Wheel 

running and EE have also been reported to modify gene expression differentially in R6/2 mice 

(Zajac et al., 2010). Apart from increasing physical fitness, running wheels may provide motor 

skill practise and potentially confound RotaRod results when assessing motor performance. In 

the current study we have provided enrichment in the absence of a running wheel to examine 

whether degeneration of the brain controlling motor function in HD can be achieved by sensory 

and cognitive stimulation.  

The age of exposure and duration of EE is also likely to play a role in the brain changes. Due to 

mice being bred in a separate facility in the current study, EE was started at 7 weeks of age, 

while previous studies implemented enrichment at 4 weeks of age (van Dellen et al., 2000; 

Hockly et al., 2002; Spires et al., 2004). The difference of several weeks early in development 

may be significant as it has been found that early handling (pre-weaning) of rodents alters 

behavioural phenotypes (Levine et al., 1967) and age-related brain deficits (Meaney et al., 1991) 

compared to later handled (post-weaning) animals (Levine & Otis, 1958). Therefore, in the R6/1 

mouse model where biochemical changes are evident at 6 weeks (Chapter 3), we postulate that 

earlier exposure to EE would result in the greatest benefit. Several mechanisms have been 

proposed to explain the various benefits of EE seen in animal disease models, many of these 

being specifically relevant to HD pathology.    

4.4.2 Mechanisms of environmental enrichment changes in the brain 

 

EE has been demonstrated to improve behavioural phenotypes in animal studies including, 

improved spatial memory, motor function and reduced anxiety (Kempermann et al., 2002; 
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Benaroya-Milshtein et al., 2004; Spires et al., 2004). Neurophysiological changes that occur 

alongside these behavioural improvements include; increased dendritic branching (Kolb & Gibb, 

1991) and synaptic density (Saito et al., 1994), reduced spontaneous apoptosis (Young et al., 

1999), and increased expression of neurotrophic factors (Turner & Lewis, 2003; Lazarov et al., 

2005). Studies incorporating EE prior to a damaging insult in the brain demonstrate that EE builds 

a 'protective' environment that confers resistance to damage (Kolb & Gibb, 1991; Johnson et al., 

2013), while implementing EE after brain damage also demonstrates the potential for  repair 

and growth (Wainwright et al., 1993; Rampon et al., 2000; Shin et al., 2013). 

A simplified hypothesis suggests that neuronal activation leads to increased expression of 

neurotrophic factors that promote neurogenesis, plasticity and cell survival (Mattson et al., 

2001). Previous studies have focused on BDNF which is elevated in a variety of rodent models 

housed with EE (Ickes et al., 2000; Turner & Lewis, 2003; Lazarov et al., 2005). BDNF has 

functions involving in cell survival, differentiation and growth (Binder & Scharfman, 2004), and 

is believed to play a role in HD pathology since it is reduced in human HD brain (Zuccato et al., 

2001) as well as several HD mouse models (Spires et al., 2004; Zuccato et al., 2005). BDNF 

knockout mice also show a similar gene expression profile to human HD (Strand et al., 2007). 

The relevance of BDNF and EE has been highlighted by studies that report rescued BDNF levels 

in HD mice exposed to EE, accompanied by improved RotaRod performance (Duan et al., 2003; 

Spires et al., 2004). EE restored BDNF levels in the striatum of HD mice and caused a milder 

motor phenotype (Spires et al., 2004). As cortical levels of BDNF are unaffected in these HD 

mice, it is hypothesised that the corticostriatal transport of BDNF is impaired in HD, which is 

ameliorated by EE (Spires et al., 2004). Specific elevation of BDNF in striatum of HD mice housed 

with EE, suggests that EE may be specifically beneficial to HD pathology which involves early and 

severe striatal atrophy (Vonsattel et al., 1985).  
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Another aspect of EE may also involve increased cognitive activity through more complex social 

interactions. Rats housed in isolation have forebrain atrophy and significantly reduced levels of 

neurotrophins compared to rats housed in groups (Pham et al., 1999; Ickes et al., 2000). 

Enrichment protocols using a larger number of animals in a large cage (10-15) (van Praag et al., 

1999; Hockly et al., 2002), enables more complex social hierarchies and interactions compared 

to a small cage of 4 animals. These increased social interactions have been shown to modulate 

the endocrine system in rodents (Blanchard et al., 1995; Hardy et al., 2002), and induce 

neurological changes (Chao et al., 1993). Benefits through increased social interaction may be 

of relevance to HD pathology that has well established neuroendocrine alterations (Popovic et 

al., 2004; Wood et al., 2008; Saleh et al., 2009). While the beneficial effects of EE on behaviour 

and brain physiologies are evident in previous literature, including our current study, further 

work is required to elucidate the specific aspects of an enriched environment that actively confer 

health benefits to the CNS.  

4.4.3 Cholesterol synthesis and metabolism 

 

Previously we have characterised the progression of the cholesterol synthetic and metabolic 

defects in the R6/1 mouse model of HD (Chapter 3). In our current study EE had no detectable 

effect in altering the levels of lipid species measured, when compared to control mice. The levels 

of all sterol compounds measured were consistent with the later time points (24-28 weeks) in 

our previous study (Chapter 3). Cholesterol homeostatic alterations were investigated in this 

study since previous literature reports improved BDNF levels in EE HD mice (Spires et al., 2004). 

BDNF is believed to influence cholesterol homeostasis in the brain, increasing cholesterol 

content and gene expression of cholesterol synthetic enzymes in cultured neurons (Suzuki et al., 

2007). This neurotrophin also promotes DHCR24 expression (Sarchielli et al., 2014), the enzyme 

responsible for catalysing desmosterol conversion to cholesterol at the end of the cholesterol 

synthetic pathway. In this study (and in Chapter 3) we observed an accumulation of desmosterol 
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in the striatum, which is likely attributed to loss of DHCR24 levels or activity (as discussed in 

3.4.1.1). However, EE did not alter desmosterol levels in R6/1 mice. It is possible that EE did not 

restore BDNF levels early enough to attenuate the severe cholesterol synthetic deficit in R6/1 

mice. The mechanisms behind altered cholesterol homeostasis in HD are still largely undefined 

in vivo; it is possible other factors may also play a significant role. Specifically mHTT, which may 

diminish the effect of BDNF by interfering with sterol regulatory binding proteins (SREBPs) 

(Valenza et al., 2005) that also regulate cholesterol synthesis (Yokoyama et al., 1993). 

Further investigation into BDNF and cholesterol homeostasis is required in HD models. A 

potentially useful model to investigate whether BDNF can rescue the cholesterol deficit in vivo 

is a transgenic HD mouse crossed to overexpress BDNF (Canals et al., 2004; Xie et al., 2010). As 

cholesterol synthetic precursors are present in concentrations as low as 0.1 ng/mg in brain 

tissue, sensitive analytical tools such as GC-MS/MS are essential to detect the full extent of any 

potential changes.  

4.4.4 Cholesterol oxidation products 

 

The cholesterol oxidation product 7β-OHC was reduced in the cortex of R6/1 male mice housed 

with EE. The difference in oxidation markers observed between EE and control housing is likely 

to be a combination of EE reducing oxidative stress in the brain and a control or "non-enriched 

environment" promoting it. This is supported by studies reporting reduced markers of oxidative 

stress (nitrotyrosine, glutathione) in the brain of rodents housed with EE (Fernandez et al., 2004; 

Herring et al., 2010), and studies describing elevated brain lipid peroxidation in rodents under 

environmental stress (Liu et al., 1996; Lucca et al., 2009). In our current study mice housed 

without EE may have increased levels of stress due to having fewer places to find shelter, while 

EE mice have many places to hide and therefore reduced environmental stress. 
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Although WT and R6/1 mice in control housing had comparable levels of 7β-OH, the HD brain 

may have diminished capacity to cope with an increased oxidative environment, enhancing the 

deleterious effects of a "non-enriched” environment. This was previously observed in the R6/2 

HD mouse model which was highly susceptible to an artificially induced oxidative insult while 

basal levels of oxidative markers were unaltered between genotypes (Bogdanov et al., 1998).  

Interestingly oxidative stress was not significantly elevated in the striatum of R6/1 mice, 

consistent with previous analysis in 3.3.2.5. While the pathological hallmark of HD is striatal 

atrophy, the cortex does undergo neurodegeneration in later stages of human HD (Vonsattel et 

al., 1985; Rosas et al., 2003), and may explain why oxidative stress may be present in this region 

of R6/1 mice late in the disease progression (25 weeks). Although oxidative stress in R6/1 mice 

has been reported in a previous study (Perez-Severiano et al., 2000), our data suggests that 

oxidative stress may not be a primary driving factor in R6/1 HD pathology as it is not specific to 

regions that are most susceptible to early degeneration. 

4.4.5 Weight loss and brain mass 

 

EE of R6/1 mice in this study did not have significant effects on the overall weight loss and the 

reduction in brain mass that is characteristic of these transgenic mice (Mangiarini et al., 1996). 

This is consistent with previous findings where weight loss or brain masses were not significantly 

altered with EE in the R6/1 mouse (Spires et al., 2004). EE has been shown to increase brain 

mass in WT rodents, however subtle differences were found to be regionally specific and only 

detectable with very large cohorts (La Torre, 1968; Bennett et al., 1969; Henderson, 1970). 

Specific to HD models, EE in R6/2 mice was associated with a small increase in peristriatal volume 

(6%) (Hockly et al., 2002), suggesting that any brain mass changes due to EE are most likely small 

in magnitude, and only detectable using complex and sensitive brain volume analytical 

techniques.  
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4.4.6 Conclusion 

 

EE had a measureable effect on attenuating motor decline and involuntary clasping in male R6/1 

mice in this study. Although motor symptoms were delayed, significant and progressive motor 

dysfunction was still observed by the end stage of disease in EE mice. Improvements to 

perturbed cholesterol homeostasis were not detected at 25 weeks of age once the disease 

phenotype was fully present in both EE and control R6/1 mice.  Although lipid peroxidation was 

reduced in male R6/1 mice housed with EE, a substantial alteration in oxidative stress markers 

was not observed when comparing R6/1 and WT mice in our study, and may be a secondary 

event associated with HD neurodegeneration (Browne & Beal, 2006). However, it is possible that 

although basal levels of oxidative stress were not elevated in R6/1 mice, the HD brain is more 

susceptible to damage by stressful stimuli and this is ameliorated by EE. While the main 

hypothesis surrounding the benefits of EE in HD involve upregulation of neurotrophic factors, 

the benefit of specific aspects of EE on brain function are not fully understood. Previous EE 

studies in HD models, and the study described here have provided further insight into HD 

pathology, not only to extend the understanding of molecular mechanisms in HD 

neurodegeneration, but also highlight a potentially significant suppressor of disease progression 

and severity that may be applied to human HD patients.   
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Chapter 5                                              

Berry extract supplementation in the R6/1 

transgenic mouse model of Huntington's 
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5.1 Introduction 

 

In recent years sensitive analytical techniques have highlighted many classes of compounds 

present in foods that have potentially potent health benefits. Many of these compounds were 

previously believed to exert beneficial effects primarily through their antioxidant properties, 

however more complex biochemical interactions have been recently highlighted which suggest 

that plant derived phytochemicals may alter cell signalling, invoke a hormetic response or inhibit 

protein misfolding.  

 Many plants produce secondary metabolites that are concentrated in fruit, among these are 

phenolic compounds that contain multiple aromatic rings in their structure. Recent studies using 

berry extract (BE) supplementation have discovered that berries such as blueberries, 

blackberries and blackcurrants have potent effects to reduce brain deficits associated with aging 

in animal models (Joseph et al., 1998; Casadesus et al., 2004; Galli et al., 2006). Anthocyanins 

are a major phenolic component of berries, and are believed to be the main active component 

of these fruits. Dietary supplementation of phenolic fruit extracts have also been applied to 

neurodegenerative disease, and in the case of HD, several compounds have been identified that 

attenuate disease pathology in animal and cell models (Ehrnhoefer et al., 2006; Maher et al., 

2011). 

In this chapter we have investigated BE extract supplementation on the R6/1 HD mouse model 

and tracked the progression and severity of symptoms. We have assessed the effects of BE 

extract supplementation on biochemical changes involved in altered cholesterol homeostasis 

and oxidative stress as well as several established phenotypic changes that occur in these mice.  

 

 



97 
 

5.2 Materials and Methods 

 

Mice: R6/1 mice were generated as outlined in 2.3.1. Equal numbers of male and female R6/1 

and WT mice (6 per group) were caged in standard housing (30 cm x 12 cm x 13 cm) containing 

a single PVC tube, saw dust and pine shavings. Four mice were housed per cage, two of each 

genotype. All procedures that were undertaken conformed to the standards of the University of 

Wollongong ethics committee (ethics approval number: AE 13/20). 

Diet: Control and BE diets were manufactured by Speciality Feeds Pty Ltd. (Glen Forrest, W.A, 

Australia). Control diet comprised of the standard rodent growth diet (AIN-93G) (Reeves et al., 

1993). BE diet contained [control diet + 0.2% blackcurrant extract (NutriPhy Blackcurrant 100, 

Chr. Hansen pty. Ltd., Australia)]. Control and BE diet were equal in caloric content. BE diet was 

calculated to be equivalent to one serving of whole berries in humans (100-150 g) (Prior et al., 

2001; Scalzo et al., 2008; Tabart et al., 2011; Milivojevic et al., 2012), corrected to body surface 

area as described in Reagan-Shaw et al. (2008). The consumption of anthocyanins by mice in this 

study (when corrected for body surface area) was similar to previous studies investigating 

anthocyanin supplementation in rats (Joseph et al., 1999; Youdim et al., 2000). Both diets were 

kept a 4oC in a light sealed box prior to being dispensed for feeding. Food and water was 

available ad libitum. Unconsumed diet was removed and replenished from cages every 2 days. 

Body weight: Mouse weight was recorded every 4-5 days from 7 weeks of age until sacrifice. 

Hind paw clasping: Hind paw clasping was tested every 5-10 days following the procedure 

outlined in 2.3.3.   

RotaRod: Motor performance was measured using the RotaRod protocol outlined in 2.3.2. The 

RotaRod performance of mice was tested at 6, 11, 15, 19 and 23 weeks of age.  
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Tissue collection: Mice were sacrificed at 25 weeks of age using slow flow CO2 asphyxiation. Brain 

tissue was dissected and collected as described in 2.3.4. 

Lipid extraction and GC-MS/MS analysis of sterols: Quantification of cholesterol synthetic 

precursors, metabolites, oxidation products and phytosterols was performed as outlined in 2.3.5 

and 2.3.6. 

Statistical analysis: Linear regression analysis was used to identify differences in the rate of 

weight gain between mice. 2-way ANOVA was used to test for an effect of BE extract 

supplementation on RotaRod performance and weight loss. A student's t test was used to 

compare mean values of sterol analysis and brain mass. All analyses were performed in 

Graphpad PRISM v5.0 (Graphpad Software Inc., USA). 
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5.3 Results 

 

5.3.1 Phenotype 

 

5.3.1.1 Body weight 

 

Supplementation of BE had no effect on the weight loss phenotype in either male or female R6/1 

mice when body weight was normalised to baseline levels (Figure 5.1). Both male and female 

R6/1 mice had significant weight loss independent of diet when compared to WT mice (p < 0.01). 

A significant difference in weight gain prior to weight loss was observed between control and BE 

R6/1 males, the control fed mice gaining weight more rapidly (p = 0.004). No other significant 

differences in weight gain were detected in WT or female R6/1 mice.  

5.3.1.2 Hind paw clasping 

 

A small delay in the onset of the hind paw clasping phenotype was observed in male R6/1 mice 

fed a BE supplemented diet (12 vs. 14 weeks of age in control and BE fed mice respectively) 

(Figure 5.2). After the initial onset of clasping the percentage of R6/1 control mice showing 

positive for clasping was higher on average, however there was variability between time points 

and a clear difference in hind paw clasping between diet treatments was not observed. In female 

R6/1 mice the hind paw clasping phenotype progressively increased after 19 weeks of age 

independent of diet treatment (Figure 5.2). A small percentage of WT mice from both diet 

treatments were positive for a half clasp phenotype at various stages of the study.  
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Figure 5.1 The effect of berry extract supplementation on weight loss in R6/1 mice. The weight loss 
phenotype in male and female R6/1 mice was not altered by berry extract (BE) supplementation when 
compared to control fed R6/1 mice. Prior to weight loss (at age 15 weeks) the weight gain of BE fed R6/1 
males was significantly less than control fed R6/1 mice (p = 0.004). Diet treatment had no effect on the 
weight gain of WT mice or female R6/1 mice. Over the entire study R6/1 mice had significant weight loss 
compared to WT independent of diet treatment (p < 0.01). n = 6 per group. Error bars represent + SEM. 
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Figure 5.2 The effect of berry extract supplementation on the hind paw clasping phenotype in R6/1 
mice. R6/1 mice develop a phenotype where the hind paws are clasped to the body when suspended by 
the tail. A small delay in the onset of hind paw clasping was observed in berry extract (BE) supplemented 
R6/1 male mice (2 week delay) however the overall severity was not consistently reduced after onset. No 
effect of diet was observed in female R6/1 mice. A small proportion of WT mice appeared to exhibit a half 
clasp during the course of the study independent of diet treatment. n = 6 per group. 
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5.3.1.3 RotaRod 

 

The average RotaRod time for female R6/1 mice fed a BE diet was consistently higher than 

control fed mice over the course of the study, and a small but significant overall improvement 

was detected (p = 0.0349). Male R6/1 mice fed a BE diet did not have a detectable improvement 

in performance compared to control fed R6/1 mice. BE supplementation did not alter the 

RotaRod performance of male or female WT mice (Figure 5.3). 

5.3.1.4 Brain mass 

 

Dietary intervention had no effect in altering the brain mass reduction seen in R6/1 mice (R6/1 

male BE vs control p = 0.587, R6/1 female BE vs control p = 0.738) (Table 5.1). Both male and 

female R6/1 mice fed control and BE supplemented diets had significantly reduced brain mass 

when compared to WT mice (p < 0.001), with a mean reduction of 10-15%. 

 

 

 

 

 

 

 

 

 

 

 Control diet BE 

WT R6/1 WT R6/1 

Male 467 ± 8 397 ± 14 465 ± 8 388 ± 5 

Female 460 ± 6 405 ± 13 458 ± 5 410 ± 5 

Table 5.1 Brain mass of R6/1 and WT mice fed a berry extract supplemented diet.  Values represent 
mg ± SEM. n = 6 per group. BE = Berry extract 
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Figure 5.3 The effect of berry extract supplementation on the RotaRod motor performance of R6/1 mice. 
Berry extract (BE) supplementation attenuated the motor function decline in R6/1 females when 
compared to control fed R6/1 mice (p = 0.0349). No detectable improvement in RotaRod performance 
was observed in male R6/1 mice fed a BE diet. Diet treatment did not influence RotaRod performance of 
WT mice over the course of the study. n = 6 per group. Error bars represent + SEM. 
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5.3.2 Sterol analysis of R6/1 brain tissue 

 

At the age of 25 weeks all mice were sacrificed for brain lipid analysis. Striatum and cortex was 

dissected from the brain and sterols were analysed using GC-MS/MS. Dietary supplementation 

with BE had no detectable influence in WT or R6/1 mice when examining the level of cholesterol 

synthetic precursors, metabolic products, oxidation products and phytosterols quantified in this 

study. No significant sex differences were observed in WT or R6/1 mice. The sterol profile of 

R6/1 vs WT mice was consistent to the results obtained in Chapter 3 and 4 at a similar time-

point of 24 weeks. Sterol compounds examined in this study included; [cholesterol synthetic 

precursors (lathosterol, lanosterol, zymosterol, 24,25 dihydro lanosterol, desmosterol, 7-

dehydrocholesterol), metabolic products (24-OHC, 27-OHC), oxidation products (7-KC, 7β-OH), 

phytosterols (campesterol, β-sitosterol, stigmasterol, brassicasterol) and cholesterol]. 

Quantified values for all sterols measured can be found in Appendix 7-9.  
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5.4 Discussion 

 

The R6 mouse models of HD have been previously used to examine a variety of therapeutic 

strategies targeting multiple aspects of HD pathology that is manifested in these mice. These 

include studies addressing: metabolic impairment, protein misfolding, inflammation, 

excitotoxcity and oxidative stress through strategies such as drug treatments, gene therapies, 

tissue transplantation, environmental enrichment and dietary interventions (Ferrante et al., 

2000; van Dellen et al., 2000; van Dellen et al., 2001; Ferrante et al., 2002; Wang et al., 2005; 

Maher et al., 2011). These interventions have typically generated small improvements in motor 

dysfunction and survival of mice, and have increased the current understanding of mechanisms 

involved in HD pathology. Novel therapeutics are likely to take many years to develop and test 

for safety, hence many studies in animals have trialled already approved drugs (lithium chloride, 

remacemide, riluzole) with some success, reducing the severity of motor phenotypes and 

increasing survival of animals (Ferrante et al., 2002; Schiefer et al., 2002; Wood & Morton, 2003). 

An advantage of dietary supplementation is that the active compounds used to treat disease are 

safe and already consumed on a daily basis. A large number of foods containing phytochemicals 

believed to have health benefits have been identified recently, among these are anthocyanins, 

phenolic compounds that are highly concentrated in berries. BE has been used to reduce age-

related cognitive deficits and improve memory and cognition in rats (Joseph et al., 1999; 

Casadesus et al., 2004; Galli et al., 2006; Duffy et al., 2008). The dosing of anthocyanins 

consumed by rats in these studies is equivalent to the consumption of approximately 100-150g 

of fresh berries (blueberry, blackberry, blackcurrant) per day in humans. Several other plant 

derived phenolic compounds have been trailed in animal models of neurodegeneration 

including HD (Ehrnhoefer et al., 2006; Maher et al., 2011). Prior to experimentation in this 

chapter, BE has not been investigated in HD models. Here we discuss the benefits, and possible 
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protective mechanisms, of phytochemical supplementation in brain related disorders, 

specifically in HD and the R6/1 HD mouse model.  

5.4.1 Motor performance in R6/1 transgenic mice and possible protective mechanisms of 

dietary phenolics in the brain 

 

In this study we describe the novel use of BE to improve motor function in the R6/1 HD mouse 

model. Our study was able to identify a significant improvement in the RotaRod performance of 

female R6/1 mice. Although there is a trend for improved function in the later stages of disease 

in male R6/1 mice, this did not reach statistical significance. It is possible that due to the more 

rapid onset of symptoms in male R6/1 mice as reported in Chapter 3, we have not been able to 

detect a significant level of improvement in male mice. This is consistent with the greatest effect 

of BE supplementation in females occurring at the onset of symptoms at 11-15 weeks, delaying 

the onset of motor dysfunction by several weeks. Improvements in motor function have also 

been observed in aged rats fed a BE supplemented diet (Shukitt-Hale et al., 2009). Several other 

studies using BE supplementation in rats have seen improvements in memory and 

neurolophysiological deficits associated with aging in the brain (Joseph et al., 1999; Goyarzu et 

al., 2004; Ramirez et al., 2005; Galli et al., 2006; Duffy et al., 2008). In many studies using dietary 

phenolic supplementation, young and healthy WT controls do not show the same level of 

improvement in brain biochemistry or motor and cognitive performance when compared to 

aged or disease models (Duffy et al., 2008; Wang et al., 2010; Willis et al., 2010). This suggests 

that phenolic supplementation specifically attenuates disease pathology (or ageing) rather than 

an overall improvement of neurological function. 

The dose of BE and the anthocyanins contained in this diet is also an important consideration 

when conducting and comparing studies, or assessing the feasibility of dietary berry 

consumption for therapeutic purposes. Our current study has used a commercially available 

blackcurrant anthocyanin extract with a known concentration of anthocyanins. The dose of 
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anthocyanins equated to the consumption of approximately 100-150 g of berries per day in 

humans (300 mg total anthocyanins) assuming a daily intake of 3 g of diet in mice. Total 

anthocyanin content of berries varies between species; blueberries, blackberries and 

blackcurrants contain approximately 1.5-2 mg, 2 mg and 3 mg total anthocyanins per gram fresh 

weight respectively (Scalzo et al., 2008). Previous studies in rats have used lyophilised extracts 

by homogenising whole blueberries (Joseph et al., 1999; Youdim et al., 2000; Andres-Lacueva et 

al., 2005), however the exact anthocyanin content has not been described. Assuming no 

anthocyanins have been lost in this process, the dosing is similar to that used in our study; 

approximately equal to the consumption of 100-150 g of fresh berries per day in humans. One 

aspect that has been overlooked however is the potential loss of anthocyanins during the 

extraction process. Oven drying and lyophilisation has been demonstrated to reduce the total 

anthocyanin content of blueberries and grape skin (Lohachoompol et al., 2004; de Torres et al., 

2010). It is therefore important to quantify total anthocyanins in extracts to identify the exact 

quantity of the active molecule being utilised in diet treatments. 

Due to the heterogeneity of phytochemical structures found in food, it is likely that different 

classes of compounds or even different compounds of similar structure act through diverse 

mechanisms. Several hypothesised mechanisms have been suggested to explain the 

neuroprotective properties of BE supplementation.  One hypothesis focuses on the antioxidant 

properties of BE containing anthocyanins and other phenolic compounds. Several studies using 

a BE supplemented diet describe reduced levels of oxidative stress markers in rat brain (Joseph 

et al., 1999; Elks et al., 2011). In vitro studies have also reported cells treated with BE and grape 

seed extract as having enhanced survival against oxidative stress (Duffy et al., 2008; Wang et al., 

2010). However, the physiological relevance of the dose of phytochemicals used in these cell 

culture studies is unknown. Our study did not detect altered lipid peroxidation in the brain of BE 

supplemented R6/1 or WT mice when quantifying the cholesterol oxidation products 7-KC and 
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7β-OHC. Lipid peroxidation was not previously identified as being altered in R6/1 compared to 

WT mice (Chapter 3) and therefore antioxidant effects by suppressing lipid peroxidation is 

unlikely to confer a strong protective effect towards the HD mice in our study. 

Hormesis has been suggested as a mechanism through which phytochemicals such as 

anthocyanins may confer health benefits. A hormetic response involves a low dose of a toxin (or 

stressor) promoting or upregulating protective survival factors in an organism, which then have 

enhanced survival prospects against future toxic insults such as increased oxidative stress in 

aging or that caused by mHTT in HD. Dietary phytochemicals have been shown to increase the 

immune response (Feng et al., 2002), expression of cytoprotective proteins (McWalter et al., 

2004) and have anti-inflammatory properties (Willis et al., 2010). Attenuated age-related 

neurological deficits also suggests the upregulation of prosurvival mechanisms by these 

compounds (Casadesus et al., 2004; Goyarzu et al., 2004; Galli et al., 2006). However, high 

concentrations of phytochemicals can also be toxic as demonstrated by in vitro studies (Liontas 

& Yeger, 2004; Fimognari et al., 2005). A previous study feeding BE to rats describes a similar 

hormetic response when reactive oxygen and nitrogen species were elevated in short fed 

animals term (2 days), while the same markers where significantly decreased in chronic fed 

animals (6 and 12 weeks) (Elks et al., 2011). A future study into the survival of BE fed HD mice 

would be useful to identify if this supplementation can delay death in R6/1 mice. In the current 

study, lipid analysis of brain tissue required all mice to be sacrificed at a predetermined time 

point and therefore a survival study could not be conducted. 

There is substantial evidence to suggest that BE and anthocyanins also influence cellular 

signalling pathways in the brain that may result in neuroprotection and promote proliferation. 

BE supplementation has been shown to increase extracellular signal-related kinase (ERK) 

phosphorylation in aged rat brains (Williams et al., 2008). The ERK signalling cascade has a role 

in altering synaptic plasticity and dendritic morphology relevant to memory (Bailey et al., 1997; 
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Wu et al., 2001), and essential neuronal transcriptional events (Sweatt, 2004). A recent study in 

a HD cell and fly model identified increased ERK phosphorylation with supplementation of fisetin 

(a flavonoid found in fruit) (Maher et al., 2011). Fisetin was able to reduce photoreceptor 

degeneration pathology and increase survival in a dose dependant manner in a HD fly model 

(Maher et al., 2011). Fisetin was also supplemented in the diet of R6/2 HD mice that exhibited 

improved motor performance and also increased survival (Maher et al., 2011). In addition to 

modification of ERK phosphorylation by BE anthocyanins in rats, Williams et al, (2008) found 

increased cAMP response element-binding protein (CREB) phosphorylation. CREB is involved 

with gene transcriptional regulation (Carlezon et al., 2005), including that of BDNF (Tao et al., 

1998; Yu et al., 2012). The BDNF gene codes for the neurotrophin BDNF, that has functions in 

cell survival, differentiation and growth (Binder & Scharfman, 2004), and is significantly reduced 

in HD (Zuccato et al., 2001; Zuccato et al., 2005). BDNF levels have not been reported in 

phytochemical supplemented HD mouse models, however the current literature on HD 

pathophysiology suggests rescued BDNF levels may be one mechanism by which BE 

supplementation improves the HD phenotype described.  

There is evidence to suggest that mHTT aggregation plays a significant role in HD pathogenesis 

(Gutekunst et al., 1999; Yang et al., 2002), and therefore the inhibition of aggregation has been 

the target of therapies to reduce HD severity. Dietary supplementation of a green tea-derived 

phenolic compound reduced the disease phenotype of a HD fly model (increased movement and 

reduced photoreceptor degeneration), and reduced mHTT aggregates in a HD cell model 

(Ehrnhoefer et al., 2006). It was therefore proposed that the protective effects of this phenolic 

compound are conveyed through inhibition of mHTT aggregation (Ehrnhoefer et al., 2006). 

Further evidence from a study using a grape seed extract reported decreased mHTT aggregation 

in a HD cell model, increased survival of a HD fly model and improved RotaRod performance of 

the R6/2 HD mouse model (Wang et al., 2010). Interestingly the same cell model treated with 
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fisetin did not prevent mHTT aggregation (Maher et al., 2011). Although our current study, or 

previous studies in phytochemical supplementation in HD mice have not examined mHTT 

aggregation, the available evidence suggests that the beneficial effects of different phenolics 

may work through multiple different mechanisms to result in an improved phenotype. Future 

investigation into a cocktail of phytochemical supplements would support this idea further and 

possibly highlight a supplementation regime that has more potent therapeutic effects than 

single compounds or extracts alone. 

5.4.2 Cholesterol homeostasis and BE supplementation in R6/1 mice 

 

In this study we also investigated alterations to cholesterol homeostasis in R6/1 mice receiving 

BE supplementation. BE supplementation did not result in significant alterations to the sterol 

profile (alteration of synthetic and metabolic products of cholesterol) previously identified in 

the R6/1 mouse model (Chapter 3). Previously BE supplementation improved ERK 

phosphorylation (Williams et al., 2008) and this may influence BDNF levels, and in turn alter 

cholesterol homeostasis. However, the cholesterol synthetic deficits began early in the R6/1 

model (6 weeks of age, Chapter 3) and therefore the age at which supplementation is initiated 

in HD models may significantly affect the relative benefits of the treatment. Several past dietary 

studies in HD animal models began supplementation at the embryonic development stage, by 

feeding the P1 generation and continuing supplementation after birth (Clifford et al., 2002; 

Ehrnhoefer et al., 2006; Wang et al., 2010). Another possible strategy for future dietary studies 

is intermittent supplementation; this has been suggested to potentially enhance a hormetic 

response that may be caused by these phytochemicals (Mattson, 2008).  
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5.4.3 The influence of BE on hind paw clasping in R6/1 mouse 

 

A small delay in the onset of the hind paw clasping phenotype was observed in BE supplemented 

male R6/1 mice, however an overall improvement during the later stages of the study was not 

observed in either male or female R6/1 mice. It is possible that the hind paw clasping phenotype 

is controlled by a brain region or neurological process that is not specifically improved through 

dietary anthocyanin intervention. Hind paw clasping represents a reflex response in contrast to 

motor co-ordination measured by the RotaRod apparatus. The idea that different brain regions 

control different functions is well established, and the manifestation of broad behavioural 

symptoms in HD is likely to be the result of neurodegeneration in multiple brain regions. HD 

brain pathology is indeed widespread, following early striatal degeneration, atrophy is found in 

the globus pallidus, accumbens, amygdala, thalmus and cerebral cortex (Vonsattel et al., 1985; 

Rosas et al., 2003). Tissue transplant studies in the anterior cingulate cortex of R6/1 mice have 

identified an improvement in hind paw clasping but no change in RotaRod performance (van 

Dellen et al., 2001). Similarly hind paw clasping and several involuntary phenotypes (sniffing, 

rearing, grooming) were improved in fatty acid fed R6/1 mice without rescuing striatal pathology 

(Clifford et al., 2002). The same fatty acid supplementation has proved effective in mouse 

models of dyskinesia (involuntary movement disorder) (Vaddadi et al., 2006), possibly acting to 

rescue a similar region involved with choreic movements in HD mice. Although sensitive and 

specific volumetric analysis of R6 mouse brain has been conducted to investigate gross cell loss 

(Sawiak et al., 2009), future work investigating molecular alterations in HD mouse brain may 

benefit from analysing tissue samples derived from micro dissection techniques that facilitates 

high resolution sampling.   
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5.4.4 Body weight loss and brain mass of R6/1 mice receiving a BE diet 

 

 The weight loss phenotype was not attenuated in male or female R6/1 mice fed a BE 

supplemented diet. The only detectable effect was a reduced weight gain in BE male R6/1 mice 

when compared to control R6/1 males. However, due to the baseline difference in body weight 

of control and BE fed animals (resulting form randomisation), the difference in weight gain is 

likely to be a chance event. Previous literature also reports that BE supplementation does not 

modify the body weight of rodents (Sweeney et al., 2002; Goyarzu et al., 2004; Duffy et al., 2008; 

Rashid et al., 2014). The majority of therapeutic interventions in the R6 mouse models target 

brain alterations and therefore do not restore the peripheral metabolic deficit that is a classical 

symptom of HD. Studies addressing HD metabolic deficits in R6 mice using dietary restriction 

(Duan et al., 2003) or creatine supplementation (Ferrante et al., 2000) have reported a small 

improvement in weight loss, however it is not completely rescued. Total food consumption is 

also a consideration for dietary invention studies; in the present study it is unlikely that average 

food consumption per cage was influenced by diet, similar to a previous BE study in rats (Elks et 

al., 2011) and a preliminary study in WT mice (Jenner, A.M., pers. comm. 2015). In this study the 

specific food intake of WT and R6/1 mice could not be determined due to equal distribution of 

WT and R6/1 genotypes within cages. Separation of mice to measure food consumption was not 

performed to prevent potential stress and uncontrolled factors of social hierarchy and 

aggression between reunited mice. Previously, feeding habits have been shown to be unaltered 

by the mHTT transgene in R6 mice; however the typical weight loss profile is still observed 

(Mangiarini et al., 1996). This is consistent with the human HD symptomatology where weight 

loss is observed with equal or higher caloric intake (Sanberg et al., 1981; Morales et al., 1989). 

This suggests that food intake was most likely not a factor contributing to R6/1 weight loss in 

our current study. 
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Previous studies have approached phytochemical supplementation by either feeding animals a 

concentrated plant extract (Papandreou et al., 2009; Wang et al., 2010; Maher et al., 2011) 

similar to our current study, or a purified phytochemical compound (Ehrnhoefer et al., 2006; Ho 

et al., 2010). Experimental designs that supplement fruit extracts containing a mixture of 

phytochemicals do not have the specificity required to identify a single molecular mechanism of 

action, however fruit extracts are more relevant in a dietary context as they represent the 

phytochemical mixture readily available for human consumption.  

In this study there was no detectable effect of BE supplementation on the brain mass of R6/1 

mice. Improved motor and cognitive performance independent of improved brain mass in R6 

mice has been observed in several studies (Spires et al., 2004; van Dellen et al., 2008), and 

suggests that significant recovery of the brain mass phenotype in these mice may not be 

necessary to improve the symptomatic outcome of HD.   

5.4.5 Therapeutic intervention and bioavailability of phytochemicals 

 

Delivery of active molecules and compounds to the site of action is a major challenge to treat 

many diseases, and is one factor that explains why many improvements in vitro are not exactly 

matched in vivo. Compounds must remain stable and un-modified until the target site is 

reached; oral delivery must also survive the low pH in the stomach and be absorbed into the 

bloodstream. Addressing neurological disorders and neurodegenerative diseases present 

additional complications as therapeutic agents must pass the BBB. Permeability of the BBB is 

dependent on several factors including active transport across the membrane, molecular weight 

and lipid solubility (Banks, 2009). Phytochemical compounds previously investigated in HD are 

relatively small molecules, and in the case of anthocyanins contained in BE, are able to cross the 

BBB and penetrate regions which have improved with treatment (Andres-Lacueva et al., 2005; 

Kalt et al., 2008). As many phytochemicals, including anthocyanins are consumed daily in a 

normal diet, the process of assessing potential toxicity in humans is simplified compared to 
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newly developed drugs. These features make phytochemicals such as anthocyanins potentially 

useful therapeutic agents that can be easily implemented to treat disease within the brain.  

5.4.6 Conclusion 

 

Dietary phytochemicals, specifically anthocyanins in BE are reported to have substantial 

protective effects in the aged and diseased brain. The motor phenotype of R6/1 HD mouse 

model was attenuated in female mice through dietary supplementation of BE in our study. 

Several mechanisms may be responsible for improvements seen in HD models treated with BE 

supplementation. These include; rescued cell signalling, anti-aggregation, antioxidant and anti-

inflammatory mechanisms that may be stimulated by a hormetic response. Different 

phytochemicals are likely to work through different mechanisms, and specifically in BE 

supplemented HD, may deliver therapeutic benefits to address a dysfunction of motor co-

ordination, but not involuntary reflex movement such as hind paw clasping as seen in this study. 

The progressive weight loss and brain mass reduction observed in HD mouse models was not 

rescued by BE supplementation; however these phenotypes are not necessarily rescued in 

conjunction with motor and cognitive improvements. Our study was unable to detect an 

alteration of the cholesterol homeostatic deficit that is observed in R6/1 mice. Nevertheless, 

previous findings that consistently demonstrate ameliorated age-related brain deficits with BE 

supplementation, and our current finding of improved motor function in R6/1 mice, indicates 

this dietary supplement should be investigated more thoroughly in HD. 
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Chapter 6                                          

Cholesterol metabolism in Huntington's 

disease post-mortem brain tissue 
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6.1 Introduction 

 

HD is an autosomal dominant, progressive neurodegenerative disease characterised by the 

expansion of a glutamine repeat on the N-terminus of HTT. Classic symptoms include involuntary 

movement and cognitive dysfunction. The classical neuropathological hallmark of HD is the 

severe atrophy of the striatum (caudate and putamen) (Vonsattel et al., 2011), with substantial 

volume loss in the order of 50% in late stages of the disease. While these brain regions are most 

severely affected, MRI techniques have highlighted that the hippocampus, cerebral cortex, 

globus pallidus and amygdala also have reduced volume in HD patients (Rosas et al., 2003). 

Despite the genotypic identification of mHTT carriers, there is a lack of reliable biomarkers to 

predict HD progression or effectiveness of therapies. The mutation of HTT has been reported to 

alter HTT-phospholipid interactions (Kegel et al., 2009), membrane organisation (del Toro et al., 

2010) and gene transcription of lipid metabolic enzymes (Sipione et al., 2002). Several studies 

have also identified that cholesterol synthesis and metabolism in HD cell lines and animal models 

is significantly disturbed (Valenza et al., 2005; Valenza et al., 2007b; Valenza et al., 2010), 

however the current literature contains very limited data obtained from human tissue, which is 

required for greater understanding of human HD pathophysiology. In this chapter we have 

investigated for the first time the level of cholesterol metabolites, synthetic precursors and 

oxidation products in 13 cases of human HD and 13 matched healthy controls across 5 brain 

regions, to comprehensively profile sterol changes in human brain. This study also investigated 

the levels of two key cholesterol synthetic and metabolic enzymes in HD putamen.  
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6.2 Materials and methods 

 

Materials: Materials used in this study are listed in 2.2.  

Human brain tissue: Frozen brain tissues from five brain regions (putamen, caudate, cerebellum, 

grey and white frontal cortex) were received from the Victorian Brain Bank Network. The cohort 

contained 13 cases of HD and 13 controls from each brain region. Tissue was transported on dry 

ice and stored at -80°C until analysis. Demographic and basic clinical data are presented in Table 

6.1. The mean age of control cases was 68.9 ± 1.9 y which was not significantly different from 

the HD cases with mean age of 67.3 ± 2.2 y. Post mortem interval (PMI) of control cases (41.5 ± 

4 h) and tissue pH (6.4 ± 0.1) was not significantly different to HD PMI (37.5 ± 6.2 h) or tissue pH 

(6.4 ± 0.04). All brain tissue was from the left hemisphere of Caucasian donors. Ethics approval 

was from the University of Wollongong Human Research Ethics Committee (HE10/327). Control 

tissue was screened with a full neuropathology examination to determine the absence of 

degenerative pathologies. The research was carried out in accordance with the Declaration of 

Helsinki (2008) of the World Medical Association.  

Western Blotting: Brain tissue (~20 mg) was added to 250 µL ice cold radio-immunoprecipitation 

assay (RIPA; 50 mM Tris, 150 nM NaCl, 0.1% SDS, 0.5% sodium deoxycholate, 1% Triton X 100) 

buffer containing 1% protease inhibitor (P8340, Sigma) and homogenised at 4°C using a Precellys 

24 homogeniser (Bertin Technologies) (2 x 20 s, 6000 rpm). The homogenate was centrifuged at 

14 000 x g and the soluble fraction taken for SDS-PAGE. Homogenates were incubated at 95°C 

for 10 min with 5x loading dye containing β-mercaptoethanol. Equal amounts of protein (90 µg, 

determined by a BCA assay) were loaded onto a 12% acrylamide gel and electrophoresed for 1 

h at 150V. Proteins were then transferred onto a 0.4 µm nitrocellulose membrane (BIO-RAD, 

Gladesville, NSW, Australia) for 35 min at 100V. To improve antigen detection, boiling phosphate 

buffered saline + tween 20 (PBST) (50 mL) was added to the membrane and left to cool to room 

temperature. The membrane was blocked with a 10 mL solution of PBST containing 5% skim milk 
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powder, rocking for 1 h at room temperature. Membranes were probed with antibodies 

detecting CYP46A1 1:100 (1F11, Santa Cruz Biotechnology) and DHCR24 1:1000 (ab137845, 

Abcam). Antibodies were diluted in 10 mL PBST 5% skim milk powder and incubated with 

membranes overnight, rocking at 4°C. Membranes were washed 3 x 10 min with PBST at room 

temperature before being incubated for 1 h at room temperature with a species specific IgG-

HRP conjugated secondary antibody (1:3000). Membranes were washed 3 x 10 min with PBST 

before chemiluminescent detection of signal. Membranes were stripped, washed and re-probe 

for β-actin (1:10 000) following the protocol outlined above. Signal intensity was quantified using 

ImageJ software V1.46r (National Institutes of Health, USA), and normalised for β-actin. 

qPCR: The quantitative PCR of human brain tissue was performed as previously described 

(Abbott et al., 2014) with minor modifications. Briefly, human tissue (~30mg) was added to 10 

volumes of TRIzol reagent (wt:vol) and homogenised in a Precellys 24 homogeniser at 2 x 20 s at 

5500 rpm. The RNA concentration and purity was determined spectrophotometrically with a 

Nanodrop 1000 (Thermo Scientific). Following the manufacturer’s protocol, 2 µg of total RNA 

was used to synthesise cDNA using a Tetro cDNA synthesis kit (Oligo dT18) (Bioline, Sydney, 

Australia). Quantitative PCR was performed using a Roche Lightcycler 480 using SensiFAST SYBR 

No-ROX kit (Bioline) following the manufacturer’s instructions. Analyses were carried out in 

triplicate and gene of interest mRNA was normalised to GAPDH mRNA levels. Gene expression 

was calculated using the comparative threshold cycle (Ct) value method using the formula 2-ΔΔCt 

(ΔΔCt = ΔCt sample – ΔCt reference) as described (Li et al., 2012). All primers were purchased 

from Sigma Aldrich (Sydney, Australia). The primer sequences used were as follows: CYP46A1 (F: 

TTCTAGGACACCTCCCCTGC and R: CAGGTCCATACTTCTTAGCCCAAT) DHCR24 (F: 

TGTTCGTGTGCCTCTTCCTC and R: ATTCCCGCACCTGCTTCTG) GAPDH (F: 

GAGCACAAGAGGAAGAGAGAGACCC and R: GTTGAGCACAGGGTACTTTATTGATGGTACATG) 

RNU6-6P (F: CTCGCTTCGGCAGCACA and R: AACGCTTCACGAATTTGCGT). 
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Lipid extraction and GC-MS/MS analysis of sterols: Quantification of cholesterol synthetic 

precursors, metabolites, oxidation products and phytosterols was performed as outlined in 2.3.5 

and 2.3.6. 

Statistical Analysis: All results are expressed as mean ± SEM with a P < 0.05 considered 

significant. An unpaired t-test was used to test for significantly different means, an F-test was 

used to determine if variances were significantly different. Welch’s correction for unequal 

variances was used when variances were found to be significantly different. All analyses were 

performed in Graphpad PRISM v5.0 (Graphpad Software Inc., USA). 

 

Table 6.1 Demographic details of control and HD cohorts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case# Gender Age (y) PMI (h) pH HD Grade 

stage(0-

IV) 

Con 1 M 78.3 46 6.54 - 
Con 2 M 69.1 34 6.31 - 
Con 3 M 63.9 54.5 6.51 - 
Con 4 M 81 36.5 6.56 - 
Con 5 M 64.1 24 6.56 - 
Con 6 F 59 30 6.84 - 
Con 7 F 67.3 30 6.23 - 
Con 8 F 74.8 61.5 6.24 - 
Con 9 F 68.3 71.5 6.34 - 
Con 10 F 60.4 49 6.23 - 
Con 11 M 63.9 32 6.47 - 
Con 12 M 69.4 24 6.27 - 
Con 13 M 75.6 46 6.57 - 
HD 1 M 77 8.5 6.57 IV 
HD 2 M 68.7 72 6.32 IV 
HD 3 M 61.1 17 6.54 IV 
HD 4 M 81.1 50.5 6.23 IV 
HD 5 M 66.6 37 6.26 IV 
HD 6 F 57.2 22 6.22 IV 
HD 7 F 66.7 18.5 6.21 IV 
HD 8 F 72.2 22 6.43 IV 
HD 9 F 70.7 70 6.16 IV 
HD 10 F 51.5 63.5 6.54 IV 
HD 11 M 62.3 21.5 6.62 IV 
HD 12 M 65.9 58 6.33 IV 
HD 13 M 73.9 26.5 6.31 IV 
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6.3 Results 

 

6.3.1 Sterol analysis 

 

Human HD post mortem brain tissue from putamen, caudate, frontal cortex (grey and white) 

and cerebellum was analysed using heavy isotope dilution GC-MS/MS. Cholesterol metabolites, 

oxidation products and synthetic precursors are presented as percent relative change compared 

to control (Figure 6.1). Absolute values of sterols measured are provided in Appendix 10. 

6.3.1.1 Cholesterol metabolites 

 

The most significant changes were detected in HD putamen, a region that is severely affected in 

HD (Vonsattel et al., 1985). The brain specific cholesterol metabolite 24-OHC, was reduced 59% 

(p < 0.0001) in HD putamen (Figure 6.1A). Caudate was the only other region to show changes 

in this metabolite with a 66% reduction (p = 0.0009) of 24-OHC in HD tissue compared to control 

tissue (Figure 6.1A). 27-OHC, a peripheral cholesterol metabolite was significantly increased by 

3-fold in HD putamen (p = 0.0107).  27-OHC was also significantly increased 3-fold in grey frontal 

cortex (p = 0.0117) and 2-fold in cerebellum (p = 0.0281) (Figure 6.1A). 

6.3.1.2 Cholesterol oxidation products 

 

HD putamen was the only brain region to show evidence of oxidative stress, with a 53% and 69% 

increase in the cholesterol oxidation products 7β-OHC (p = 0.0226) and  7-KC (p = 0.0009) 

respectively (Figure 6.1B). 

6.3.1.3 Cholesterol synthetic precursors 

 

Altered cholesterol synthesis was evident in HD putamen which exhibited an increase in the 

cholesterol synthetic precursors, desmosterol (3-fold, p = 0.0046), lathosterol (2-fold, p = 

0.0405), zymosterol (3-fold, p = 0.0066) and 24, 25 dihydro lanosterol (2-fold, p = 0.0051) (Figure 
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6.1C). Total cholesterol levels were also significantly increased by 31% in HD putamen (p = 

0.0342) (Figure 6.1D). No other brain regions were found to have significant changes in 

cholesterol precursors, or cholesterol levels. 

6.3.2 Cholesterol metabolic and synthetic enzymes 

 

To further investigate pathways that may contribute to changes in brain cholesterol metabolism 

and synthesis observed in putamen, we examined two major enzymes involved by western 

blotting. The protein level of CYP46A1 in HD was reduced 90% compared to control (p = 0.0027) 

(Figure 6.2A). We also detected a significant (91%) reduction (p = 0.0014) of DHCR24 protein 

levels (Figure 6.2B), which is in agreement with the accumulation of desmosterol seen in HD 

putamen (Figure 6.1B). 

The mRNA levels of the genes CYP46A1 and DHCR24 were also measured in putamen using 

quantitative PCR. mRNA levels did not reflect protein levels and were not significantly changed 

between HD and control tissue in both CYP46A1 and DHCR2 (Figure 6.3). 
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Figure 6.1 Sterol levels in human HD putamen, caudate, grey cortex, white cortex and cerebellum. (A) 
Cholesterol metabolites (B) Cholesterol oxidation products (C) Cholesterol synthetic precursors (D) 
Cholesterol were measured by GC-MS/MS.  Levels are expressed as a percentage change against control 
tissue. n = 12-13 per group, error bars represent +SEM *** p < 0.0001, **p < 0.005, *p < 0.05 
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Figure 6.2 Protein level of cholesterol synthetic and metabolic enzymes in human HD putamen. Brain 
tissue homogenates from HD and control were probed for (A) cholesterol 24-hydroxylase (CYP46A1) and 
(B) delta(24)-sterol reductase (DHCR24) by western blotting. Representative blots are shown (n = 3 per 
group). Integrated optical density for all blots (n = 9 per group) is represented as relative abundance 
compared to control (assigned a value of 1.0). Blots were normalised to β-actin level. Error bars represent 
+SEM. **p < 0.005 

Figure 6.3 mRNA levels of genes coding for cholesterol synthetic and metabolic enzymes in human HD 
putamen. The level of CYP46A1 (coding for cholesterol 24-hydroxylase) and DHCR24 (coding for delta(24)-
sterol reductase) in brain tissue was determined by qPCR (n = 9 for control and HD). The genes of interest 
were normalised to GAPDH and RNU6-6P mRNA levels and expressed relative to control (assigned a value 
of 1.0). Error bars represent +SEM 
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6.4 Discussion 

 

Alteration of cholesterol metabolism has been recently linked to several neurodegenerative 

diseases including AD, PD and HD (Sipione et al., 2002; Puglielli et al., 2003; Cheng et al., 2011). 

In particular, the elimination pathway where 24-OHC is formed by the hydroxylation of 

cholesterol has been suggested as a contributing factor in neurodegeneration (Bjorkhem et al., 

2006). Neuronal 24-OHC has a major role in the turnover of cholesterol in the brain (Bjorkhem 

et al., 1998), and the level of 24-OHC in plasma has been suggested as a measure of CYP46A1 

enzymatic activity and thus metabolically active neurons (Bjorkhem, 2006).  

6.4.1 Alteration of cholesterol metabolism in human Huntington’s disease brain 

 

Previous studies have found that the plasma levels of 24-OHC in HD patients correlate with 

disease severity and brain volume measured by MRI (Leoni et al., 2008; Leoni et al., 2013). Here 

for the first time we report the levels of 24-OHC in human HD post-mortem brain tissue. A 

significant reduction of 24-OHC was found in HD putamen accompanied by a large (90%) 

reduction in the protein level of CYP46A1, the enzyme responsible for 24-OHC formation. 

Reduced enzyme levels may be due to neuron loss, where CYP46A1 is primarily located. 

Alterations in post-transcriptional regulation may also play a role since no change in mRNA 

expression was detected between control and HD. This is potentially relevant as protein 

turnover is known to be dysregulated in HD cell models (Hatters, 2008). Caudate (another 

striatal region affected in HD) also had reduced levels of 24-OHC, while grey and white frontal 

cortex and cerebellum showed no change. Although the cerebral cortex is affected in later stages 

of HD (de la Monte et al., 1988; Rosas et al., 2003), the degree of volume loss and astrocytosis 

is substantially less compared to the striatum (Sotrel et al., 1991; Vonsattel & DiFiglia, 1998; 

Rosas et al., 2003). Reduced 24-OHC levels in HD striatum supports previous human studies that 

reported reduced plasma levels of this metabolite in HD patients (Leoni et al., 2008; Leoni et al., 
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2013). Our data indicates that decreased circulating 24-OHC levels are likely the result of 

reduced 24-OHC production in affected regions and not an aberration of BBB 24-OHC flux. In the 

mature brain, delivery of cholesterol synthesised in the astrocyte is required for normal 

neuronal function (Posse de Chaves et al., 1997; Mauch et al., 2001; Hayashi et al., 2004).  It has 

been hypothesised that 24-OHC production in neurons acts as a signalling molecule to initiate 

the delivery of cholesterol from astrocytes to neurons therefore maintaining homeostasis 

(Pfrieger, 2003). There is also evidence to suggest that CYP46A1 may have neuroprotective 

properties, being upregulated near plaques (Brown et al., 2004) and in glia of the human AD 

brain (Bogdanovic et al., 2001). Whether reduced levels of CYP46A1 in HD is a secondary event 

reflecting active neuron loss, or is a pathogenic factor altering cholesterol metabolism and 

synthesis remains to be established. 

27-Hydroxycholesterol, a metabolite of cholesterol that is produced predominantly in peripheral 

tissue, was increased in several regions of human HD brain as compared to controls. While an 

increased flux of 27-OHC into the brain may be caused by a disrupted BBB, we believe this is not 

the case in this tissue since sterols that are present in higher peripheral abundance such as 

campesterol (a dietary derived phytosterol) were not significantly different between HD and 

control brain tissues (Appendix 10). As there is a net movement of 27-OHC from circulation into 

the brain (Heverin et al., 2005), 27-OHC accumulation may be the result of a decrease in the 

activity of enzymes in the brain (such as CYP27A1) that further metabolise this oxysterol to 

cholestenoic acids (Meaney et al., 2007). Accumulation of 27-OHC is potentially important in 

neurodegeneration since in vitro studies have shown 27-OHC promotes β-amyloidogenesis 

(Gamba et al., 2014) as well as being elevated in human AD brain and transgenic mice (Heverin 

et al., 2004; Shafaati et al., 2011). While there is little direct in vivo physiological evidence that 

cholesterol metabolites promote neuronal damage, further studies are required to investigate 
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the hypothesis that preventing the accumulation of 27-OHC in the brain reduces 

neurodegeneration in AD and HD. 

6.4.2 Alteration of cholesterol synthesis in human Huntington’s disease brain 

 

A defect in cholesterol synthesis has been previously described in several cell and mouse models 

of HD. Specifically; a reduction in the cholesterol synthetic precursors lathosterol and lanosterol 

as well as cholesterol in the YAC128 mouse (Valenza et al., 2007a), reduced levels of lathosterol 

and lanosterol, but not cholesterol, in the R6/2 mouse model (Valenza et al., 2007b), reduced 

mRNA levels of cholesterol synthetic enzymes in R6/2 mouse and human HD fibroblasts (Valenza 

et al., 2005) and reduced cholesterol synthetic enzymes in a transgenic HD cell model (Sipione 

et al., 2002). In contrast to these findings, our data on end stage human HD putamen shows an 

increase in cholesterol synthetic precursors from both the Bloch (desmosterol and 24,25 dihydro 

lanosterol) and Kandutsch-Russell (lathosterol and zymosterol) pathways and an increase in 

total cholesterol levels. No significant changes in squalene levels were observed (Appendix 10) 

suggesting that alterations in the upstream mevalonate pathway had no influence on the 

changes that we measured in the Kandutsch-Russell and Bloch pathways. The increase in 

cholesterol and synthetic precursors was only observed in the putamen; a region that 

degenerates early and severely in the human disease (Vonsattel et al., 1985). In contrast to 

macro and microscopic classification of disease pathology, which shows the caudate 

degenerates in parallel with the putamen (Vonsattel et al., 1985; Vonsattel & DiFiglia, 1998), we 

did not observe any cholesterol synthetic alterations in this region. While the cholesterol 

synthetic changes observed in the putamen may suggest an overall increase of cholesterol 

synthesis utilising both pathways, we believe this is not the case for the Bloch pathway. In our 

study, HD putamen had significantly higher levels of desmosterol, an immediate synthetic 

precursor of cholesterol (Bloch pathway) and a substrate of DHCR24. Significantly depleted 

protein levels of DHCR24 in human HD putamen (91% reduction) are consistent with the reduced 
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conversion of desmosterol to cholesterol and its subsequent accumulation. Unaltered mRNA 

levels of DHCR24 in putamen again suggests enzyme levels are being affected post-

transcriptionally. Previous in vitro examination of cholesterol synthesis in specific cell types 

found astrocytes utilise the Bloch pathway via desmosterol, while neurons primarily utilised 7-

dehydro cholesterol and other precursors from the Kandutsch-Russell pathway (Nieweg et al., 

2009). This suggests that in late stage human HD, desmosterol accumulates in astrocytes due to 

down regulated DHCR24. An increased density of oligodendrocytes and activated astrocytes is 

known to be present in HD (Myers et al., 1991) and is believed to be a compensatory response 

to demyelination in HD (Bartzokis et al., 2007). While the specific cell type/s exhibiting elevated 

Kandutsch-Russell synthetic precursors is yet to be determined, increased oligodendrocyte 

activity attempting remyelination in affected tissue may contribute to this.  

Previous studies in HD mouse brain reported a significant reduction of the cholesterol precursor 

lathosterol (Valenza et al., 2007a; Valenza et al., 2007b), which is found in the Kandutsch-Russell 

pathway. In contrast, the Bloch pathway precursor desmosterol, was either unchanged (Valenza 

et al., 2007a) or not reported (Valenza et al., 2007b) in these previous HD mouse studies. 

Examining precursors from both arms of the cholesterol synthetic pathway in these mouse 

models enables greater insight into the alterations occurring in different cell types, and their 

possible response to HD pathology / neurodegeneration. The differences seen between HD 

mouse models, in vitro cell models, and human post-mortem tissue may reflect a difference in 

the homeostatic response to mutant HTT between organisms and cell types. There is also a 

difference between the relative ages of mice being in early adulthood compared to end stage 

human HD tissue where the mean age was 67 years old. The differences in the data derived from 

our current study and previous mouse models and cell culture models may also reflect that in 

this human tissue study we examined end stage HD where a significant number of vulnerable 

neurons are predicted to have been lost. Examining earlier stages of the disease in brain tissue 
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is therefore important to consolidate the role of cholesterol synthesis and metabolism in the 

early stages of HD in humans. 

6.4.3 Cholesterol oxidation products in human Huntington’s disease brain 

 

Along with measuring cholesterol metabolites and precursors, our GC-MS/MS method was able 

to sensitively detect COPs, and use these as markers of oxidative stress in HD brain tissue. 

Oxidative stress has been previously shown in HD (Browne et al., 1999), and in several other 

neurodegenerative diseases (Subbarao et al., 1990; Ferrante et al., 1997; Cheng et al., 2011). 

Similar to changes seen in other sterols, significant increases in 7-KC and 7β-OHC were only 

observed in putamen. The specific increase in oxidation products in the putamen is consistent 

with this region being affected early and severely in HD (Vonsattel et al., 1985). 7-KC and 7β-

OHC have been shown to be stable, and previously used as markers of oxidative stress in plasma 

(Iuliano et al., 2003) and CSF (Leoni et al., 2005). Measurement of COPs in HD plasma together 

with other sterols may represent a convenient tool to follow progression, quantify severity, and 

assess therapeutic effectiveness in patients. Importantly, these markers can be measured 

sensitively and reliably by GC-MS/MS techniques. 

6.4.4 Consequences of altered cholesterol homeostasis in human Huntington’s disease brain 

 

Homeostasis of cholesterol is essential for neurological function however the precise role of 

cholesterol in HD neurodegeneration is still debated. Evidence suggests that cholesterol 

accumulation in HD alters membrane organisation and cell signalling, enhancing the 

susceptibility of striatal neurons to excitotoxicity (del Toro et al., 2010). Another hypothesis 

suggests that impaired cholesterol synthesis drives neurodegeneration by limiting the supply of 

cholesterol to neurons (Valenza et al., 2007a). As a result synaptogenesis and dendrite 

outgrowth is impaired (Mauch et al., 2001; Fan et al., 2002), and neurotransmission is disrupted 

(Koudinov & Koudinova, 2005). It is also believed that a reduction of BDNF in HD (Zuccato et al., 
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2001) may play a significant role in neurodegeneration (Zuccato & Cattaneo, 2009). BDNF is a 

neurotrophin expressed by neurons that promotes cell survival, differentiation and growth 

(Binder & Scharfman, 2004). Among these properties, BDNF has been shown to promote 

DHCR24 expression (Sarchielli et al., 2014). Therefore, a loss of BDNF action may also contribute 

to a reduction in DHCR24, and the cholesterol homeostatic imbalance we have detected in HD 

putamen. 

6.4.5 Conclusion 

 

Our study reveals for the first time that several cholesterol synthetic and metabolic pathways 

are disturbed in multiple brain regions of human HD. This disturbance was identified to be most 

severe in the putamen, a region that degenerates early and severely in HD.  These data provide 

evidence to support previous studies that link altered cholesterol synthesis, metabolism and 

oxidative stress with the neuropathological process involved in HD. Since HD shares similar 

sterol disturbances as other late-onset neurodegenerative diseases, we believe these changes 

represent potential biomarkers for neurodegenerative disease and elucidating cholesterol 

related mechanisms of neuropathology may provide targets for therapeutic intervention. The 

key finding of reduced CYP46A1 in human HD brain confirms previous studies in HD patient 

plasma that indicate 24-OHC as a promising peripheral biomarker to monitor the development 

of HD neuropathology. 
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Chapter 7                                             

General discussion 
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7.1 Cholesterol homeostasis alterations in Huntington's disease 

 

The functions of cholesterol biosynthesis and metabolism, although not fully understood in the 

brain, have been demonstrated to be essential for proper brain function (Kabouridis et al., 2000; 

Mauch et al., 2001; Hayashi et al., 2004); mutations in enzymes of the cholesterol synthetic 

pathway having severe neurological consequences in humans (Wassif et al., 1998; Waterham et 

al., 2001). The mutation of the HTT protein in HD is associated with alterations to cholesterol 

homeostasis and has been demonstrated consistently in multiple rodent and cell models 

(Sipione et al., 2002; Valenza et al., 2005; Valenza et al., 2007a; Valenza et al., 2007b; del Toro 

et al., 2010). Thorough investigation of cholesterol synthetic and metabolic alterations in human 

HD brain has not been conducted prior to the experiments in this thesis. Using sensitive GC-

MS/MS analytical techniques we have identified several alterations that are consistent between 

the R6/1 mouse model and human post mortem tissue. We have also identified several 

alterations that are not consistent, and require further investigation to determine the relevance 

of these changes to HD pathology. Here we discuss our data derived from the R6/1 mouse model 

in comparison to that obtained from human HD post-mortem tissue, and highlight HD specific 

alterations to cholesterol homeostasis and other pathways that require more detailed 

investigation in the HD brain. 

 

7.2 Brain cholesterol synthesis and metabolism in human and mouse models of HD 

 

Although many animal models of neurodegenerative disease are able to replicate some 

pathological hallmarks of a disease, they rarely replicate precisely the condition observed in 

humans. This is due to fundamental differences between species in; diet, metabolism, ageing as 

well as the physical size of the brain. Aside from some of these limitations, mice have been 

genetically manipulated to model several neurodegenerative diseases including AD, PD, MND 
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and MS (Mucke et al., 2000; Bettelli et al., 2003; Laird et al., 2008; Gispert et al., 2009).  In the 

case of HD, generation of several mouse models expressing forms of mutated human HTT 

(Mangiarini et al., 1996; Hodgson et al., 1999; Slow et al., 2003) as well as knock-in expanded 

mouse huntingtin (Wheeler et al., 1999), have allowed for in vivo study of the mechanisms that 

underlie HD. In this study we have investigated the R6/1 mouse model, expressing a CAG 

expanded (115-120 repeats) exon 1 of human HTT, similar to the R6/2 model that expresses a 

longer CAG repeat (Mangiarini et al., 1996). Multiple aspects of HD pathology have been 

investigated in the R6 models as they show many of the molecular and physical phenotypes of 

human HD. These include similarities in gene expression changes (Strand et al., 2007), reduced 

levels of BDNF (Spires et al., 2004; Zuccato et al., 2005), nuclear inclusions (Hansson et al., 2001; 

Meade et al., 2002) and cannabinoid receptor downregulation (Denovan-Wright & Robertson, 

2000; Naver et al., 2003; Horne et al., 2013). A physical phenotype indicative of human HD is 

also observed in these mice that includes, a progressive motor and cognitive dysfunction, weight 

loss, striatal atrophy and chorea (Mangiarini et al., 1996; Hansson et al., 1999; Murphy et al., 

2000; Naver et al., 2003). 

In this study we have focused on characterising cholesterol synthetic and metabolic alterations 

in HD. Based on several studies in mouse and cell models, cholesterol synthesis (by measure of 

cholesterol synthetic precursors lathosterol and lanosterol) is believed to be reduced in HD 

(Sipione et al., 2002; Valenza et al., 2005; Valenza et al., 2007a; Valenza et al., 2007b). Prior to 

our study, cholesterol homeostasis has not been sufficiently examined in human HD brain tissue, 

with three previous studies using a maximum of 3 cases of HD post-mortem tissue (Valenza et 

al., 2005; del Toro et al., 2010; Samara et al., 2014). Our study, and previous studies examining 

cholesterol levels in aged human brain have shown cholesterol levels to be variable (Thelen et 

al., 2006), and studies using small samples may therefore lack statistical power to identify 

changes, or are susceptible to identifying false positives. Analysis of 5 regions in 13 cases of late 
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stage human HD post mortem brain tissue in our study has revealed an increase in cholesterol 

synthetic precursors of the Kandutsch-Russell pathway (such as lathosterol), and increased total 

cholesterol levels, contrary to that demonstrated in previous mouse model studies (Valenza et 

al., 2007a; Valenza et al., 2007b), and our study of R6/1 mice (Chapter 3). Several factors may 

underlie these differences in cholesterol biosynthetic alterations between the R6 mice and 

humans, including the CAG length, HTT protein length (truncated vs full length) and the intact 

expression of endogenous murine huntingtin.   

The duration of HD in humans compared to the mouse is also likely to be a factor resulting in 

differences in cholesterol homeostasis. Although we have used the R6/1 mouse which develops 

symptoms slower than the R6/2 model, the onset of disease and disease timeline is rapid 

compared to that in humans that manifests over decades (Foroud et al., 1999). The relative age 

of affected R6/1 mice is comparable to humans in early adulthood and therefore the effects of 

an aged brain may be less apparent in the mouse.  A slower disease timeline in humans is likely 

to result in some cellular changes in the brain that do not have time to manifest in the mouse 

model, and may explain the absence of lipid peroxidation in the R6/1 mice we examined. 

Massive neuron loss through apoptosis is not observed in the R6 models, rather a shrinkage of 

neurons is a common neuropathological feature in these mice (Hansson et al., 1999; Iannicola 

et al., 2000; Klapstein et al., 2001; Petersen et al., 2002). A degenerative process reported to be 

'dark cell degeneration' has also been previously reported in R6/1 mice and juvenile human HD 

(Iannicola et al., 2000; Turmaine et al., 2000). This process is believed to occur over weeks and 

may not manifest completely in the lifespan of these mice (Turmaine et al., 2000). The lack of 

significant astrocytosis and increased oligodendrocyte density in R6 mice (Mangiarini et al., 

1996; Hansson et al., 1999; Turmaine et al., 2000), compared to that seen in human HD (Myers 

et al., 1991), is potentially relevant to the level Kandutsch-Russell cholesterol synthetic 

precursors we observe between human and R6/1 mice. Oligodendrocytes have a high capacity 
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for cholesterol synthesis, and the increased density of these cells believed to be attempting 

remyelination in HD (Bartzokis et al., 2007), may explain increased cholesterol levels and 

synthetic precursors that we observe in human HD putamen.  

Although this difference in Kandutsch-Russell precursors does exist between mouse and human, 

we believe the increase of desmosterol (the penultimate sterol of the Bloch pathway) in both 

species describes a HD specific dysfunction of the cholesterol synthetic regulation. Desmosterol 

levels are likely to reflect the level or activity of DHCR24 (as shown in chapter 6), which is 

believed to have regulatory roles in cholesterol synthesis beyond converting desmosterol to 

cholesterol at the end of the synthetic pathway (Luu et al., 2015). DHCR24 expression levels 

have also been reported to be mediated by BDNF, a trophic factor that is depleted in both human 

and animal models of HD (Zuccato et al., 2001; Spires et al., 2004; Zuccato et al., 2005). The 

current literature has not investigated brain levels of DHCR24 in detail, and further examination 

into desmosterol levels and DHCR24 activity in HD may explain the cholesterol homeostatic 

perturbation beyond simply describing the level of Kandutsch-Russell cholesterol synthetic 

intermediates.   

Human and mouse HD brain tissues we have investigated also exhibited some important 

similarities in cholesterol metabolic alterations. Formation of 24-OHC by the enzyme CYP46A1 

is a major route of cholesterol elimination from the brain. In our study, the level of 24-OHC is 

reduced in the striatum of human and R6/1 mice, this is consistent with previous studies in 

rodent brain (Valenza et al., 2010) and human plasma (Leoni et al., 2008). 24-OHC levels were 

previously suggested as a biomarker of metabolically active neurons in the brain (Bjorkhem, 

2006), however the relevance of this suggestion in a diseased brain state is not fully understood. 

Although in human HD, where significant neuron loss occurs, it is unknown whether reduced 24-

OHC levels are simply a reflection of neuron loss, or if a cholesterol metabolic deficit precedes 

neurodegeneration. Previously it has been hypothesised that cholesterol metabolism in neurons 
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and delivery from astrocytes may be regulated by feedback from 24-OHC (Pfrieger, 2003; 

Bjorkhem, 2006),however a precise mechanisms by which 24-OHC regulates cholesterol 

synthesis in the brain has not been identified. Until further investigation is undertaken, it is 

unknown if synthetic, or metabolic dysfunction is the primary cause of cholesterol homeostatic 

dysfunction in HD.  

Our study of human HD tissue has highlighted that the metabolic pathway involving 27-OHC 

formation and further metabolism is not consistent with the R6/1 mouse striatum. 27-OHC has 

a net movement into the brain from the periphery, where it is quickly metabolised to 

cholestenoic acids that diffuse back into the bloodstream (Heverin et al., 2005; Meaney et al., 

2007). It was previously suggested that the cell-rich grey matter in the human brain is the major 

site of 24-OHC formation and further metabolism of 27-OHC (Bjorkhem, 2006). Degeneration in 

these areas would therefore result in the decrease of 24-OHC levels and increased 27-OHC, as 

we observed in human caudate and putamen, and previously described in human AD brain 

(Heverin et al., 2004). In the R6/1 mouse model we investigated, a striatum specific decrease in 

27-OHC levels contradicts findings in humans. It is possible that faster cholesterol turnover in 

the brain of mice compared to humans (Dietschy & Turley, 2004), and lower absolute levels of 

27-OHC in this region (0.05ng/mg in mouse vs 0.3 ng/mg in human), causes greater fluctuation 

and variation in absolute levels. Interestingly, previous examination of a mouse AD model 

revealed a consistent increase of 27-OHC in mouse brain tissue as well as in human AD brain 

tissue (Heverin et al., 2004). Previously levels of 27-OHC levels have not been reported in studies 

examining cholesterol metabolism in HD mouse models (Valenza et al., 2007a; Valenza et al., 

2007b); further work to identify if this change occurs in other models may clarify if 27-OHC 

formation or further metabolism has a role in HD pathogenesis. Future studies of CSF and plasma 

may also identify 27-OHC, or further metabolites of 27-OHC, as potential biomarkers of CYP7B1 

and CYP27A1 activity in HD brain.  
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7.3 Localisation of cholesterol synthetic and metabolic changes in Huntington's 

disease 

 

Neurodegeneration in human HD begins in the striatum, affecting neighbouring regions such as 

the globus pallidus, hippocampus, amygdala and cerebral cortex (Vonsattel et al., 1985; Rosas 

et al., 2003). The end stage tissue we have examined specifically exhibit a cholesterol metabolic 

deficit in the striatum (caudate and putamen), and altered synthesis was only observed in the 

putamen. This suggests that these changes may be associated with early events in HD, where 

specific degeneration of medium spiny neurons occurs in the striatum (Vonsattel et al., 1985). 

Interestingly in the R6/1 and R6/2 HD mouse model, the cholesterol synthetic defect is more 

widespread, detected in the striatum and cortex in our study, and the hippocampus in a previous 

study (Valenza et al., 2007b). Although changes to Kandutsch-Russell synthetic precursors are 

more pronounced in the striatum of R6/1 mice compared to other regions, the early occurrence 

of changes suggests these alterations may not be as specific to HD as the reduction of 24-OHC 

and accumulation of desmosterol. Both these changes are present in the striatum at later stages 

of the disease, and we hypothesise these alterations are not as widespread in the brain of R6/1 

mice, similar to our observations in human brain.  

 

7.4 Sex differences in Huntington's disease 

 

In this thesis we have also examined interventions of HD in the R6/1 model. It is of interest that 

different interventions had differential effects on the motor phenotype of male and female R6/1 

mice. EE improved the motor co-ordination of male R6/1 mice but did not influence females. 

The opposite occurred with BE supplementation, where female R6/1 mice had improved motor 

co-ordination compared to controls, however males did not improve. We have also previously 

identified a sex difference in the progression of the physical phenotype in R6/1 mice (Chapter 
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3). Previous studies examining the R6/1 model typically use males or females in separate studies 

(Clifford et al., 2002; Naver et al., 2003), and it is likely that any sex differences have not been 

previously observed in the more studied R6/2 model as the progression is more rapid 

(Mangiarini et al., 1996). On a molecular level, we have not detected any significant difference 

in brain sterols between male and female R6/1 mice with our current study size; it is possible a 

larger study may identify potential alterations between mice that reflect phenotypic changes. 

Few studies have examined sex-specific changes in HD models, one study reported 

neuroprotective effects of a sex hormone (17β-estradiol) in HD transgenic rats (Bode et al., 

2008), another identified sex-dependant alterations to BDNF expression in R6/1 mice when 

exposed to environmental enrichment (Zajac et al., 2010). These findings suggest further 

investigation into sex differences is warranted in HD models, an area which has been largely 

ignored in the past. In human HD patients, a significant influence of sex in the progression and 

severity of HD has not been previously identified. Assessing the age of onset, and disease 

severity between patients is complex as symptoms can be highly variable between people 

(Foroud et al., 1999). Even if overt differences between sexes have not been identified in human 

HD patients, it is possible that the response to certain treatments may be sex dependant as 

previously identified in mice (Zajac et al., 2010). It is therefore an important consideration to 

assess both sexes in studies, not only in mouse models but also in humans.  

 

7.5 Future directions studying cholesterol homeostasis in HD 

 

Our findings constitute the first comprehensive sterol analysis in human HD brain tissue, and we 

have identified several alterations to cholesterol homeostasis that were previously not 

identified in mouse models of HD. We have examined late stage human PM tissue (grade IV) and 

therefore the current understanding of cholesterol homeostasis in human HD would benefit 

from analysis of earlier stage HD tissue. However, due to the relatively early onset of HD, and 
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long timeline (Foroud et al., 1999), sufficient early stage cases for a statistically powerful analysis 

are very difficult to obtain (McLean, C. A. 2015, pers. comm., 27 July), and is reflected in the past 

literature where the majority of analyses are carried out in late stage tissue (Augood et al., 1996; 

Arzberger et al., 1997; Petersen et al., 2005; Zuccato et al., 2008; Silvestroni et al., 2009) . 

Measurements of peripheral sterols may therefore be required to confirm these cholesterol 

homeostatic alterations also occur early in HD. 

Currently, methods to directly measure in vivo brain cholesterol synthesis without post-mortem 

tissue examination have not been reported. 24-OHC levels in plasma, which originate from the 

brain, may be an indirect marker of brain cholesterol synthesis. Formation of 24-OHC constitutes 

a major route of cholesterol elimination from the brain (Bjorkhem et al., 1997; Bjorkhem et al., 

1998), and the formation of 24-OHC is believed to be coupled to cholesterol synthesis (Lund et 

al., 2003). The reduction of plasma 24-OHC levels in HD patients has been described in the past 

(Leoni et al., 2008; Leoni et al., 2013), however naturally high variability in 24-OHC plasma 

concentrations between individuals limits the ability of a single time point to fully describe the 

changes occurring over disease progression. A very useful future study would be the 

examination of HD patient plasma in a longitudinal study beginning in the pre-symptomatic 

stage. Tracking changes on an individual basis would help normalise baseline variability in 24-

OHC levels, and improve the power of detection. With highly sensitive analytical techniques, 

only low volumes of plasma are required for analysis (maximum 250 µL) (Leoni et al., 2008); 

plasma measurements of 24-OHC may therefore be a useful biomarker in a prospective 

longitudinal study such as Enroll-HD (CHDI Foundation Inc, 2015).  

Another future direction for cholesterol homeostasis in HD is to carry out an even more 

comprehensive analysis in animal models of HD. Transgenic large animal models with a larger 

brain, may provide an alternative insight into early cholesterol perturbations occurring in human 

HD. However, until these transgenic models that have been generated in sheep (Jacobsen et al., 
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2010), pig (Yang et al., 2010) and rhesus monkey (Yang et al., 2008), are consistently established 

and validated, a closer look at mouse models may be more feasible in the short term. Here we 

have examined a transgenic mouse expressing truncated human HTT. It would therefore be of 

great interest to more closely examine the progression of cholesterol homeostasis in other 

models expressing truncated human HTT [N171-82Q (Schilling et al., 1999)], full length human 

HTT [YAC128 (Slow et al., 2003)], as well as knock-in HD mice [hdhQ92, hdhQ111 (Wheeler et 

al., 1999)] to identify if alterations in cholesterol synthesis and metabolism progress consistently 

across these models. Future studies would also benefit from examining several key synthetic 

and metabolic enzymes we have highlighted as potentially important in our lipid analysis. These 

include CYP27A1, CYP7B1, DHCR24 and CYP46A1. Investigating protein levels in addition to 

mRNA expression would produce additional valuable results as we have previously shown that 

CYP46A1 and DHCR24 protein levels do not reflect mRNA expression in human HD (Chapter 6).  

 

7.6 Conclusion 

 

Due to HTT having multiple roles in a variety of cellular compartments, it is not surprising that 

the HD mutation has been associated with neurodegenerative pathology acting through 

multiple mechanisms. The mutation has also been associated with a cholesterol homeostatic 

perturbation, causing cholesterol synthetic and metabolic dysfunction in multiple rodent and 

cell models. In this study we report the novel reduction of DHCR24 and CYP46A1 in the human 

HD putamen. Measurement of cholesterol synthetic precursors and metabolites in human HD 

post mortem brain tissue also confirms the cholesterol homeostatic perturbation in animal 

models also occurs in human HD. It is not surprising that the R6/1 model and the human HD 

brain do not share all disturbances of cholesterol synthesis and metabolism, however 

predominant changes to the brain specific metabolic product 24-OHC, and accumulation of 

desmosterol are consistent between species and we suggest are important pathways for future 
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investigation. The specific localisation of cholesterol synthetic and metabolic dysfunction to the 

putamen in the human HD brain suggests this may be an early event in HD pathogenesis. 

Similarly, these alterations were also detected earliest and most severely in the striatum of R6/1 

mice. Although we were unable to detect an alteration in the brain sterol profile of R6/1 mice 

treated with EE and dietary BE supplementation, a sex-dependant improvement in motor 

function was seen in both intervention studies, supporting a growing body of evidence that has 

identified sex differences in HD. Both mouse and human tissue have proved valuable in 

identifying cholesterol homeostatic alterations in HD. In addition to this, the mouse model has 

enabled us to identify fundamental age-related changes in both WT and HD mice, adding to the 

currently sparse knowledge of cholesterol synthetic and metabolic changes in the brain during 

ageing. Although investigation of isolated compounds and enzymes tells part of the story, 

further investigation of the fundamental mechanisms surrounding cholesterol synthesis and 

metabolism in the brain will help identify the relevance of these pathways in HD pathogenesis, 

and most likely an array of other neurodegenerative diseases.  
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 Appendices 
 

 

Appendix 1a Absolute values of sterols in male R6/1 and WT cortex and striatum. GC-MS/MS was used 

to analyse lipids extracted from mouse brain tissue at various stages of the disease. Values represent 

ng/mg tissue ± SD. 

 

24, 25 diH = 24, 25 dihydro lanosterol; 7-DHC = 7-dehydrocholesterol; 24-OHC = 24(S)-

hydroxycholesterol; 27-OHC = 27-hydroxycholesterol; 7-KC = 7-ketocholesterol; 7β-OHC = 7β-

hydroxycholesterol. aValues expressed as µg/mg tissue. 

 

 

 

 

 

 Male 

6 week 12 week 20 week 

WT R6/1 WT HD WT R6/1 

St
ri

at
u

m
 

Lathosterol 54.8 ± 5.6 41.7 ± 6.7 43.2 ± 6.2 20.0 ± 4.8 41.6 ± 5.7 17.8 ± 6.1 

Lanosterol 13.6 ± 3.8 13.1 ± 3.6 10.8 ± 1.7 8.3 ± 2.5 13.6 ± 2.7 8.7 ± 3.4 

Zymosterol 5.0 ± 1.3 4.0 ± 0.9 3.2 ± 0.4 2.2 ± 0.4 2.9 ± 0.63 2.2 ± 0.83 

24,25 diH 0.34 ± 0.22 0.39 ± 0.19 0.33 ± 0.09 0.24 ± 0.18 0.26 ± 0.05 0.19 ± 0.06 

Desmosterol 57.0 ± 9.1 57.7 ± 3.8 31.1 ± 9.6 39.7 ± 17.2 35.8 ± 5.1 41.7 ± 12.6 

7-DHC 63.0 ± 15.9 59.0 ± 4.9 43.5 ± 22.4 48.4 ± 21.8 54.3 ± 16.8 46.7 ± 14.6 

24-OHC 48.5 ± 8.7 42.3 ± 4.8 46.8 ± 4.1 39.7 ± 4.1 57.6 ± 11.2 48.6 ± 15.1 

27-OHC 0.039 ± 0.02 0.034 ± 0.01 0.078 ± 0.02 0.051 ± 0.01 0.083 ± 0.03 0.052 ± 0.02 

7-KC 0.67 ± 0.26 0.66 ± 0.29 0.65 ± 0.18 0.65 ± 0.15 0.30 ± 0.003 0.28 ± 0.009 

7β-OHC 0.36 ± 0.12 0.36 ± 0.17 0.45 ± 0.19 0.54 ± 0.27 0.26 ± 0.005 0.26 ± 0.010 

β-Sitosterol 2.8 ± 1.3 2.3 ± 0.19 2.4 ± 0.79 2.7 ± 0.53 2.0 ± 0.23 2.0 ± 0.48 

Campesterol 18.2 ± 2.7 17.9 ± 3.6 16.7 ± 3.1 19.2 ± 1.4 18.7 ± 3.8 18.5 ± 5.7 

Stigmasterol 0.40 ± 0.23 0.31 ± 0.10 0.12 ± 0.08 0.14 ± 0.11 0.24 ± 0.12 0.26 ± 0.11 

Brassicasterol 0.13 ± 0.06 0.11 ± 0.06 0.14 ± 0.08 0.18 ± 0.06 0.15 ± 0.007 0.16 ± 0.006 

Cholesterola 15.1 ± 1.1 13.6 ± 4.3 17.8 ± 3.1 19.9 ± 1.4 21.5 ± 2.6 21.7 ± 6.0 

C
o

rt
ex

 

Lathosterol 33.5 ± 8.7 27.7 ± 11.2 34.7 ± 14.8 14.8 ± 4.1 34.5 ± 10.8 19.5 ± 3.1 

Lanosterol 7.9 ± 1.4 8.3 ± 2.9 7.9 ± 2.7 5.7 ± 1.4 12.3 ± 4.7 7.4 ± 1.7 

Zymosterol 2.4 ± 0.66 2.9 ± 1.1 2.9 ± 0.6 2.5 ± 0.6 2.7 ± 0.6 2.0 ± 0.3 

24,25 diH  0.33 ± 0.06 0.40 ± 0.17 0.32 ± 0.11 0.22 ± 0.07 0.37 ± 0.18 0.32 ± 0.17 

Desmosterol 32.8 ± 14.9 36.8 ± 9.2 34.6 ± 16.3 42.4 ± 16.4 41.9 ± 12.9 47.3 ± 7.3 

7-DHC 39.5 ± 17.2 41.2 ± 9.9 39.9 ± 6.0 40.5 ± 12.0 44.1 ± 6.4 44.5 ± 13.2 

24-OHC 28.4 ± 9.5 27.3 ± 7.5 29.7 ± 7.8 33.5 ± 7.5 40.3 ± 7.7 37.4 ± 9.0 

27-OHC 0.038 ± 0.02 0.030 ± 0.008 0.037 ± 0.01 0.038 ± 0.01 0.099 ± 0.06 0.071 ± 0.03 

7-KC 0.27 ± 0.12 0.32 ± 0.13 0.51 ± 0.04 0.50 ± 0.09 0.37 ± 0.11 0.58 ± 0.16 

7β-OHC 0.14 ± 0.07 0.18 ± 0.10 0.40 ± 0.11 0.35 ± 0.14 0.12 ± 0.03 0.16 ± 0.12 

β-Sitosterol 0.92 ± 0.22 1.56 ± 0.80 1.7 ± 0.33 2.0 ± 0.31 1.7 ± 0.43 2.1 ± 0.44 

Campesterol 14.0 ± 3.5 13.9 ± 4.5 12.8 ± 2.7 14.1 ± 1.8 23.1 ± 7.2 25.2 ± 3.6 

Stigmasterol 0.11 ± 0.03 0.15 ± 0.09 0.11 ± 0.04 0.12 ± 0.08 0.35 ± 0.13 0.42 ± 0.12 

Brassicasterol 0.067 ± 0.02 0.067 ± 0.03 0.13 ± 0.05 0.17 ± 0.04 0.15 ± 0.06 0.16 ± 0.04 

Cholesterola 9.5 ± 2.6 9.2 ± 2.8 13.8 ± 1.8 14.6 ± 2.0 10.5 ± 2.0 12.8 ± 1.4 
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Appendix 1b Absolute values of sterols in male R6/1 and WT cortex and striatum. GC-MS/MS was used 

to analyse lipids extracted from mouse brain tissue at various stages of the disease. Values represent 

ng/mg tissue ± SD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24, 25 diH = 24, 25 dihydro lanosterol; 7-DHC = 7-dehydrocholesterol; 24-OHC = 24(S)-

hydroxycholesterol; 27-OHC = 27-hydroxycholesterol; 7-KC = 7-ketocholesterol; 7β-OHC = 7β-

hydroxycholesterol. aValues expressed as µg/mg tissue. 

 

 

 

 

 

 

 

 

 Male 

24 week 28 week 

WT R6/1 WT R6/1 

St
ri

at
u

m
 

Lathosterol 43.8 ± 10.7 12.6 ± 3.5 31.4 ± 6.0 8.7 ± 2.7 

Lanosterol 12.2 ± 4.0 4.5 ± 1.3 8.9 ± 2.5 4.7 ± 1.7 

Zymosterol 3.5 ± 0.88 1.8 ± 0.36 2.7 ± 0.4 1.5 ± 0.6 

24,25 diH  0.31 ± 0.07 0.20 ± 0.07 0.19 ± 0.09 0.13 ± 0.08 

Desmosterol 39.8 ± 8.1 42.0 ± 4.6 33.0 ± 5.9 40.1 ± 7.3 

7-DHC 37.9 ± 7.0 42.5 ± 12.6 57.3 ± 15.3 68.7 ± 15.3 

24-OHC 53.3 ± 8.5 45.5 ± 5.2 53.7 ± 3.4 40.5 ± 8.3 

27-OHC 0.075 ± 0.012 0.051 ± 0.014 0.043 ± 0.02 0.024 ± 0.01 

7-KC 0.58 ± 0.19 0.52 ± 0.11 0.65 ± 0.29 0.41 ± 0.17 

7β-OHC 0.21 ± 0.06 0.22 ± 0.06 0.28 ± 0.13 0.23 ± 0.11 

β-Sitosterol 2.6 ± 0.31 3.1 ± 0.83 3.3 ± 1.0 3.0 ± 0.47 

Campesterol 21.6 ± 3.1 18.2 ± 2.6 38.1 ± 4.6 33.5 ± 3.9 

Stigmasterol 0.18 ± 0.04 0.25 ± 0.13 0.31 ± 0.17 0.32 ± 0.14 

Brassicasterol 0.27 ± 0.05 0.25 ± 0.05 0.23 ± 0.08 0.27 ± 0.08 

Cholesterola 19.1 ± 1.8 18.9 ± 1.9 19.2 ± 3.0 19.8 ± 3.2 

C
o

rt
ex

 

Lathosterol 32.1 ± 11.9 14.8 ± 3.3 28.8 ± 5.5 14.6 ± 3.1 

Lanosterol 6.7 ± 2.3 4.2 ± 1.2 8.4 ± 1.3 4.6 ± 1.2 

Zymosterol 3.0 ± 1.2 2.7 ± 0.85 2.9 ± 0.30 2.0 ± 0.42 

24,25 diH  0.22 ± 0.07 0.14 ± 0.04 0.32 ± 0.03 0.25 ± 0.09 

Desmosterol 27.0 ± 9.5 33.1 ± 9.4 32.0 ± 8.1 38.0 ± 2.1 

7-DHC 31.0 ± 7.0 30.6 ± 9.9 45.6 ± 7.4 49.7 ± 6.2 

24-OHC 23.6 ± 5.7 26.2 ± 6.7 46.3 ± 6.7 42.4 ± 6.7 

27-OHC 0.034 ± 0.007 0.032 ± 0.011 0.051 ± 0.008 0.044 ± 0.01 

7-KC 0.31 ± 0.08 0.22 ± 0.04 0.86 ± 0.50 1.0 ± 1.05 

7β-OHC 0.12 ± 0.02 0.15 ± 0.07 0.43 ± 0.30 0.20 ± 0.09 

β-Sitosterol 1.8 ± 0.25 2.1 ± 1.2 1.7 ± 0.68 2.0 ± 0.69 

Campesterol 13.6 ± 4.1 11.3 ± 2.6 27.3 ± 5.9 30.0 ± 6.2 

Stigmasterol 0.11 ± 0.02 0.11 ± 0.03 0.27 ± 0.15 0.29 ± 0.16 

Brassicasterol 0.18 ± 0.05 0.17 ± 0.04 0.16 ± 0.05 0.19 ± 0.03 

Cholesterola 11.0 ± 2.1 10.4 ± 1.9 15.4 ± 1.9 17.6 ± 2.9 
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Appendix 2a Absolute values of sterols in female R6/1 and WT cortex and striatum. GC-MS/MS was used 

to analyse lipids extracted from mouse brain tissue at various stages of the disease. Values represent 

ng/mg tissue ± SD. 

 

24, 25 diH = 24, 25 dihydro lanosterol; 7-DHC = 7-dehydrocholesterol; 24-OHC = 24(S)-

hydroxycholesterol; 27-OHC = 27-hydroxycholesterol; 7-KC = 7-ketocholesterol; 7β-OHC = 7β-

hydroxycholesterol. aValues expressed as µg/mg tissue. 

 

 

 

 

 

 

 

 Female 

6 week 12 week 20 week 

WT R6/1 WT R6/1 WT R6/1 

St
ri

at
u

m
 

Lathosterol 58.5 ± 13.7 36.4 ± 8.3 46.6 ± 14.8 19.7 ± 6.6 48.3 ± 4.1 18.7 ± 6.4 

Lanosterol 17.1 ± 6.7 10.2 ± 3.3 14.8 ± 5.9 7.9 ± 2.8 15.2 ± 4.3 8.3 ± 3.4 

Zymosterol 5.1 ± 1.2 3.6 ± 0.93 3.6 ± 1.3 2.1 ± 0.8 3.1 ± 0.74 1.9 ± 0.43 

24,25 diH  0.44 ± 0.22 0.20 ± 0.14 0.51 ± 0.26 0.33 ± 0.20 0.30 ± 0.03 0.21 ± 0.05 

Desmosterol 53.7 ± 9.1 42.9 ± 8.2 47.8 ± 9.1 40.4 ± 6.8 33.0 ± 5.0 41.3 ± 6.5 

7-DHC 70.9 ± 13.2 46.9 ± 5.3 56.8 ± 21.0 52.3 ± 10.6 45.3 ± 16.8 44.0 ± 13.2 

24-OHC 38.1 ± 7.5 34.8 ± 3.6 45.1 ± 4.2 43.1 ± 3.1 56.5 ± 4.7 49.5 ± 7.9 

27-OHC 0.034 ± 0.02 0.030 ± 0.01 0.067 ± 0.01 0.046 ± 0.02 0.071 ± 0.007 0.049 ± 0.12 

7-KC 0.84 ± 0.57 0.33 ± 0.06 0.60 ± 0.21 0.70 ± 0.16 0.33 ± 0.008 0.32 ± 0.008 

7β-OHC 0.35 ± 0.28 0.20 ± 0.05 0.44 ± 0.12 0.57 ± 0.18 0.23 ± 0.004 0.23 ± 0.005 

β-Sitosterol 2.3 ± 0.55 2.1 ± 0.50 2.2 ± 0.60 2.9 ± 0.77 1.9 ± 0.48 1.9 ± 0.27 

Campesterol 15.9 ± 3.3 15.0 ± 2.4 17.1 ± 0.95 17.5 ± 2.6 17.9 ± 5.3 16.5 ± 2.9 

Stigmasterol 0.36 ± 0.15 0.30 ± 0.09 0.13 ± 0.10 0.24 ± 0.09 0.22 ± 0.13 0.26 ± 0.12 

Brassicasterol 0.09 ± 0.05 0.05 ± 0.02 0.12 ± 0.06 0.15 ± 0.03 0.15 ± 0.012 0.018 ± 0.009 

Cholesterola 14.5 ± 1.5 13.1 ± 1.4 19.5 ± 3.5 20.3 ± 1.5 23.3 ± 4.4 24.8 ± 4.1 

C
o

rt
ex

 

Lathosterol 40.2 ± 10.3 26.3 ± 10.4 43.9 ± 9.9 21.2 ± 6.1 41.6 ± 8.8 15.5 ± 6.3 

Lanosterol 9.4 ± 3.5 7.4 ± 1.1 10.4 ± 3.3 7.0 ± 1.5 10.9 ± 2.6 5.5 ± 1.6 

Zymosterol 2.6 ± 0.44 2.7 ± 0.69 3.2 ± 0.6 2.8 ± 0.4 2.4 ± 0.5 1.9 ± 0.6 

24,25 diH  0.45 ± 0.16 0.35 ± 0.08 0.35 ± 0.15 0.24 ± 0.11 0.32 ± 0.08 0.17 ± 0.11 

Desmosterol 29.6 ± 5.1 36.8 ± 10.0 33.6 ± 16.7 47.6 ± 18.6 26.1 ± 7.3 44.0 ± 2.9 

7-DHC 40.6 ± 4.9 39.1 ± 9.4 38.1 ± 6.1 41.8 ± 15.1 42.5 ± 7.3 46.0 ± 16.6 

24-OHC 26.6 ± 4.8 30.9 ± 7.6 30.4 ± 4.8 32.6 ± 2.5 38.7 ± 17.4 37.2 ± 3.6 

27-OHC 0.034 ± 0.008 0.033 ± 0.008 0.044 ± 0.02 0.047 ± 0.01 0.021 ± 0.006 0.017 ± 0.005 

7-KC 0.49 ± 0.18 0.33 ± 0.11 0.49 ± 0.17 0.46 ± 0.18 0.46 ± 0.22 0.51 ± 0.25 

7β-OHC 0.24 ± 0.12 0.22 ± 0.14 0.37 ± 0.17 0.37 ± 0.12 0.15 ± 0.06 0.16 ± 0.04 

β-Sitosterol 1.6 ± 0.79 1.2 ± 0.54 1.9 ± 0.45 1.9 ± 0.62 1.4 ± 0.21 1.5 ± 0.52 

Campesterol 13.4 ± 2.1 11.7 ± 1.7 15.5 ± 3.3 12.9 ± 2.7 26.0 ± 8.4 21.5 ± 4.6 

Stigmasterol 0.29 ± 0.20 0.20 ± 0.12 0.17 ± 0.10 0.18 ± 0.08 0.27 ± 0.07 0.30 ± 0.14 

Brassicasterol 0.058 ± 0.009 0.049 ± 0.005 0.14 ± 0.05 0.11 ± 0.02 0.14 ± 0.05 0.13 ± 0.03 

Cholesterola 10.9 ± 2.1 9.1 ± 2.4 16.6 ± 2.7 15.3 ± 2.3 12.2 ± 2.9 10.9 ± 1.9 
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Appendix 2b Absolute values of sterols in female R6/1 and WT cortex and striatum. GC-MS/MS was used 

to analyse lipids extracted from mouse brain tissue at various stages of the disease. Values represent 

ng/mg tissue ± SD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24, 25 diH = 24, 25 dihydro lanosterol; 7-DHC = 7-dehydrocholesterol; 24-OHC = 24(S)-

hydroxycholesterol; 27-OHC = 27-hydroxycholesterol; 7-KC = 7-ketocholesterol; 7β-OHC = 7β-

hydroxycholesterol. aValues expressed as µg/mg tissue. 

 

 

 

 

 

 

 

 Female 

24 week 28 week 

WT R6/1 WT R6/1 

St
ri

at
u

m
 

Lathosterol 33.5 ± 8.9 17.7 ± 6.8 36.4 ± 7.8 5.7 ± 1.9 

Lanosterol 9.8 ± 4.3 6.4 ± 1.9 13.3 ± 3.0 2.7 ± 1.4 

Zymosterol 3.0 ± 1.2 2.3 ± 0.98 2.7 ± 0.3 1.1 ± 0.8 

24,25 diH  0.33 ± 0.012 0.23 ± 0.05 0.21 ± 0.12 0.04 ± 0.03 

Desmosterol 37.0 ± 6.7 45.1 ± 5.4 33.4 ± 5.1 39.4 ± 4.0 

7-DHC 42.9 ± 14.0 47.7 ± 16.6 56.5 ± 10.8 55.4 ± 16.1 

24-OHC 46.5 ± 5.6 43.6 ± 7.4 61.9 ± 6.8 49.3 ± 4.6 

27-OHC 0.078 ± 0.02 0.056 ± 0.008 0.058 ± 0.02 0.028 ± 0.009 

7-KC 0.49 ± 0.18 0.57 ± 0.19 0.38 ± 0.05 0.57 ± 0.19 

7β-OHC 0.20 ± 0.07 0.24 ± 0.06 0.20 ± 0.07 0.25 ± 0.13 

β-Sitosterol 2.4 ± 0.62 3.4 ± 0.79 2.6 ± 0.31 3.3 ± 0.31 

Campesterol 15.7 ± 2.3 21.1 ± 4.5 30.1 ± 8.4 31.6 ± 4.7 

Stigmasterol 0.19 ± 0.07 0.29 ± 0.1 0.31 ± 0.09 0.55 ± 0.27 

Brassicasterol 0.18 ± 0.03 0.27 ± 0.04 0.20 ± 0.02 0.23 ± 0.09 

Cholesterola 16.4 ± 1.5 18.0 ± 2.8 20.67 ± 1.7 20.4 ± 1.6 

C
o

rt
ex

 

Lathosterol 31.8 ± 7.9 15.6 ± 1.7 30.6 ± 6.1 15.3 ± 4.0 

Lanosterol 9.5 ± 2.2 4.6 ± 0.99 9.6 ± 0.94 5.3 ± 1.7 

Zymosterol 3.8 ± 0.94 2.7 ± 0.65 2.8 ± 0.50 2.0 ± 0.48 

24,25 diH  0.27 ± 0.07 0.14 ± 0.05 0.32 ± 0.05 0.23 ± 0.04 

Desmosterol 34.8 ± 12.5 39.5 ± 12.2 32.8 ± 7.9 38.5 ± 4.3 

7-DHC 24.1 ± 7.5 31.3 ± 11.3 49.2 ± 5.5 50.4 ± 9.6 

24-OHC 38.5 ± 9.5 32.9 ± 5.8 45.8 ± 10.9 37.8 ± 3.7 

27-OHC 0.060 ± 0.03 0.039 ± 0.01 0.055 ± 0.007 0.033 ± 0.007 

7-KC 0.33 ± 0.10 0.35 ± 0.11 0.91 ± 0.62 0.78 ± 0.68 

7β-OHC 0.11 ± 0.02 0.18 ± 0.06 0.35 ± 0.35 0.23 ± 0.11 

β-Sitosterol 2.0 ± 0.75 1.9 ± 0.36 1.5 ± 0.40 1.4 ± 0.28 

Campesterol 12.1 ± 3.6 13.9 ± 2.0 23.1 ± 7.8 23.1 ± 3.8 

Stigmasterol 0.19 ± 0.08 0.13 ± 0.07 0.24 ± 0.09 0.21 ± 0.06 

Brassicasterol 0.14 ± 0.05 0.16 ± 0.01 0.14 ± 0.05 0.14 ± 0.03 

Cholesterola 11.8 ± 3.04 10.9 ± 1.7 15.5 ± 1.8 15.2 ± 3.1 
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Appendix 3a Absolute values of sterols measured in combined sexes R6/1 and WT cortex and striatum. 

GC-MS/MS was used to analyse lipids extracted from mouse brain tissue at various stages of the disease. 

Values represent ng/mg tissue ± SD. 

 

24, 25 diH = 24, 25 dihydro lanosterol; 7-DHC = 7-dehydrocholesterol; 24-OHC = 24(S)-

hydroxycholesterol; 27-OHC = 27-hydroxycholesterol; 7-KC = 7-ketocholesterol; 7β-OHC = 7β-

hydroxycholesterol. aValues expressed as µg/mg tissue. 

 

 

 

 

 

 

 

 Combined sexes 

6 week 12 week 20 week 

WT R6/1 WT R6/1 WT R6/1 

St
ri

at
u

m
 

Lathosterol 56.5 ± 9.6 38.8 ± 7.8 45.0 ± 11.3 19.8 ± 5.6 44.6 ± 6.0 18.3 ± 5.9 

Lanosterol 15.2 ± 5.4 11.5 ± 3.6 12.9 ± 4.8 8.1 ± 2.5 14.3 ± 3.4 8.5 ± 3.2 

Zymosterol 5.0 ± 1.2 3.8 ± 0.88 3.5 ± 0.9 2.2 ± 0.6 3.0 ± 0.65 2.0 ± 0.65 

24,25 diH 0.38 ± 0.21 0.29 ± 0.19 0.44 ± 0.22 0.29 ± 0.19 0.28 ± 0.05 0.20 ± 0.05 

Desmosterol 55.5 ± 8.9 49.6 ± 9.9 40.2 ± 12.4 40.1 ± 11.9 34.5 ± 5.0 41.5 ± 9.5 

7-DHC 66.6 ± 14.7 52.2 ± 7.8 50.8 ± 21.6 50.5 ± 15.8 50.2 ± 16.6 45.2 ± 13.2 

24-OHC 43.7 ± 9.5 38.2 ± 5.6 45.5 ± 4.1 41.0 ± 3.6 57.1 ± 8.5 49.1 ± 11.4 

27-OHC 0.037 ± 0.02 0.033 ± 0.01 0.071 ± 0.02 0.047 ± 0.01 0.77 ± 0.02 0.51 ± 0.15 

7-KC 0.74 ± 0.40 0.48 ± 0.26 0.59 ± 0.17 0.67 ± 0.15 0.032 ± 0.006 0.030 ± 0.008 

7β-OHC 0.36 ± 0.19 0.27 ± 0.14 0.42 ± 0.15 0.54 ± 0.22 0.24 ± 0.005 0.025 ± 0.007 

β-Sitosterol 2.6 ± 1.0 2.2 ± 0.39 2.2 ± 0.66 2.7 ± 0.62 1.9 ± 0.35 1.9 ± 0.37 

Campesterol 17.2 ± 3.1 16.3 ± 3.2 16.9 ± 2.2 18.4 ± 2.3 18.3 ± 4.3 17.5 ± 4.4 

Stigmasterol 0.38 ± 0.19 0.31 ± 0.09 0.12 ± 0.09 0.18 ± 0.11 0.23 ± 0.12 0.26 ± 0.12 

Brassicasterol 0.11 ± 0.06 0.079 ± 0.05 0.14 ± 0.06 0.17 ± 0.05 0.15 ± 0.010 0.17 ± 0.007 

Cholesterola 14.8 ± 1.3 13.3 ± 2.9 18.5 ± 3.4 19.9 ± 1.3 22.3 ± 3.5 23.3 ± 5.2 

C
o

rt
ex

 

Lathosterol 36.6 ± 9.7 27.0 ± 10.2 39.7 ± 9.3 18.3 ± 6.1 35.8 ± 9.5 17.5 ± 5.1 

Lanosterol 8.6 ± 2.6 7.8 ± 2.0 9.2 ± 3.2 6.4 ± 1.5 7.7 ± 2.4 4.5 ± 1.3 

Zymosterol 2.5 ± 0.55 2.8 ± 0.84 3.0 ± 0.6 2.7 ± 0.5 2.5 ± 0.4 1.9 ± 0.4 

24,25 diH 0.39 ± 0.12 0.37 ± 0.12 0.34 ± 0.13 0.23 ± 0.09 0.32 ± 0.12 0.25 ± 0.15 

Desmosterol 31.3 ± 11.2 36.6 ± 9.2 34.1 ± 15.7 45.3 ± 17.0 35.3 ± 14.0 45.7 ± 5.5 

7-DHC 40.0 ± 12.6 40.1 ± 9.2 42.8 ± 6.4 45.3 ± 14.4 43.3 ± 6.5 45.3 ± 14.4 

24-OHC 27.5 ± 7.5 29.3 ± 7.5 30.1 ± 6.0 33.0 ± 5.1 39.6 ± 13.0 37.3 ± 6.5 

27-OHC 0.036 ± 0.01 0.032 ± 0.007 0.041 ± 0.01 0.043 ± 0.01 0.047 ± 0.04 0.044 ± 0.03 

7-KC 0.37 ± 0.18 0.33 ± 0.11 0.50 ± 0.12 0.48 ± 0.14 0.41 ± 0.17 0.54 ± 0.20 

7β-OHC 0.19 ± 0.11 0.20 ± 0.12 0.38 ± 0.14 0.36 ± 0.13 0.13 ± 0.045 0.16 ± 0.033 

β-Sitosterol 1.2 ± 0.63 1.1 ± 0.45 1.85 ± 0.40 1.94 ± 0.49 1.5 ± 0.34 1.8 ± 0.57 

Campesterol 13.7 ± 2.8 12.7 ± 3.3 14.3 ± 3.2 13.5 ± 2.3 23.6 ± 7.4 23.3 ± 4.3 

Stigmasterol 0.19 ± 0.16 0.18 ± 0.11 0.14 ± 0.08 0.15 ± 0.08 0.30 ± 0.12 0.36 ± 0.14 

Brassicasterol 0.063 ± 0.01 0.057 ± 0.02 0.14 ± 0.05 0.14 ± 0.04 0.14 ± 0.07 0.15 ± 0.05 

Cholesterola 10.1 ± 2.4 9.2 ± 2.5 15.4 ± 2.7 15.0 ± 2.1 11.0 ± 2.5 11.9 ± 1.7 
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Appendix 3b Absolute values of sterols measured in combined sexes R6/1 and WT cortex and striatum. 

GC-MS/MS was used to analyse lipids extracted from mouse brain tissue at various stages of the disease. 

Values represent ng/mg tissue ± SD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24, 25 diH  = 24, 

25 dihydro lanosterol; 7-DHC = 7-dehydrocholesterol; 24-OHC = 24(S)-hydroxycholesterol; 27-OHC = 27-

hydroxycholesterol; 7-KC = 7-ketocholesterol; 7β-OHC = 7β-hydroxycholesterol. aValues expressed as 

µg/mg tissue. 

 

 

 

 

 

 

 

 

 Combined sexes 

24 week 28 week 

WT R6/1 WT R6/1 

St
ri

at
u

m
 

Lathosterol 38.6 ± 10.7 14.9 ± 5.6 33.9 ± 7.0 7.2 ± 2.7 

Lanosterol 11.0 ± 4.1 5.4 ± 1.9 11.1 ± 3.5 3.7 ± 1.8 

Zymosterol 3.7 ± 1.0 2.0 ± 0.71 2.7 ± 0.33 1.3 ± 0.72 

24,25 diH  0.32 ± 0.09 0.21 ± 0.06 0.20 ± 0.10 0.090 ± 0.08 

Desmosterol 38.4 ± 7.2 43.4 ± 5.0 33.2 ± 5.2 39.8 ± 5.6 

7-DHC 40.4 ± 10.8 44.9 ± 14.0 56.9 ± 12.8 62.2 ± 16.4 

24-OHC 49.9 ± 7.7 44.6 ± 6.0 57.8 ± 6.7 44.9 ± 7.8 

27-OHC 0.076 ± 0.02 0.053 ± 0.01 0.051 ± 0.02 0.026 ± 0.01 

7-KC 0.53 ± 0.18 0.54 ± 0.15 0.52 ± 0.24 0.49 ± 0.19 

7β-OHC 0.21 ± 0.06 0.23 ± 0.06 0.24 ± 0.11 0.24 ± 0.11 

β-Sitosterol 2.5 ± 0.47 3.2 ± 0.78 2.9 ± 0.77 3.1 ± 0.40 

Campesterol 18.7 ± 4.0 19.5 ± 3.7 34.1 ± 7.6 32.6 ± 4.2 

Stigmasterol 0.19 ± 0.05 0.26 ± 0.12 0.31 ± 0.13 0.44 ± 0.24 

Brassicasterol 0.22 ± 0.06 0.26 ± 0.05 0.22 ± 0.06 0.25 ± 0.08 

Cholesterola 17.8 ± 2.1 18.5 ± 2.3 20.0 ± 2.4 20.1 ± 2.4 

C
o

rt
ex

 

Lathosterol 31.9 ± 9.5 15.2 ± 2.6 29.7 ± 5.6 15.0 ± 3.5 

Lanosterol 8.1 ± 2.6 4.4 ± 1.1 9.0 ± 1.2 5.0 ± 1.4 

Zymosterol 3.4 ± 1.1 2.7 ± 0.73 2.9 ± 0.39 2.0 ± 0.42 

24,25 diH  0.24 ± 0.06 0.14 ± 0.04 0.32 ± 0.04 0.24 ± 0.07 

Desmosterol 30.9 ± 11.2 36.0 ± 10.7 32.4 ± 7.5 38.3 ± 3.2 

7-DHC 27.6 ± 7.7 30.9 ± 10.0 47.4 ± 6.4 50.0 ± 7.6 

24-OHC 31.0 ± 10.8 29.2 ± 6.9 46.1 ± 8.5 40.1 ± 5.6 

27-OHC 0.047 ± 0.02 0.035 ± 0.01 0.053 ± 0.007 0.039 ± 0.01 

7-KC 0.32 ± 0.08 0.29 ± 0.11 0.88 ± 0.53 0.90 ± 84 

7β-OHC 0.11 ± 0.02 0.16 ± 0.07 0.40 ± 0.30 0.22 ± 0.09 

β-Sitosterol 1.9 ± 0.55 2.0 ± 0.90 1.6 ± 0.54 1.7 ± 0.57 

Campesterol 12.9 ± 3.7 12.5 ± 2.6 25.2 ± 6.9 26.6 ± 6.1 

Stigmasterol 0.15 ± 0.07 0.12 ± 0.05 0.25 ± 0.12 0.25 ± 0.12 

Brassicasterol 0.16 ± 0.05 0.16 ± 0.03 0.15 ± 0.05 0.16 ± 0.03 

Cholesterola 11.4 ± 2.5 10.7 ± 1.7 15.5 ± 1.7 16.4 ± 3.1 
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Appendix 4 Absolute concentration of sterols measured in the cortex and striatum of male 

R6/1 and WT mice treated with environmental enrichment.  GC-MS/MS was used to analyse 

lipids extracted from mouse brain tissue. Mice were house in either standard (control) or 

environmentally enriched (EE) housing.  Values represent ng/mg tissue ± SD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24, 25 diH = 24, 25 dihydro lanosterol; 7-DHC = 7-dehydrocholesterol; 24-OHC = 24(S)-

hydroxycholesterol; 27-OHC = 27-hydroxycholesterol; 7-KC = 7-ketocholesterol; 7β-OHC = 7β-

hydroxycholesterol. aValues expressed as µg/mg tissue. 

 

 

 

 

 

 

 

 

 Male 
Control EE 

WT R6/1 WT R6/1 

St
ri

at
u

m
 

Lathosterol 32.1 ± 5.3 9.1 ± 2.2 27.4 ± 3.8 9.5 ± 3.4 

Lanosterol 13.9 ± 1.7 4.4 ± 1.6 12.1 ± 3.7 4.9 ± 2.3 

Zymosterol 2.4 ± 0.29 1.3 ± 0.32 2.4 ± 0.24 1.4 ± 0.47 

24,25 diH  0.23 ± 0.03 0.11 ± 0.02 0.25 ± 0.05 0.14 ± 0.04 

Desmosterol 40.1 ± 3.2 45.9 ± 6.0 40.0 ± 7.1 46.5 ± 8.6 

7-DHC 43.4 ± 12.7 47.2 ± 20.3 37.3 ± 9.7 47.3 ± 13.7 

24-OHC 61.0 ± 1.2 60.7 ± 6.6 60.3 ± 7.3 57.1 ± 8.1 

27-OHC 0.067 ± 0.005 0.051 ± 0.01 0.061 ± 0.006 0.050 ± 0.006 

7-KC 0.55 ± 0.06 0.67 ± 0.40 0.73 ± 0.36 0.61 ± 0.16 

7β-OHC 0.22 ± 0.05 0.31 ± 0.09 0.23 ± 0.07 0.26 ± 0.06 

β-Sitosterol 2.5 ± 0.51 2.8 ± 0.46 2.0 ± 0.36 2.5 ± 0.52 

Campesterol 33.9 ± 4.3 37.5 ± 5.7 27.6 ± 6.7 33.2 ± 7.4 

Stigmasterol 0.21 ± 0.08 0.27 ± 0.08 0.15 ± 0.03 0.20 ± 0.07 

Brassicasterol 0.33 ± 0.06 0.35 ± 0.04 0.28 ± 0.05 0.35 ± 0.06 

Cholesterola 21.5 ± 3.6 24.4 ± 3.8 16.9 ± 2.4 21.3 ± 2.8 

C
o

rt
ex

 

Lathosterol 25.2 ± 3.6 14.9 ± 4.5 29.3 ± 7.3 13.7 ± 3.6 

Lanosterol 10.9 ± 2.2 7.9 ± 2.3 12.6 ± 3.2 6.7 ± 1.7 

Zymosterol 3.3 ± 0.70 2.7 ± 0.35 3.3 ± 0.66 2.3 ± 0.34 

24,25 diH  0.19 ± 0.15 0.095 ± 0.079 0.21 ± 0.076 0.069 ± 0.031 

Desmosterol 34.8 ± 13.1 41.7 ± 9.6 40.7 ± 11.4 38.4 ± 3.6 

7-DHC 36.2 ± 9.7 50.1 ± 8.0 50.0 ± 34.1 48.6 ± 21.3 

24-OHC 37.5 ± 10.2 34.2 ± 5.1 44.1 ± 8.4 33.1 ± 4.3 

27-OHC 0.029 ±  0.016 0.035 ±  0.007 0.059 ±  0.017 0.028 ±  0.017 

7-KC 0.50 ± 0.16 0.67 ± 0.19 0.48 ± 0.12 0.46 ± 0.17 

7β-OHC 0.36 ± 0.12 0.42 ± 0.10 0.28 ± 0.09 0.27 ± 0.09 

β-Sitosterol 2.3 ± 0.45 3.1 ± 0.77 2.6 ± 0.72 2.7 ± 0.66 

Campesterol 20.2 ± 5.6 28.1 ± 8.2 24.4 ± 9.1 23.2 ± 2.9 

Stigmasterol 0.25 ± 0.10 0.38 ± 0.15 0.29 ± 0.11 0.27 ± 0.10 

Brassicasterol 0.18 ± 0.06 0.24 ± 0.13 0.24 ± 0.07 0.22 ± 0.06 

Cholesterola 13.7 ±  4.1 18.1 ±  2.8 16.5 ±  1.8 15.8 ±  2.3 
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Appendix 5 Absolute concentration of sterols measured in the cortex and striatum of female 

R6/1 and WT mice treated with environmental enrichment.  GC-MS/MS was used to analyse 

lipids extracted from mouse brain tissue. Mice were house in either standard (control) or 

environmentally enriched (EE) housing.  Values represent ng/mg tissue ± SD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24, 25 diH = 24, 25 dihydro lanosterol; 7-DHC = 7-dehydrocholesterol; 24-OHC = 24(S)-

hydroxycholesterol; 27-OHC = 27-hydroxycholesterol; 7-KC = 7-ketocholesterol; 7β-OHC = 7β-

hydroxycholesterol. aValues expressed as µg/mg tissue. 

 

 

 

 

 

 

 

 

 Female 
Control EE 

WT R6/1 WT R6/1 

St
ri

at
u

m
 

Lathosterol 31.8 ± 11.4 10.4 ± 3.3 36.7 ± 10.8 12.6 ± 3.7 

Lanosterol 15.1 ± 5.6 7.8 ± 4.0 16.5 ± 8.1 7.8 ± 2.8 

Zymosterol 2.9 ± 1.0 1.9 ± 0.79 2.8 ± 0.68 1.7 ± 0.65 

24,25 diH  0.35 ± 0.14 0.20 ± 0.07 0.34 ± 0.17 0.12 ± 0.02 

Desmosterol 42.6 ± 4.6 50.0 ± 12.4 42.4 ± 6.2 50.3 ± 5.6 

7-DHC 50.1 ± 21.1 45.4 ± 12.8 46.4 ± 20.7 50.8 ± 12.5 

24-OHC 65.7 ± 4.9 65.7 ± 13.1 69.2 ± 7.7 61.0 ± 5.1 

27-OHC 0.070 ± 0.01 0.055 ± 0.01 0.077 ± 0.02 0.053 ± 0.009 

7-KC 0.62 ± 0.18 0.55 ± 0.14 0.52 ± 0.08 0.57 ± 0.09 

7β-OHC 0.25 ± 0.09 0.26 ± 0.07 0.26 ± 0.06 0.31 ± 0.05 

β-Sitosterol 2.2 ± 0.46 2.6 ± 0.45 2.4 ± 0.69 2.7 ± 0.37 

Campesterol 32.7 ± 5.4 35.7 ± 4.2 30.7 ± 8.3 37.6 ± 5.9 

Stigmasterol 0.18 ± 0.06 0.27 ± 0.09 0.22 ± 0.1.2 0.28 ± 0.09 

Brassicasterol 0.30 ± 0.07 0.34 ± 0.04 0.28 ± 0.04 0.33 ± 0.05 

Cholesterola 21.9 ± 3.9 24.5 ± 2.9 23.8 ± 3.1 24.3 ± 3.4 

C
o

rt
ex

 

Lathosterol 31.9 ± 11.2 11.9 ± 1.5 29.0 ± 9.3 12.0 ± 3.2 

Lanosterol 13.7 ± 5.3 7.6 ± 1.9 10.8 ± 3.2 6.8 ± 2.3 

Zymosterol 3.1 ± 0.44 2.1 ± 0.55 3.0 ± 0.66 2.0 ± 0.51 

24,25 diH  0.21 ± 0.16 0.036 ± 0.010 0.20 ± 0.11 0.093 ± 0.10 

Desmosterol 32.0 ± 7.1 35.5 ± 8.8 30.6 ± 7.9 39.4 ± 2.8 

7-DHC 46.7 ± 23.6 38.3 ± 17.6 34.9 ± 6.9 46.9 ± 21.1 

24-OHC 38.9 ± 5.4 34.0 ± 5.2 38.7 ± 10.5 37.7 ± 5.3 

27-OHC 0.038 ±  0.02 0.031 ±  0.02 0.037 ±  0.01 0.038 ±  0.01 

7-KC 0.66 ± 0.06 0.41 ± 0.12 0.43 ± 0.09 0.54 ± 0.22 

7β-OHC 0.31 ± 0.04 0.19 ± 0.02 0.24 ± 0.08 0.29 ± 0.11 

β-Sitosterol 2.4 ± 0.22 2.6 ± 0.31 2.7 ± 0.80 2.7 ± 0.30 

Campesterol 20.1 ± 4.9 20.3 ± 4.1 18.6 ± 7.3 26.4 ± 6.4 

Stigmasterol 0.26 ± 0.03 0.26 ± 0.06 0.27 ± 0.13 0.027 ± 0.04 

Brassicasterol 0.21 ± 0.08 0.25 ± 0.06 0.18 ± 0.09 0.21 ± 0.05 

Cholesterola 15.3 ±  1.3 14.7 ±  1.4 15.4 ±  2.8 14.8 ±  1.6 
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Appendix 6 Absolute concentration of sterols measured in the cortex and striatum of 

combined sexes R6/1 and WT mice treated with environmental enrichment.  GC-MS/MS was 

used to analyse lipids extracted from mouse brain tissue. Mice were house in either standard (control) 

or environmentally enriched (EE) housing.  Values represent ng/mg tissue ± SD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24, 25 diH = 24, 25 dihydro lanosterol; 7-DHC = 7-dehydrocholesterol; 24-OHC = 24(S)-

hydroxycholesterol; 27-OHC = 27-hydroxycholesterol; 7-KC = 7-ketocholesterol; 7β-OHC = 7β-

hydroxycholesterol. aValues expressed as µg/mg tissue. 

 

 

 

 

 

 

 

 

 Combined sexes 
Control EE 

WT R6/1 WT R6/1 

St
ri

at
u

m
 

Lathosterol 32.0 ± 9.1 9.6 ± 2.7 32.1 ± 8.4 11.0 ± 3.8 

Lanosterol 14.5 ± 6.4 6.1 ± 3.4 14.3 ± 4.1 6.4 ± 2.9 

Zymosterol 2.7 ± 0.52 1.6 ± 0.65 2.6 ± 0.73 1.5 ± 0.57 

24,25 diH  0.29 ± 0.13 0.16 ± 0.07 0.30 ± 0.11 0.13 ± 0.03 

Desmosterol 41.7 ± 6.4 47.9 ± 9.4 41.2 ± 3.9 48.4 ± 7.2 

7-DHC 47.0 ± 18.1 46.3 ± 13.0 41.9 ± 18.2 49.0 ± 16.0 

24-OHC 63.4 ± 4.2 63.2 ± 10.1 64.8 ± 8.6 59.1 ± 6.8 

27-OHC 0.069 ± 0.008 0.053 ± 0.01 0.069 ± 0.02 0.051 ± 0.008 

7-KC 0.59 ± 0.13 0.60 ± 0.27 0.62 ± 0.27 0.60 ± 0.13 

7β-OHC 0.24 ± 0.07 0.29 ± 0.08 0.25 ± 0.06 0.28 ± 0.06 

β-Sitosterol 2.3 ± 0.51 2.7 ± 0.44 2.2 ± 0.57 2.6 ± 0.43 

Campesterol 33.3 ± 4.7 36.6 ± 4.8 29.2 ± 7.4 35.5 ± 6.8 

Stigmasterol 0.19 ± 0.07 0.27 ± 0.08 0.19 ± 0.09 0.24 ± 0.08 

Brassicasterol 0.32 ± 0.06 0.34 ± 0.04 0.28 ± 0.04 0.34 ± 0.05 

Cholesterola 21.7 ± 3.6 24.5 ± 3.2 20.3 ± 4.4 22.8 ± 3.4 

C
o

rt
ex

 

Lathosterol 28.6 ± 8.7 13.4 ± 3.5 29.2 ± 7.9 12.9 ± 3.4 

Lanosterol 12.3 ± 4.2 7.8 ± 2.0 11.8 ± 3.2 6.7 ± 1.9 

Zymosterol 3.2 ± 0.58 2.4 ± 0.52 3.2 ± 0.66 2.2 ± 0.44 

24,25 diH  0.20 ± 0.15 0.066 ± 0.06 0.21 ± 0.09 0.080 ± 0.068 

Desmosterol 33.4 ± 10.1 38.6 ± 9.3 35.6 ± 10.8 38.9 ± 3.2 

7-DHC 41.4 ± 18.0 44.2 ± 14.3 42.4 ± 24.7 47.8 ± 20.2 

24-OHC 38.2 ± 7.8 34.1 ± 4.9 41.4 ± 9.6 35.4 ± 5.2 

27-OHC 0.033 ±  0.02 0.033 ±  0.013 0.047 ±  0.017 0.033 ±  0.014 

7-KC 0.57 ± 0.15 0.55 ± 0.20 0.45 ± 0.10 0.49 ± 0.19 

7β-OHC 0.33 ± 0.09 0.32 ± 0.14 0.26 ± 0.08 0.28 ± 0.09 

β-Sitosterol 2.3 ± 0.34 2.9 ± 0.62 2.6 ± 0.73 2.7 ± 0.50 

Campesterol 20.1 ± 5.0 24.2 ± 7.4 21.5 ± 8.4 24.8 ± 5.1 

Stigmasterol 0.25 ± 0.07 0.32 ± 0.12 0.28 ± 0.12 0.27 ± 0.07 

Brassicasterol 0.19 ± 0.07 0.25 ± 0.10 0.21 ± 0.08 0.21 ± 0.05 

Cholesterola 14.5 ±  3.0 16.4 ±  2.7 15.9 ±  2.4 15.3 ±  1.9 
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Appendix 7 Absolute concentration of sterols measured in the cortex and striatum of male 

R6/1 and WT mice receiving dietary supplementation.  GC-MS/MS was used to analyse lipids 

extracted from mouse brain tissue. Mice received either control or berry extract (BE) supplemented 

diets. Values represent ng/mg tissue ± SD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24, 25 diH = 24, 25 dihydro lanosterol; 7-DHC = 7-dehydrocholesterol; 24-OHC = 24(S)-

hydroxycholesterol; 27-OHC = 27-hydroxycholesterol; 7-KC = 7-ketocholesterol; 7β-OHC = 7β-

hydroxycholesterol. aValues expressed as µg/mg tissue. 

 

 

 

 

 

 

 

 

 Male 
Control BE 

WT R6/1 WT R6/1 

St
ri

at
u

m
 

Lathosterol 33.9 ± 7.7 12.2 ± 5.2 34.1 ± 11.9 9.7 ± 2.7 

Lanosterol 13.8 ± 4.6  7.1 ± 2.8 13.1 ± 5.9 4.5 ± 1.9 

Zymosterol 2.2 ± 0.7 1.4 ± 0.6 2.5 ± 0.6 1.1 ± 0.6 

24,25 diH  0.25 ± 0.11 0.11 ± 0.05 0.21 ± 0.01 0.13 ± 0.07 

Desmosterol 41.6 ± 5.4 40.9 ± 8.9 43.4 ± 8.1 42.2 ± 5.9 

7-DHC 49.5 ± 21.9 68.4 ± 31.4 65.5 ± 15.4 72.5 ± 16.1 

24-OHC 64.5 ± 3.3 55.5 ± 13.8 67.5 ± 5.5 58.5 ± 3.8 

27-OHC 0.078 ± 0.009 0.044 ± 0.017 0.078 ± 0.013 0.048 ± 0.010 

7-KC 0.56 ± 0.31 1.36 ± 1.1 1.04 ± 0.57 1.60 ± 0.97 
7β-OHC 0.32 ± 0.13 0.52 ± 0.20 0.59 ± 0.26 0.87 ± 0.45 
β-Sitosterol 3.8 ± 0.7 4.5 ± 0.9 4.3 ± 0.8 4.5 ± 1.2 
Campesterol 40.9 ± 7.7 39.4 ± 5.3 42.2 ± 11.9 41.5 ± 12.0 
Stigmasterol 0.48 ± 0.13 0.59 ± 0.16 0.50 ± 0.08 0.59 ± 0.18 
Brassicasterol 0.44 ± 0.09 0.42 ± 0.08 0.45 ± 0.11 0.44 ± 0.07 
Cholesterola 15.5 ± 1.2 15.8 ± 1.8 16.6 ± 2.3 16.8 ± 1.6 

C
o

rt
ex

 

Lathosterol 36.6 ± 5.2 16.9 ± 3.5 27.4 ± 5.0 14.8 ± 4.4 
Lanosterol 11.8 ± 1.5 7.8 ± 1.9 10.1 ± 2.7 7.1 ± 3.1 
Zymosterol 2.0 ± 0.7 2.5 ± 1.4 1.7 ± 0.9 3.0 ± 1.3 
24,25 diH  0.22 ± 0.12 0.10 ± 0.05 0.16 ± 0.04 0.09 ± 0.03 
Desmosterol 32.0 ± 7.2 34.0 ± 5.7 39.2 ± 11.1 42.5 ± 11.2 
7-DHC 49.8 ± 17.1 53.8 ± 15.7 46.4 ± 12.0 50.3 ± 9.7 
24-OHC 53.3 ± 11.2 49.8 ± 10.9 57.7 ± 15.8 47.9 ± 8.1 
27-OHC 0.051 ± 

0.015 
0.031 ± 
0.010 

0.047 ± 
0.010 

0.027 ± 
0.008 7-KC 0.42 ± 0.11 0.36 ± 0.10 0.41 ± 0.14 0.37 ± 0.13 

7β-OHC 0.21 ± 0.08 0.22 ± 0.08 0.21 ± 0.07 0.19 ± 0.04 
β-Sitosterol 2.4 ± 0.58 2.4 ± 0.31 1.9 ± 0.38 2.0 ± 0.17 
Campesterol 39.7 ± 5.2 36.9 ± 8.0 35.1 ± 7.4 37.0 ± 8.8 
Stigmasterol 0.26 ± 0.13 0.26 ± 0.05 0.20 ± 0.08 0.23 ± 0.05 
Brassicasterol 0.40 ± 0.06 0.39 ± 0.21 0.38 ± 0.12 0.40 ± 0.13 
Cholesterola 12.7 ± 1.8 13.0 ± 2.0 13.6 ± 1.4 13.8 ± 1.8 
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Appendix 8 Absolute concentration of sterols measured in the cortex and striatum of female 

R6/1 and WT mice receiving dietary supplementation.  GC-MS/MS was used to analyse lipids 

extracted from mouse brain tissue. Mice received either control or berry extract (BE) supplemented 

diets. Values represent ng/mg tissue ± SD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24, 25 diH = 24, 25 dihydro lanosterol; 7-DHC = 7-dehydrocholesterol; 24-OHC = 24(S)-

hydroxycholesterol; 27-OHC = 27-hydroxycholesterol; 7-KC = 7-ketocholesterol; 7β-OHC = 7β-

hydroxycholesterol. aValues expressed as µg/mg tissue. 

 

 

 

 

 

 

 

 

 Female 
Control BE 

WT R6/1 WT R6/1 

St
ri

at
u

m
 

Lathosterol 32.3 ± 9.2 11.3 ± 3.9 32.6 ± 8.9 11.6 ± 3.4 

Lanosterol 11.8 ± 5.1 5.7 ± 2.7 11.5 ± 4.2 6.6 ± 2.7 

Zymosterol 2.4 ± 0.8  1.3 ± 0.3 2.3 ± 0.8 1.4 ± 0.4 

24,25 diH  0.23 ± 0.09 0.17 ± 0.08 0.24 ± 0.15 0.14 ± 0.01 

Desmosterol 35.3 ± 6.7 45.1 ± 6.5 38.1 ± 7.2 47.2 ± 8.4 

7-DHC 67.2 ± 29.p 80.3 ± 33.5 64.3 ± 34.1 72.3 ± 23.6 

24-OHC 61.0 ± 8.6 55.6 ± 7.7 66.8 ± 3.2 54.6 ± 11.1 

27-OHC 0.076 ± 0.014 0.055 ± 0.014 0.069 ± 0.013 0.052 ± 0.015 

7-KC 0.63 ± 0.16 0.64 ± 0.18 0.98 ± 0.50 0.64 ± 0.15 
7β-OHC 0.47 ± 0.24 0.41 ± 0.11 0.57 ± 0.42 0.38 ± 0.12 
β-Sitosterol 3.6 ± 0.9 5.0 ± 1.7 4.5 ± 0.7 4.0 ± 0.6 
Campesterol 26.0 ± 6.6 46.6 ± 7.9 36.5 ± 9.2 40.7 ± 7.6 
Stigmasterol 0.49 ± 0.19 0.71 ± 0.24 0.69 ± 0.22 0.52 ± 0.14 
Brassicasterol 0.25 ± 0.06 0.47 ± 0.12 0.37 ± 0.11 0.42 ± 0.06 
Cholesterola 14.9 ± 2.2 16.6 ± 1.6 15.9 ± 2.3 16.3 ± 2.9 

C
o

rt
ex

 

Lathosterol 34.6 ± 9.7 15.6 ± 4.2 30.8 ± 13.9 14.3 ± 3.2 
Lanosterol 12.0 ± 2.8 7.0 ± 1.7 10.1 ± 4.1 6.7 ± 1.8 
Zymosterol 2.1 ± 1.3  2.6 ± 0.9 2.4 ± 1.2 2.2 ± 0.5 
24,25 diH  0.14 ± 0.07 0.09 ± 0.05 0.15 ± 0.06 0.09 ± 0.03 
Desmosterol 36.0 ± 6.3 43.4 ± 7.6 28.3 ± 8.2 45.7 ± 5.1 
7-DHC 51.8 ± 12.2 55.5 ± 20.6 33.2 ± 9.4 54.1 ± 13.9 
24-OHC 60.5 ± 9.9 50.0 ± 3.7 50.0 ± 13.1 52.9 ± 9.5 
27-OHC 0.061 ± 

0.015 
0.044 ± 
0.018 

0.054 ± 
0.023 

0.047 ± 
0.017 7-KC 0.29 ± 0.08 0.43 ± 0.12 0.47 ± 0.28 0.56 ± 0.35 

7β-OHC 0.15 ± 0.04 0.19 ± 0.06 0.17 ± 0.02 0.21 ± 0.06 
β-Sitosterol 2.5 ± 1.2 2.4 ± 0.64 1.8 ± 0.50 2.6 ± 0.39 
Campesterol 23.5 ± 4.4 37.1 ± 11.1 27.9 ± 9.6 32.9 ± 9.4 
Stigmasterol 0.24 ± 0.15 0.25 ± 0.12 0.22 ± 0.10 0.25 ± 0.06 
Brassicasterol 0.22 ± 0.05 0.34 ± 0.10 0.26 ± 0.09 0.33 ± 1.5 
Cholesterola 12.2 ± 1.0 13.6 ± 1.7 13.1 ± 1.5 13.4 ± 1.4 
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Appendix 9 Absolute concentration of sterols measured in the cortex and striatum of 

combined sexes R6/1 and WT mice receiving dietary supplementation.  GC-MS/MS was used to 

analyse lipids extracted from mouse brain tissue. Mice received either control or berry extract (BE) 

supplemented diets. Values represent ng/mg tissue ± SD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24, 25 diH = 24, 25 dihydro lanosterol; 7-DHC = 7-dehydrocholesterol; 24-OHC = 24(S)-

hydroxycholesterol; 27-OHC = 27-hydroxycholesterol; 7-KC = 7-ketocholesterol; 7β-OHC = 7β-

hydroxycholesterol. aValues expressed as µg/mg tissue. 

 

 

 

 

 

 

 

 

 Combined sexes 
Control BE 

WT R6/1 WT R6/1 

St
ri

at
u

m
 

Lathosterol 33.1 ± 8.2 11.8 ± 4.5 33.3 ± 10.1 10.7 ± 3.1 

Lanosterol 12.8 ± 4.7 6.4 ± 2.7 12.3 ± 4.9 5.6 ± 2.5 

Zymosterol 2.1 ± 0.9 1.3 ± 0.6 2.4 ± 0.7 1.2 ± 0.6 

24,25 diH  0.24 ± 0.09 0.14 ± 0.07 0.23 ± 0.12 0.14 ± 0.05 

Desmosterol 38.5 ± 6.8 42.8 ± 7.9 40.8 ± 7.9 44.7 ± 7.4 

7-DHC 58.3 ± 26.6 73.8 ± 31.4 64.9 ± 24.2 72.4 ± 19.2 

24-OHC 62.8 ± 6.5 55.6 ± 10.9 67.1 ± 4.3 56.5 ± 8.2 

27-OHC 0.077 ± 0.011 0.049 ± 0.016 0.073 ± 0.013 0.050 ± 0.012 

7-KC 0.60 ± 0.22 1.07 ± 0.90 1.01 ± 0.50 1.12 ± 0.82 
7β-OHC 0.39 ± 0.19 0.47 ± 0.17 0.58 ± 0.33 0.60 ± 0.39 
β-Sitosterol 3.7 ± 0.8 4.3 ± 1.8 4.4 ± 0.8 4.3 ± 0.9 
Campesterol 33.5 ± 10.3 42.7 ± 7.3 39.3 ± 10.5 41.1 ± 9.6 
Stigmasterol 0.49 ± 0.15 0.59 ± 0.27 0.59 ± 0.19 0.56 ± 0.15 
Brassicasterol 0.34 ± 0.12 0.44 ± 0.10 0.41 ± 0.11 0.43 ± 0.07 
Cholesterola 15.2 ± 1.7 16.2 ± 1.7 16.2 ± 2.2 16.4 ± 2.3 

C
o

rt
ex

 

Lathosterol 35.6 ± 7.5 16.2 ± 3.7 29.1 ± 10.1 14.5 ± 3.7 
Lanosterol 11.9 ± 2.1 7.4 ± 1.7 10.2 ± 3.1 6.9 ± 2.4 
Zymosterol 2.1 ± 1.0 2.6 ± 1.1 2.1 ± 1.1 2.6 ± 1.0 
24,25 diH  0.18 ± 0.10 0.09 ± 0.05 0.16 ± 0.05 0.09 ± 0.03 
Desmosterol 35.0 ± 6.8 38.7 ± 8.1 33.7 ± 10.9 44.1 ± 8.5 
7-DHC 50.8 ± 14.2 54.6 ± 17.1 39.8 ± 12.4 52.2 ± 11.6 
24-OHC 56.9 ± 10.8 49.9 ± 7.7 53.8 ± 14.4 50.1 ± 8.7 
27-OHC 0.056 ± 

0.016 
0.037 ± 
0.016 

0.051 ± 
0.017 

0.037 ± 
0.016 7-KC 0.35 ± 0.12 0.39 ± 0.11 0.44 ± 0.21 0.46 ± 0.27 

7β-OHC 0.18 ± 0.07 0.20 ± 0.07 0.19 ± 0.06 0.20 ± 0.05 
β-Sitosterol 2.4 ± 0.93 2.5 ± 0.48 1.9 ± 0.42 2.3 ± 0.42 
Campesterol 31.6 ± 9.6 36.9 ± 9.2 31.4 ± 9.0 36.0 ± 8.8 
Stigmasterol 0.25 ± 0.13 0.26 ± 0.09 0.21 ± 0.09 0.24 ± 0.06 
Brassicasterol 0.31 ± 0.11 0.37 ± 0.16 0.32 ± 0.12 0.36 ± 0.14 
Cholesterola 12.5 ± 1.4 13.3 ± 1.8 13.4 ± 1.5 13.6 ± 1.2 
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Appendix 10 Absolute concentration of sterols in human post-mortem brain tissue. GC-MS/MS 

was used to analyse lipids extracted from brain tissue. Values represent ng/mg tissue ± SEM. 

 

 

 

 

 

 

 

 

 

24, 25 diH = 24, 25 dihydro lanosterol; 7-DHC = 7-dehydrocholesterol; 24-OHC = 24(S)-

hydroxycholesterol; 27-OHC = 27-hydroxycholesterol; 7-KC = 7-ketocholesterol; 7β-OHC = 7β-

hydroxycholesterol. aValues expressed as µg/mg tissue. 

 

 

 Brain region 

Putamen Caudate Grey frontal cortex 

Control HD Control HD Control HD 

Lathosterol 4.35 ± 1.48 8.46 ± 5.70 3.62 ± 1.55 3.45 ± 2.50 9.64 ± 4.65 11.72 ± 8.89 

Lanosterol 0.89 ± 0.37 1.33 ± 0.81 0.72 ± 0.31 0.64 ± 0.44 1.81 ± 1.02 1.66 ± 0.99 

Zymosterol 0.11 ± 0.06 0.35 ± 0.22 0.12 ± 0.04 0.11 ± 0.05 0.56 ± 0.24 0.4 0± 0.23 

24,25 diH 0.19±0.07 0.37±0.18 0.18±0.06 0.22±0.10 0.42±0.25 0.61±0.33 

Desmosterol 4.66 ± 2.77 13.68 ± 9.25 3.93 ± 1.82 6.71 ± 4.54 5.19 ± 1.61 5.80 ± 4.20 

7-DHC 19.68 ± 5.01 25.8 ± 11.62 19.77 ± 6.68 16.26 ± 6.04 33.46 ± 12.31 39.97 ± 19.52 

24-OHC 33.00 ± 10.01 13.67 ± 6.22 25.54 ± 13.72 8.78 ± 4.62 15.25 ± 4.27 11.98 ± 3.73 

27-OHC 0.30 ± 0.09 0.87 ± 0.59 0.23 ± 0.21 0.41 ± 0.34 0.22 ± 0.14 0.65 ± 0.50 

7-KC 0.75 ± 0.24 1.28 ± 0.41 0.59 ± 0.22 0.74 ± 0.41 0.70 ± 0.28 1.01 ± 0.48 

7β-OHC 0.61 ± 0.21 0.94 ± 0.42 0.46 ± 0.17 0.61 ± 0.41 0.45 ± 0.20 0.68 ± 0.38 

Squalene 1.81 ± 1.24 1.73 ± 0.99 1.53 ± 0.86 1.41 ± 0.47 1.39 ± 0.38 1.62 ± 0.65 

Campesterol 4.5 ± 2.1  5.5 ± 3.0 3.8 ± 2.0 2.6 ± 2.1 4.3 ± 2.9 2.8 ± 1.2 

Cholesterola 16.57 ± 4.91 21.72 ± 6.38 11.61 ± 5.21 8.52 ± 2.85 14.63 ± 5.31 14.41 ± 5.08 

 Brain region 

White frontal cortex Cerebellum 

Control HD Control HD 

Lathosterol 4.35 ± 1.48 8.46 ± 5.70 3.62 ± 1.55 3.45 ± 2.50 

Lanosterol 0.89 ± 0.37 1.33 ± 0.81 0.72 ± 0.31 0.64 ± 0.44 

Zymosterol 0.11 ± 0.06 0.35 ± 0.22 0.12 ± 0.04 0.11 ± 0.05 

24,25 diH 0.19 ± 0.07 0.37 ± 0.18 0.18 ± 0.06 0.22 ± 0.10 

Desmosterol 4.66 ± 2.77 13.68 ± 9.25 3.93 ± 1.82 6.71 ± 4.54 

7-DHC 19.68 ± 5.01 25.80 ± 11.62 19.77 ± 6.68 16.26 ± 6.04 

24-OHC 33.00 ± 10.01 13.67 ± 6.22 25.54 ± 13.72 8.78 ± 4.62 

27-OHC 0.30 ± 0.09 0.87 ± 0.59 0.23 ± 0.21 0.41 ± 0.34 

7-KC 0.75 ± 0.24 1.28 ± 0.41 0.59 ± 0.22 0.74 ± 0.41 

7β-OHC 0.61 ± 0.21 0.94 ± 0.42 0.46 ± 0.17 0.61 ± 0.41 

Squalene 1.78 ± 1.12 1.92 ± 0.71 1.42 ± 1.07 1.79 ± 1.34 

Campesterol 10.0 ± 6.6 6.1 ± 4.9 7.9 ± 5.0 6.5 ± 4.7 

Cholesterola 16.57 ± 4.91 21.72 ± 6.38 11.61 ± 5.21 8.52 ± 2.85 
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