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The age of three Middle Palaeolithic sites: single-grain optically stimulated
luminescence chronologies for Pech de l'Azé I, II and IV in France

Abstract
Optically stimulated luminescence (OSL) measurements were made on individual, sand-sized grains of quartz
from Middle Palaeolithic deposits at three sites (Pech de l'Azé I, II and IV) located close to one another in the
Dordogne region of southwest France. We were able to calculate OSL ages for 69 samples collected from these
three sites. These ages reveal periods of occupation between about 180 and 50 thousand years ago. Our single-
grain OSL chronologies largely support previous age estimates obtained by thermoluminescence dating of
burnt flints at Pech IV, electron spin resonance dating of tooth enamel at Pech I, II and IV and radiocarbon
dating of bone at Pech I and IV, but provide a more complete picture due to the ubiquitous presence of sand-
sized quartz grains used in OSL dating. These complete chronologies for the three sites have allowed us to
compare the single-grain ages for similar lithic assemblages among the three sites, to test the correlations
among them previously proposed by Bordes in the 1970s, and to construct our own correlative chronological
framework for the three sites. This shows that similar lithic assemblages occur at around the same time, and
that where a lithic assemblage is unique to one or found at two of the Pech sites, there are no deposits of
chronologically equivalent age at the other Pech site(s). We interpret this to mean that, at least for these Pech
de l'Azé sites, the Mousterian variants show temporal ordering. Whether or not this conclusion applies to the
wider region and beyond, the hypothesis that Mousterian industrial variation is temporally ordered cannot be
refuted at this time.
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Abstract 

Optically stimulated luminescence (OSL) measurements were made on individual, sand-sized grains 

of quartz from Middle Palaeolithic deposits at three sites (Pech de l’Azé I, II and IV) located close to 

one another in the Dordogne region of southwest France. We were able to calculate OSL ages for 69 

samples collected from these three sites. These ages reveal periods of occupation between about 

180 and 50 thousand years ago. Our single-grain OSL chronologies largely support previous age 

estimates obtained by thermoluminescence  dating of burnt flints at Pech IV, electron spin 

resonance  dating of tooth enamel at Pech I, II and IV and radiocarbon  dating of bone at Pech I and 

IV, but provide a more complete picture due to the ubiquitous presence of sand-sized quartz grains 

used in OSL dating. These complete chronologies for the three sites have allowed us to compare the 

single-grain ages for similar lithic assemblages among the three sites, to test the correlations among 

them previously proposed by Bordes in the 1970s, and to construct our own correlative 

chronological framework for the three sites. This shows that similar lithic assemblages occur at 

around the same time, and that where a lithic assemblage is unique to one or found at two of the 

Pech sites, there are no deposits of chronologically equivalent age at the other Pech site(s). We 

interpret this to mean that, at least for these Pech de l’Azé sites, the Mousterian variants show 

temporal ordering.  Whether or not this conclusion applies to the wider region and beyond, the 

hypothesis that Mousterian industrial variation is temporally ordered cannot be refuted at this time. 

 

KEYWORDS: optical dating; Typical Mousterian; Mousterian of the Acheulian Tradition; Quina 

Mousterian; Neanderthal  
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Introduction 

As one of the sites presented in the seminal work of Lartet and Christy (1864) in the mid-19th 

Century, Pech de l’Azé I has earned its place in the development of the field of Palaeolithic 

archaeology. Around 150 years have now elapsed since that publication, and during this time many 

other sites in and around the Dordogne valley have been excavated, including three other Lower and 

Middle Palaeolithic locales in the immediate area of Pech de l’Azé I (Pech de l’Azé II-IV; Bordes, 1971; 

Soressi et al., 2007; Turq et al., 2011). Together, the Pech sites contain examples of most of the 

classic Mousterian “facies”, or industrial variants as defined by Bordes (1960) and others (Peyrony, 

1925), and thus continue to play a vital role in debates concerning the nature and interpretation of 

Mousterian assemblage variability (e.g., Mellars, 1965; Binford, 1973; Bordes, 1977; Rolland and 

Dibble, 1990; Delagnes and Rendu, 2011; Discamps et al., 2011). With the advent of new dating 

techniques over the past several decades, numerical ages have been obtained from a large number 

of sites in southwest France, including the Pech sites, by a variety of methods (e.g., Vogel and 

Waterbolk, 1967; Bowman and Sieveking, 1983; Valladas et al., 1986, 1987, 1999, 2003; Mellars and 

Grün, 1991; Falguères et al., 1997; Guibert et al., 1997, 1999, 2008; Lahaye, 2005; Guerin et al., 

2012). Given the time-depth represented by the Pech archaeological deposits, which together are 

comparable to those of the classic, but still undated, reference site of Combe Grenal, and the size 

and variety of the archaeological assemblages, which together are far larger than those of Combe 

Grenal (Bordes’ Pech IV collection exceeded his Combe Grenal collection [McPherron et al., 2012a]), 

it is not surprising that some of the earliest numerical ages for the French Mousterian have been 

obtained at these sites (e.g., Schwarcz and Blackwell, 1983; Grün et al., 1991) or that these 

sequences are a continuing focus of attention for both archaeologists and geochronologists (e.g., 

McPherron and Dibble, 2000; McPherron et al., 2001, 2012b; Dibble et al., 2005, 2009; ; Soressi et 

al., 2007, 2013; Texier 2009; Turq et al., 2011; Richter et al., 2013). 

Prior to the present study, a number of dating studies were undertaken at the Pech sites, 

including electron spin resonance (ESR) dating of tooth enamel on teeth collected from Pech I, II and 

IV (Grün et al., 1991, 1999; Soressi et al., 2007; Turq et al., 2011), thermoluminescence (TL) dating of 

burnt flint from Pech IV (Bowman et al., 1982; Richter et al., 2013), radiocarbon (14C) dating of 

charcoal and bone from Pech I and IV (Soressi et al., 2007; McPherron et al., 2012b) and uranium-

series dating of flowstones in the cave connecting Pech I and II and in deposits at Pech II (Schwarcz 

and Blackwell, 1983). Only three optically stimulated luminescence (OSL) ages have been reported 

for the Pech sites and that was for one level at Pech I in Soressi et al. (2013) as part of the study fully 

presented here. At Pech I and II a single technique (ESR dating of tooth enamel) has been used to 

date the entire sequence. At Pech IV, no single technique was applied to the entire sequence; 

instead, different techniques have been used to date different portions of the deposit, with only a 

small amount of overlap. This is because animal teeth (for ESR dating) are not present in abundance 

in every layer, burnt flints (for TL dating) are available only in those layers where burning is evident, 

flowstones are rarely preserved in archaeological sections and may be too dirty for uranium-series 

dating, and most of the deposit is beyond the range of radiocarbon (14C) dating.  

In this study, we applied a single dating method to the sedimentary deposits at each of the 

Pech sites to provide a coherent chronology on a common time scale. We used single-grain OSL 

dating of quartz because quartz is ubiquitous in geological and archaeological deposits and has an 

OSL time range that can extend from a few years to a few hundreds of millennia. Because OSL dating 
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can be applied to geological and archaeological sediments, it was also feasible to obtain a complete 

chronological sequence for these sites – even for those layers that do not contain any archaeological 

traces. By applying single-grain OSL dating to each and every layer, it is thus possible to discern the 

history of site formation at a temporal resolution that might allow periods of occupation to be 

distinguished from periods of site abandonment.  

There is also an archaeological imperative to link these sites using a common chronological 

yardstick. The three Pech sites have lithic assemblages that vary significantly within each site (Pech II 

and IV), that show some similarities between sites (e.g., Pech I and the top of Pech IV), and that 

occur at only one of the sites (e.g., small flake production in the so-called Asinipodian at Pech IV, 

Bordes 1975). The question thus arises: does the assemblage variability both within and between 

the Pech sites represent different/similar periods in time or is it because the caves were used for 

different/similar purposes at the same time? This basic question concerning Mousterian variability 

remains unresolved with, on the one hand, some stratigraphic and palaeoenvironmental data 

suggesting that the Mousterian variants represent chronological phases (Mellars 1970, 1989, 1992; 

Jaubert, 2012; Discamps 2013) while on the other an increasingly large set of numerical ages have 

failed to support a chronological succession (e.g., Valladas et al., 1999; Guibert et al., 2008; 

Vieillevigne et al., 2008; Richter et al., 2013). Although many numerical ages have been obtained for 

the Pech sites over the past few decades, the differing precisions and possible systematic biases in 

age determinations make it difficult to correlate the deposits with sufficient resolution based on 

previous dating evidence alone. A coherent and consistent chronology is required, therefore, to 

reliably compare the timing of the different artefact assemblages at each of the Pech sites and to 

overcome any distortion inevitably introduced by different dating methods.  

Our goal in this paper is to develop an OSL chronology for the three Pech sites that will 

reveal when the lithic sequences for the three sites are broadly contemporaneous and when they 

are not. The three sites are located very closely within the same collapsed cave setting, where the 

same raw materials were also used for tool manufacture. This may increase the probability of similar 

behaviors being recorded at similar times. Though three sites are not enough to demonstrate that 

Mousterian variability is chronologically structured, they can falsify the hypothesis. If similar Pech 

industries are not broadly contemporary or if, in a given time slot, there is significant lithic 

variability, it suggests that the chronological phase argument for Mousterian variability cannot be 

supported. In doing this study, we will also test previous correlations of the sites, made by Bordes 

(1975) on the basis of faunal and sedimentological evidence, linked to the Riss-Würm climatic phase 

scheme.  

 

Site background and stratigraphy 

The hill of Pech de l’Azé contains a complex of four separate late Middle Palaeolithic 

collapsed cave sites (Fig. 1c), located in the department of the Dordogne in southwest France, 

situated about 5 km southeast of the city of Sarlat (44°50’N, 1°14’E) (Fig. 1a,b). The sites are 

positioned at the base of an Upper Cretaceous, Coniacian limestone cliff face (Goldberg et al., 2012), 

~50 m above the valley floor of the Enéa River, a small tributary of the Dordogne River (Fig. 1c). Pech 

I and II are on either side of a still existing karstic tunnel, and Pech IV is thought to be part of the 

same karst system, though not the same karstic tunnel (Turq et al., 2011) (note that Pech III is a 
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small cave not far to the west of Pech II that is now empty of sediment). All three sites had a 

complex morphological evolution, including periods of cliff retreat and intense roof collapse that 

significantly changed their configuration over time (Texier, 2009; Turq et al., 2011). Understanding 

the sedimentology and the site formation processes at each of these sites is important for OSL 

dating, as this directly impacts on what we are dating – the last time sedimentary grains of quartz 

were exposed to sunlight.  The sedimentology and site formation of all three sites have been 

documented thoroughly in Bordes (1972), Laville (1973), Goldberg (1979),  Texier (2009), Turq et al. 

(2011) and Soressi et al. (2013). A summary of the stratigraphy, associated archaeological industries 

and the main sedimentological features of each layer and for each site are provided in Tables 1a, 1b 

and 1c.  

 

Pech I 

Pech I was originally excavated in the early 19th century by Jouannet and later by the Abbé 

Audierne, followed by excavations in 1909 by Capitan and Peyrony, in 1929-30 by Vaufrey and from 

1948 to 1951, and again from 1970 to 1971 by Bordes. In 2004 and 2005 limited excavations were 

conducted by Soressi on the witness section left by Vaufrey in 1930, which has been used as the 

reference sequence for the site since then. A schematic of the site, location of each of the 

excavations and the witness section are provided in Fig. 2a. 

The stratigraphy of Pech I consists of seven  levels (Table 1a; Bordes, 1954-1955; Texier, 

2009). Levels 3–7 are all attributed to the Mousterian of the Acheulian Tradition (MTA). Peyrony 

used Pech I as one of the type sites to define the MTA (Peyrony, 1925) and two variants of the MTA 

were later described, namely MTA Type A and MTA Type B (Bordes and Bourgon, 1951). The MTA 

Type A is characterized by the production and use of mainly bifaces, whereas the MTA Type B is 

characterized by fewer bifaces and by the production and use of backed knives and elongated flakes 

(Soressi, 2004). Layers 4–7 are of interest in this study and, in general terms, consist of a ~4 m thick 

deposit composed of very coarse blocks of collapsed limestone rubble embedded in a clayey sand 

matrix (Fig. 2b,c). The sediment is mostly derived from the slopes and was deposited as slope-wash, 

together with continuous large cliff and roof collapse (Texier, 2009). 

 The archaeological assemblage in Layer 4 is attributed to the MTA Type A; during the 2004 

excavation by Soressi, a juvenile Neandertal tooth was found confirming that the MTA Type A was 

made by Neandertals (Soressi et al., 2007). The recent excavations also yielded a lissoir, a bone tool 

type likely used on hides, previously thought to have been made only by modern humans and, thus, 

adding to the knowledge of the complexities of late Neandertal behavior (Soressi et al., 2013). 

Several hundreds of blocks of black pigment, manganese dioxide, some of them bearing traces of 

use, have also been discovered in Layer 4 (Soressi and d’Errico, 2007; Soressi et al., 2008). Layer 5 

has a low density of artefacts of both MTA Types A and B. Layers 6 and 7 are both attributed to MTA 

Type B; the very top of Layer 7 (the top ~1 m of the section), is archaeologically sterile (Fig. 2c). 

During the 1909 excavations by Capitan and Peyrony, a juvenile Neandertal skull and mandible were 

uncovered in Layer 6 (Fig. 2a; Soressi et al., 2007), confirming that the MTA Type B was also made by 

Neandertals.  

 

Pech II 
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Pech II was excavated by Bordes between 1950 and 1969 (Bordes and Bourgon, 1950, 1951; 

Bordes 1969, 1971, 1972; Laville et al., 1980). It contains a total of 5 m of sediment and karstic and 

associated rock weathering deposits, formed at the entrance of a small cave that penetrates a small 

tunnel at the opposite end leading to Pech I (Fig. 1b and Fig. 3a). The Pech II sequence has previously 

been studied in detail, including aspects of sedimentology (Laville 1975; Goldberg, 1979; Laville et 

al., 1980; Texier, 2009), palynology (Paquereau, 1969), fauna (Bordes and Prat, 1965; Laquay, 1981), 

and the associated archaeological assemblages (Bordes and Bourgon, 1951; Bordes, 1971, 1975; 

Laville et al., 1980), but no recent excavations have taken place. A plan map of the site is shown in 

Fig. 3a together with a schematic of one of the sections that best represents the entire sequence 

(Fig. 3d). 

The stratigraphy of Pech II was described by Bordes (1972) and Laville (1973) as 10 

sedimentary layers, with many of the layers also divided into sub-layers; these are summarised in 

Table 1b and shown in Fig. 3d. Texier (2009) later re-defined the stratigraphy based on his 

sedimentological observations, and his layer assignations are also provided in Table 1b and Fig. 3d. 

We chose to use the stratigraphic layers of Bordes (1972) because we used Laville’s stratigraphic 

drawing provided in Goldberg (1979) to select our sample locations in order to match the layers with 

the archaeological industries as closely as possible. The sedimentary and archaeological sequences 

can be divided into two broad phases, those below and those above the large cryoclastic deposit in 

Layer 5 (Fig. 3d). The deposits below were originally attributed to the Clactonian (Layers 6-8) and 

Acheulean (Layer 9) archaeological industries, whereas the deposits above comprise a range of 

different Mousterian industries, including Typical (Layers 3, 4A, 4C and 4D), Denticulate (Layer 4B) 

and Ferrassie Mousterian (Layer 2A-G). 

 

Pech IV 

Pech IV was discovered in 1952 by Bordes, but the first major systematic excavation was not 

undertaken by him until 1970, and he continued work there for a total of eight years. The Pech IV 

stratigraphy was first described in a preliminary note by Bordes in 1975. Further investigations of the 

Bordes collection by McPherron and Dibble (2000) and a new field campaign directed by them from 

2000-2003, led to a re-investigation of the site formation processes, sedimentology and stratigraphy. 

A detailed description of the new stratigraphic framework, and the methods used, are reported in 

Turq et al. (2011). 

The stratigraphy and basic sedimentological features of each of the layers are summarized in 

Table 1c. A planform map of the site is shown in Fig. 4a together with a schematic representation of 

the stratigraphy for the west wall (Fig. 4b). The archaeological assemblage comprises a range of 

different Mousterian industries, including Typical Mousterian (Layers 8, 5, 4C and 4B), the 

Asinipodian (Layer 6), the Quina Mousterian (Layer 4A) and the MTA (Layer 3).  At the time of 

deposition of the basal Layer 8, the site was a cave rather than a rock shelter (Goldberg et al., 2012), 

and this layer represents a period of intense anthropogenic activity. The layer is distinctly different 

from all the other layers in that it consists of numerous hearth features that together give the layer a 

black and burnt appearance (Dibble et al., 2009; Goldberg et al., 2012). The first major collapse of 

the cave roof occurred on top of Layer 7, marked by the presence of a layer of limestone slabs that 

created a physical and chemical barrier, preserving Layers 7 and 8. This collapse resulted in a more 
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open configuration of the site. A significant break in sedimentation is found between Layers 6 and 5 

in the form of a sharp and irregular contact. The culmination of the collapse of the cave ceiling over 

the cave mouth occurred at the end of Layer 5 and beginning of Layer 4, resulting in a further 

enlargement of the cave aperture. The previously poorly-illuminated and sheltered cave is now 

thought to have become open to the elements and is more akin to a rock shelter (Turq et al., 2011). 

A sharp erosional contact separates Layer 4 from Layer 3; cryoturbation is believed to have been the 

process responsible for the truncation of Layer 4A. Layer 3 is the last of the layers to contain in situ 

archaeological materials and is overlain by Layer 2, which is present only along the western section. 

After deposition of Layer 2, a complete collapse of the cave awning occurred and effectively sealed 

and preserved the site and archaeological sequence. Layer 1 was formed much later in historical 

time and is the result of colluvial processes, migrating slowly downhill, mantling the collapsed roof 

deposit of the site. 

 

Age determination by OSL dating 

OSL dating is the ‘workhorse’ in this study because it is able to generate accurate and precise 

ages over the timespan of interest and provides a means of determining burial ages for sediments 

and associated artefacts (Huntley et al., 1985; Aitken, 1998; Duller, 2004; Lian and Roberts, 2006; 

Jacobs and Roberts, 2007; Wintle, 2008; Guérin et al., 2015; Roberts et al., 2015). The method is 

based on the time-dependent increase in the number of trapped electrons induced in mineral grains 

(such as quartz) by low levels of ionising radiation from the decay of natural uranium, thorium and 

potassium in the surrounding deposits and from cosmic rays. The time elapsed since the light-

sensitive electron traps were emptied can be determined from measurements of the OSL signal – 

from which the ‘equivalent dose’ (De) is estimated – together with determinations of the 

radioactivity of the sample and the material surrounding it to a distance of ~30 cm (the ‘dose rate’). 

The OSL ‘clock’ is reset by just a few seconds of exposure to sunlight. The De divided by the dose rate 

gives the burial time of the grains in calendar years before present, enabling a direct comparison 

with other numerical age estimates (including calibrated 14C ages and TL, ESR and uranium-series 

ages). Tests on known-age samples have shown that accurate OSL ages can be obtained from a wide 

variety of depositional environments (Rittenour, 2008) — including cave and rockshelter sediments, 

which are the focus of this study — provided that appropriate OSL signals are measured and rigorous 

procedural checks are made.  

 

Material and methods 

Sampling for OSL dating 

Seventy-three samples were collected for OSL dating from the three sites. Both 

archaeological and non-archaeological layers were sampled, the latter to provide additional 

chronological and contextual information. All samples were collected in a manner that prevents 

inadvertent exposure of the sediment to sunlight that would reset the luminescence ‘clock’. 

We collected 20 OSL samples from Pech I at night using a red light for illumination. All OSL 

samples from the witness section (PdLI-7-20; Fig. 2b,c) were excavated using a trowel and/or auger. 

The samples collected from the cave wall (PdLI-1-6; Fig. 2d), above the Capitan and Peyrony/Bordes 

excavations (Fig. 2a), were stabilised with plaster bandages, and then cut out with a knife. The 
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location of each of the OSL samples is shown in Fig. 2c, and their positions were also recorded by 

total station relative to the site datum. 

We collected 19 samples from Pech II, all during the day. The locations of the samples are 

shown in Fig. 3. All samples were collected as blocks of sediments that were stabilised with plaster 

bandages and cut out using a knife (shown as red boxes in Fig. 3 where the broken white line 

indicates the border between samples taken in a continuous column).  

We also collected 30 samples from Pech IV, all at night, using a red light. The location of the 

two squares (C12 and G15) from which the samples were collected is shown in Fig. 4a as red 

squares, and the location of each of the samples is shown in Figs. 4c and 4d. We did not collect a 

sample from Layer 7, and the samples from Layer 8 are not part of the same continuous column of 

samples collected from the north face of square C12; instead, we collected the Layer 8 samples from 

the thickest extent of this layer further to the south into the west face of square G14 (Fig. 4d). The 

section faces were cleaned prior to sample collection to remove light-exposed grains. All samples 

were excavated using a trowel and placed into a plastic bag. Three samples (PdAIV-1, 2 and 3) were 

collected as blocks of sediment that were stabilised with plaster bandages and cut out using a knife 

(shown as red squares in Fig. 4c and 4d). One of these samples (PdAIV-1) was further sub-sampled 

into four samples (PdAIV-1A to 1D). All sample positions were recorded by total station relative to 

the site datum. Both types of samples were sealed in black plastic bags to prevent light exposure 

during transport to the laboratory.  

In the OSL dating laboratory at the University of Wollongong, the sample bags were opened 

under dim red light. Where samples were collected as intact sediment blocks, these samples were 

kept as undisturbed sediment blocks and sub-sampled in the laboratory for OSL measurement. The 

remainder of the blocks was impregnated with resin and thin sections were made for further study 

of the sediments. Quartz grains were then extracted from the OSL samples using standard 

preparation procedures (Wintle, 1997; Aitken, 1998). First, carbonates were dissolved in 10% 

hydrochloric acid and then organic matter was oxidised in 30% hydrogen peroxide solution. The 

remaining sample was dried and then sieved to isolate grains of 180–212 µm in diameter, and 

feldspar, quartz and heavy minerals were separated by density using sodium polytungstate solutions 

of 2.62 and 2.70 specific gravities, respectively. The separated quartz grains were etched with 48% 

hydrofluoric acid for 40 min to remove the alpha-irradiated rind of each quartz grain and to destroy 

any remaining feldspars, and then rinsed in hydrochloric acid to remove any precipitated fluorides, 

dried and sieved again; grains retained on the 180 µm diameter mesh were used for dating. 

 

Equivalent dose (De) determination 

De values were estimated for individual 180-212 µm in diameter sand-sized grains for all but 

three (PdLI-6, PdLII-1 and PdLII-3) of the samples from all three sites. We used the standard Risø 

single grain aluminum discs (Bøtter-Jensen et al., 2000) for measurement of all individual grains, and 

confirmed the presence of only one grain in each hole after measurement by systematically checking 

each disc under a microscope.  

All measurements were made in an identical manner and with the same equipment, using 

the single aliquot regenerative-dose (SAR) procedure described elsewhere (e.g., Murray and Wintle, 
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2000; Jacobs et al., 2008). The SAR procedure involves measuring the OSL signals from the natural 

(burial) dose and from a series of regenerative doses (given in the laboratory by means of a 

calibrated 90Sr/90Y beta source), each of which was preheated at 180°C for 10 s prior to optical 

stimulation by an intense, green (532 nm) laser beam for 2 s at 125°C. The resulting ultraviolet OSL 

emissions were detected by an Electron Tubes Ltd 9235QA photomultiplier tube fitted with Hoya U-

340 filters. A fixed test dose (~10 Gy, preheated at 180°C for 5 s) was given after each natural and 

regenerative dose, and the induced OSL signals were used to correct for any sensitivity changes 

during the SAR sequence. A duplicate regenerative dose was included in the procedure, to check on 

the adequacy of this sensitivity correction, and a ‘zero dose’ measurement was made to monitor the 

extent of any ‘recuperation’ induced by the 180°C preheat. As a check on possible contamination of 

the etched quartz grains by feldspar inclusions, we also applied the OSL IR depletion-ratio test 

(Duller, 2003) to each grain at the end of the SAR sequence, using an infrared exposure of 40 s at 

50°C. 

The De values were estimated from the first 0.22 s of OSL decay, with the mean count 

recorded over the last 0.3 s being subtracted as background. The dose-response data were fitted 

using a saturating exponential function with an extra linear term, and the sensitivity-corrected 

natural OSL signal was projected on to the fitted dose-response curve to obtain the De by 

interpolation (see Supplementary Online Material (SOM) for example decay curves and dose 

response curves). The uncertainty on the De estimate of each grain (from photon counting statistics, 

curve fitting uncertainties, and an allowance of 2% per OSL measurement for instrument 

irreproducibility) was determined by Monte Carlo simulation, using the procedures described by 

Duller (2007). The final age uncertainty also includes a further 2% (added in quadrature) to allow for 

any bias in the beta source calibration; this error is added as a systematic uncertainty. The 90Sr/90Y 

beta source was calibrated using a range of known gamma-irradiated quartz standards for individual 

grain positions. Spatial variations in beta dose rate for individual grain positions were taken into 

account, based on measurements made using the same gamma-irradiated quartz standards (e.g., 

Ballarini et al., 2006). A relative error of 2.8% was added, in quadrature, to the combined random 

error of the De of each grain to capture the uncertainty associated with the calibration of the 

individual grain positions for the machine used in this study. The calibration of each grain position is 

based on multiple estimates of De from different grains that received a gamma dose that are then 

combined to obtain one value using the central age model of Galbraith et al. (1999). It is the relative 

error associated with the combined De value that is added as a random error to the De of each grain. 

Details of the dose recovery and preheat plateau tests to determine the preheat conditions for 

measurement of the grains are provided in the SOM (Table S1 and Fig. S1).  

Of all the individual grains measured from all three sites (Pech I - n = 21,900; Pech II – n = 

32,900; Pech IV – n = 56,900), only a very small number of grains (n = 1270, 1973 and 2403, 

respectively) were used for final De determination. Aberrant grains were rejected using the quality-

assurance criteria described and tested previously (Jacobs et al., 2006). Supplementary Online 

Material Tables S2, S3 and S4 provide the details for all samples from all three sites and the reasons 

for why single grains were rejected. A discussion and examples of why grains have been rejected are 

provided in the SOM. 

The majority of grains (on average ~90%) were rejected because they were too dim 

following a laboratory dose (TN signal<3xBG) or the test dose signal was imprecisely known (>20% 
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error on test dose signal). From the ~10% grains that gave a measureable luminescence signal, ~20-

30% of the grains were routinely rejected because they were sensitive to infrared radiation, failed 

the OSL-IR depletion ratio of Duller (2003) and gave De values that were half that obtained from 

quartz grains that behaved in an expected manner (see Fig. S5 and S6). Further discussion is 

provided in the SOM.  

Decay curve and dose response curves for a number of grains from a representative samples 

from each site are provided in SOM Fig. S7 and S8, and the De values for all accepted grains are 

displayed as radial plots in SOM Fig. S9 (Pech I), Fig. S10 (Pech II) and Fig. S11 (Pech IV) for each of 

the samples. One representative example from each site is also shown in Fig. 5a-c. All the single 

grain De distributions are spread more widely than can be explained by measurement uncertainties 

alone. The single-grain De distributions are overdispersed by between 16 ± 2 (PdLI-20) and 53 ± 7% 

(PdLI-10) for samples from Pech I (Table 2), between 25 ± 3 (PdLII-6) and 40 ± 4% (PdLII-14) for 

samples from Pech II (Table 3), and between 17 ± 5 (PdLIV-13) and 38 ± 4% (PdLIV-8 and PdLIV-24) 

for samples from Pech IV (Table 4). The overdispersion values for the samples collected as block 

samples from Pech IV range between 38 ± 3 (PdAIV-1-D) and 72 ± 6% (PdAIV-1-B).  There is no 

discrete patterning observed in any of the distributions that allows us to resolve post-depositional 

mixing or partial bleaching; all distributions are scattered randomly around a central value of De 

(SOM Figs. S9–11). We interpret the spread to be predominantly the result of differences in the 

intrinsic behavior of the grains, heterogeneity in the beta-dose delivered to individual grains of 

quartz and also small-scale disturbances by soil fauna and flora in some of the samples that may mix 

stratigraphically adjacent sediment through burrowing and root penetration. Investigation of thin 

sections of stratigraphically equivalent samples for Pech IV, and from the same sample positions for 

sample PdLI-1 to -6 and all the PdLII samples, support the possible effects from the latter two 

factors. 

Since we cannot resolve any discrete and large-scale post-depositional mixing in any of our 

samples, we used the central age model (CAM) of Galbraith et al. (1999) to combine the single-grain 

De values meaningfully for all samples in order to obtain the most accurate estimate of De for age 

calculation. The CAM model assumes that the De values for all grains are centerd on some average 

value of De (similar to the median) and the estimated standard error takes account of any 

overdispersion (i.e., the greater the overdispersion, the larger the error; Galbraith et al., 1999). 

Information about the number of grains measured and used, overdispersion values calculated and 

the final De ± 1σ value for each sample are presented in Tables 2, 3 and 4 for Pech I, Pech II and Pech 

IV, respectively.   

 

Dose rate determination 

 The total dose rate consists of contributions from beta, gamma and cosmic radiation 

external to the grains, plus a small alpha dose rate due to the radioactive decay of U and Th 

inclusions inside sand-sized grains of quartz. To calculate the OSL ages, we assumed that the 

measured radionuclide activities and dose rates prevailed throughout the period of sample burial. 

An internal alpha dose rate of 0.032 ± 0.01 Gy/ka (kilo-annum) has been assumed for all samples. 

We estimated the beta dose rates directly by low-level beta counting of dried, homogenised and 

powdered sediment samples in the laboratory, using a GM-25-5 multi-counter system (Bøtter-
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Jensen and Mejdahl, 1988). We prepared and measured samples, analyzed the resulting data and 

calculated beta dose rates and errors following the procedures described and tested in Jacobs and 

Roberts (2015). GM-25-5 beta counting is the method of choice because this method is less sensitive 

to potential inaccuracies arising from U disequilibrium. Numerical modelling has shown that even 

the most common time-dependent disequilibria in the 238U series are unlikely to give rise to errors in 

the total dose rate of more than 2–3% when emission-counting techniques such as GM-25-5 beta 

counting are employed (Olley et al., 1996, 1997). For all samples, allowance was made for the effect 

of sample moisture content (Aitken, 1985), grain size (Mejdahl, 1979) and hydrofluoric acid etching 

(Bell and Zimmerman, 1978) on beta-dose attenuation.  

To test the accuracy of our beta dose rate estimates obtained from GM-25-5 beta counting, 

we also determined the beta dose rates in two additional ways. For the majority of samples from all 

three sites, we obtained estimates of U and Th from ICP-MS and K from ICP-OES to calculate the first 

additional set of beta dose rates. For all samples from Pech I and Pech II, we also obtained estimates 

of U and Th from thick source alpha counting (TSAC) and K from X-ray fluorescence (XRF) to 

determine the second additional set of beta dose rates. All elemental concentrations were 

converted to dose rates using the conversion factors of Guérin et al. (2011). We do not expect 

perfect agreement between the three different methods, since ICP-MS only measures the parent 

radionuclide in the U and Th decay series. GM-25-5 beta counting and combined TSAC and XRF 

measurements provide data on present-day dose rates from the full U and Th decay chains and from 

K. Since more than 60% of the beta dose rate from U is derived from the daughter nuclides lower 

down the decay series (e.g., post-226Ra) and as disequilibrium in the U decay series is commonplace 

in limestone environments, estimates of U from ICP-MS can result in inaccurate estimates of the 

beta dose rate from the entire U chain. Comparisons of the estimates derived using the different 

methods will, therefore, also provide an idea of the relative extent of disequilibrium.  

Gamma dose rates were measured directly at the vast majority of sample locations by in situ 

gamma spectrometry, to take into account any spatial heterogeneity in the gamma radiation field 

within 30 cm of each OSL sample (as gamma rays can penetrate this distance through sediment and 

rock). Counts were collected for 60 min with either a 1-inch (Pech II and Pech IV) or a 2-inch (Pech I) 

NaI (Tl) crystal.  We measured the gamma dose rate of the limestone wall from which we collected 

the samples in Pech I and used this as an estimate of the gamma dose rate for half of the gamma 

sphere; we calculated the gamma dose rate for the other half of the gamma sphere from laboratory 

measurements of the sediment and combined those two estimates. The detectors were calibrated 

using the concrete blocks at Oxford University (Rhodes and Schwenninger, 2007) and the gamma 

dose rates were determined using the ‘threshold’ technique (Mercier and Falguères, 2007). This 

approach gives an estimate of the combined dose rate from gamma-ray emitters in the U and Th 

chains and from 40K.  

Account was also taken of the cosmic-ray contribution, which was adjusted for the average 

site altitude (~165 m), geomagnetic latitude (47.3°), density and thickness of rock and sediment 

overburden (Prescott and Hutton, 1994), and the cos2-Φ zenith angle dependence of cosmic rays 

(Smith et al., 1997). We also took into account the morphological evolution of the sites (see Texier, 

2009 and Turq et al., 2011). The beta, gamma and cosmic-ray dose rates were corrected for long-

term water contents. We used the current measured field values, which ranged between 0.5 and 

7.4% at Pech I (Table 2), between 0.7 and 8.3% at Pech II (Table 3) and between 2.5 and 9.3% at Pech 
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IV (Table 4). A relative uncertainty of ±25% (at 1σ) was assigned to each estimate of water content. 

In general, the calculated total dose rate will decrease, and the calculated OSL age will increase, by 

~1% for each 1% increase in water content.  

Pech I The dose rate results for all samples from Pech I are provided in Table 2. The total dose rates 

for all the samples show only a modest amount of variation, ranging between 0.82 ± 0.04 (PdLI-9) 

and 1.29 ± 0.07 Gy/ka (PdLI-18), with the majority of values ranging between 0.9 and 1.1 Gy/ka.  

Many of the OSL sample positions at Pech I were determined by reference to the locations 

of previously made large holes for gamma spectrometry by W.J. Rink in 1999/2000. Not much 

sediment is left at Pech I, so to preserve as much of the remaining deposit as possible, and still make 

the required in situ gamma spectrometry measurements, we collected some of our samples inside 

and adjacent to Rink’s gamma spectrometry holes, and made our own gamma spectrometry 

measurements inside these same holes. This allowed us to check the consistency of the gamma dose 

rate measurements conducted by two different laboratories more than a decade apart, and also 

gave us the estimate of the gamma dose rate at the point of sampling. We compared our estimates 

of the gamma dose rate with those of Jones (2001) and Soressi et al. (2007), which were obtained 

for the same holes. The results are shown in Fig. 6, from which it can be seen that there is good 

consistency between the measurements made by the different laboratories. On average, the gamma 

dose rate ratio of Rink / this study is 0.95 with a standard deviation of 0.05. What is interesting is the 

significant range in gamma dose rates of between ~0.23 ± 0.01 and 0.63 ± 0.03 Gy/ka, especially 

between the sediments near the top and bottom of the ~4 m-tall witness section, but also for 

sediments within the same layer. For example, two gamma dose rate measurements in Layer 4, 

taken ~50 cm apart, gave gamma dose rates of 0.63 ± 0.03 and 0.52 ± 0.03 Gy/ka, respectively, with 

another sample from Layer 4 giving a gamma dose rate of 0.36 ± 0.02 Gy/ka. This difference is 

directly related to the proximity of the samples to blocks of limestone. Such spatial variations may 

prove problematic when the gamma dose rate has to be reconstructed for stone artifact (TL dating) 

or tooth (ESR dating) samples that were obtained from museum collections and for which only a 

site-average estimate is used for age estimation. An advantage of OSL dating of sediment in settings 

where there are gross inhomogeneities in the gamma sphere of influence, is the determination of 

the gamma dose rate in the field at the point of sampling. 

The beta dose rates determined in three different ways are shown as ratios in Fig. 7 for all 

samples from Pech I. From here it can be seen that the beta dose rates derived using elemental 

concentrations from ICP-MS are systematically smaller than those derived using the two alternative 

methods, which is likely the result of uranium leaching. Average ratios of 0.93 ± 0.03 and 0.92 ± 0.03 

(one significant outlier was omitted from the latter ratio) were calculated for the ICP-MS beta dose 

rates divided by those obtained from GM-25-5 beta counting and a combination of TSAC and XRF, 

respectively. The latter two techniques show good consistency, resulting in an average beta dose 

rate ratio of 1.01 ± 0.03. The uncertainties reported above are the standard deviations of the 

average ratio.  

 

Pech II The dose rate results for all samples from Pech II are provided in Table 3. The total dose rates 

for all the samples range between 1.09 ± 0.07 (PdLII-15) and 1.49 ± 0.08 Gy/ka (PdLII-17), with one 

lower value at 0.97 ± 0.05 Gy/ka (PdLII-12). Most values appear to fall into two groupings, centerd 
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on ~1.2 and ~1.45 Gy/ka. From studies of the thin sections made on the same samples, it appears 

that the difference relates directly to the relative proportion of clay and limestone in the sediment.  

No in situ gamma spectrometry results have previously been reported for this site. The 

values reported in Grün et al. (1991) were based on measurements of parental concentrations of U 

and Th, and of K, in the sediment attached to the dated tooth samples, using neutron activation 

analysis (NAA). Neutron activation analysis does not take into account any possible disequilibrium 

that may exist in the U-series decay chain or spatial inhomogeneity in the gamma sphere (~30 cm 

radius), so it suffers from the same limitations as ICP-MS. We measured the in situ gamma dose 

rates for a number of our samples and these are indicated as filled circles in Fig. 3, with the results 

provided in Table 3. 

The beta dose rates determined in three different ways are shown as ratios in Fig. 8 for all 

samples from Pech II. No systematic trends among any of the methods can be seen; rather, the beta 

dose rate ratios are spread randomly around a ratio of unity, with the occasional significant outlier, 

resulting in average beta dose rate ratios and standard deviations of 1.01 ± 0.13, 1.02 ± 0.15 and 

0.99 ± 0.11 for the various combinations (Fig. 8).  

 

Pech IV The dose rate results for all samples from Pech IV are provided in Table 4. The total dose 

rates range between 0.79 ± 0.05 (PdLIV-1) and 1.59 ± 0.08 Gy/ka (PdLIV-18). Richter et al. (2013) 

reported in situ gamma dose rate results based on measurements of α- Al2O3:C dosimeters with OSL. 

Their results are presented in Fig. 9 as closed circles, where each circle represents the result from 

one dosimeter. Also shown, as open triangles, are the in situ gamma spectrometry measurements 

made in this study. We measured the gamma dose rates for each of our samples, the locations of 

which are shown in Fig. 4 (except PDAIV-1-C and PDAIV-1-A). Note that the results from the two 

studies are not directly comparable, unlike for Pech I (Fig. 6), as the measurements at Pech IV were 

made on similar sediment from the same layers, but from different profiles within the cave (see Fig. 

4, and Fig. 3 of Richter et al. [2013], for exact locations). The average gamma dose rate for each layer 

derived from each of the methods is shown inside the stippled boxes in Fig. 9, and the ratio of the 

two average values is provided above each of the boxes. The results from Layers 4C and 5A show 

good consistency. The two α- Al2O3:C dosimeter results for Layer 3B are quite different; all of the in 

situ gamma spectrometry results are consistent with the lower dose rate values measured for the 

other layers.  

PdAIV-1 was collected as a block sample and sub-sampled into four samples (PdAIV-1A to 

1D). We were able to use the in situ gamma spectrometer measurements for PDLIV-1 and PDLIV-2 as 

direct equivalents of PdAIV-1-D and PDAIV-1-B, respectively, but the gamma dose rates for the 

remaining two samples (PDAIV-1A and PDAIV-1-C) had to be calculated separately. PdAIV-1-C is 

located half way between sub-samples B (above) and D (below). The gamma dose rate for this 

sample was taken as the average of the gamma dose rates from these two bounding samples. The 

gamma dose rate for sub-sample A, at the top of the Layer 8 sediment block (PDAIV-1), was 

considered to have received half its gamma dose rate from the underlying sediments, with the other 

half derived from the overlying limestone slabs. The first half was calculated from the in situ 

measurement made for sub-sample B (0.33 ± 0.02 Gy/ka; Table 4).  The other half was based on the 

gamma dose rate measured from a sub-sample of the limestone that was powdered. Using this 

powdered sample, a gamma dose rate of 0.15 ± 0.01 Gy/ka was determined using a combination of 
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GM-25-5 beta counting and thick-source alpha counting. Therefore, the gamma dose rate for sub-

sample A was determined to be 0.24 ± 0.01 Gy/ka (Table 4). 

The beta dose rates from Pech IV were determined using only two different methods, 

namely GM-25-5 beta counting and conversion of measured concentrations of U, Th (ICP-MS) and K 

(ICP-OES) to beta dose rates. The ratios of the beta dose rates derived using these two methods are 

presented in Fig. 10a. The results for Pech IV are quite different from those obtained for Pech I and 

II. The beta dose rate ratios for some layers (e.g., 4A and 4C) are consistent with unity, whereas the 

ratios for sediment from other layers (e.g., 3A, 4B and 6A) deviate significantly from unity. The same 

bow-shaped curve can also be seen when U concentrations (ppm) derived from ICP-MS 

measurements are plotted (Fig. 10b). We interpret this similarity in shape to mean that the 

difference in the two calculated beta dose rates relates directly to the state of disequilibrium in the 

U decay series. Assuming that this U disequilibrium has prevailed throughout the burial history of 

the sample, or occurred only recently, then an excess of parental U will result in an overestimation 

of the beta dose rate using ICP-MS relative to GM-25-5 beta counting and the opposite is true in the 

case of a parental U deficit. If this interpretation is correct, then the beta dose rates derived using 

GM-25-5 beta counting provide more accurate estimates of the beta radiation component of the 

total dose rate, as this method is less sensitive to potential inaccuracies arising from U 

disequilibrium.  

 

Assessing self-consistency of stratigraphic units 

We used the statistical (homogeneity) test of Galbraith (2003), and the resulting p-values to test 

whether the independent estimates obtained within each stratigraphic unit are self-consistent (i.e., 

the spread in ages are compatible with the size of the uncertainties). If self-consistency is 

demonstrated (i.e., p = >0.05), we then calculated a weighted mean age estimate for each layer or 

sub-layer. Both p-values and weighted mean ages were calculated by combining all ages using only 

their random uncertainties (the errors provided in brackets after the age in Tables 2, 3 and 4). The 

final error on the weighted mean, however, includes the systematic error that was added in 

quadrature to the random error on the mean age. In calculating a weighted mean age for each layer, 

we assume that the individual age estimates within a layer represent either a single event, or a 

series of events spread over a period of time that is short compared to the size of the age 

uncertainties. 

 

Results and preliminary discussion 

Ages and comparisons with existing chronologies at Pech de l’Azé 

 The final ages for all samples from all three sites are listed in Tables 2, 3 and 4, together with 

the supporting De and dose rate estimates. Uncertainties on the ages are given at 1σ (standard error 

on the mean) and were derived by combining, in quadrature, all known and estimated sources of 

random and systematic error. The 1σ error on the age provided in brackets includes only the random 

errors and is the error to be used for comparison of ages among the three sites. For all other 

comparisons the full error should be used. For the sample De, the random error was obtained from 

the CAM used to determine the weighted mean, and a systematic error (of 2%) was included for any 

possible bias associated with calibration of the laboratory beta source. The total uncertainty on each 
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dose rate was obtained as the quadratic sum of all random (measurement) errors and the systematic 

errors associated with estimation of the beta and cosmic-ray dose rates.  

 

Pech I ages We were able to obtain reliable ages for all samples collected from Pech I, including 

those sediment remnants from the Capitan and Peyrony excavations that were left on the cave wall. 

Very little variation in age was obtained for the samples collected from Layers 4, 5, 6 and 7 from 

both the witness section and the cave wall. The individual ages are plotted in Fig. 11a (closed 

symbols represent samples from the witness section and open symbols those samples collected 

from the cave wall). The ages range between ~46 and 55 ka.  

 The p-values for each layer are provided in Table 2 and range between 0.61 and 0.99, far 

greater than the accepted alpha value of >0.05, thus supporting self-consistency of ages within each 

layer. Accordingly, we calculated weighted mean ages for each of the layers and obtained ages of 

51.2 ± 2.4 ka (Layer 4), 53.2 ± 2.9 ka (Layer 5), 52.2 ± 3.1 ka (Layer 6) and 48.8 ± 2.8 ka (Layer 7). The 

weighted mean ages for each layer are provided in Table 2 and plotted in Fig. 11b. In Table 2, the 

weighted mean ages for those layers where samples were collected from both the witness section 

and the cave wall were calculated separately to check for age consistency over space; the results 

support the consistency. A grand weighted mean was then calculated to include both samples from 

the wall and the witness section for that particular layer; it is these grand weighted mean ages that 

are plotted in Fig. 11b. It is apparent from Fig. 11b that the weighted mean ages for all four layers 

are consistent at 1σ uncertainty and when all the ages are combined a p-value of 0.99 is obtained, 

suggesting that there is no statistical difference in age between the top and the bottom and that the 

deposits, therefore, represent a relatively short duration of time; a weighted mean age of 50.7 ± 2.5 

ka is obtained when all 19 age estimates are combined and is indicated as a stippled line and gray 

shading in both Fig. 11a and 11b.  

It can be seen from Fig. 11b that when the weighted mean ages are plotted for each of the 

layers, there is a slight tendency, albeit within statistical uncertainty, for the middle two layers 

(Layers 5 and 6) to be older than the lowest layer (Layer 4); this was also the case for the ESR ages 

presented in Soressi et al. (2007). To further investigate this, we also plotted the weighted mean 

ages for the same set of samples, but when the two alternative estimates of beta dose rate are used 

instead to calculate the age (see Fig. 7 and section on beta dose determination); the results are also 

plotted in Fig. 11b. This same tendency is observed for all three data sets with the most extreme 

tendency demonstrated for those ages for which the beta dose rates are based on measured 

elemental concentrations determined with ICP-MS (U and Th) and ICP-OES (K). This supports our 

interpretation of the beta dose rates in Fig. 7 (and discussed above) that at some point in the past 

there was leaching of U (no thin sections were collected to further document leaching effects), and 

that the best estimate beta dose rate, and, hence, best-estimate age for these samples, are those 

using the beta dose rate obtained from GM-25-5 beta counting (plotted as open circles). The data 

suggest that the age of the MTA Type B and A at Pech I span a relatively short period of time (~2-4 

ka), and all the ages are statistically consistent with a mean age of 50.7 ± 2.5 ka.  

 

Pech I comparisons with published chronologies A series of ESR ages and three 14C ages were 

previously reported by Soressi et al. (2007) for Pech I. They reported the mean ESR age and standard 
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deviation for three layers (Layers 5, 6 and 7) using two different uranium uptake models, namely the 

early-uptake (EU) and linear-uptake (LU) models. Soressi et al. (2007) also reported coupled ESR/U-

series ages for two of the samples, one each from Layers 6 and 7 and three 14C ages on bone from 

Layers 4 and 6. These ages are plotted, together with the OSL ages of this study, in Fig. 12. The EU 

and LU ages are shown as closed and open triangles respectively, and are treated as a single age 

range with the most likely age being somewhere between those two estimates. The 14C ages are 

plotted with their 2σ ranges where the symbol denotes the midpoint value and the positive and 

negative error bars the entire calibration range.  

Mean EU and LU ages for Layer 5 of 49 ± 6 and 51 ± 7 ka, respectively, are entirely consistent 

with the weighted mean OSL age of 53 ± 3 ka.  Mean EU and LU ages of 40 ± 2 and 47 ± 5 ka, 

respectively for Layer 6 and a single coupled ESR/U-series age of 43 
  

  
  ka for one of the two 

measured teeth gave ages that are systematically younger than the weighted mean OSL age of 52 ± 

3 ka; the ages are, however, consistent within their margins of error. The mean EU and LU ages of 42 

± 8 and 49 ± 7 ka, respectively, and the single coupled ESR/U-series age of 51 
  

  
 for Layer 7 is 

consistent with the weighted mean OSL age of 49 ± 3 ka. It is important to point out that the 

uranium concentrations for the enamel from the teeth were very low and that the external beta, 

gamma and cosmic-ray dose rates (i.e., the same dose rates that apply to the OSL ages) were 

responsible for at least half of the total dose rates. This means that the ESR ages will suffer from the 

same dosimetry issues related to the OSL samples (discussed above and shown in Fig. 7); this is in 

addition to the problem of recreating a dose rate environment that does not exist anymore because 

the sediments in which the teeth were buried have already been excavated. These issues may 

account for the variability in age between individual teeth from the same layer and also the larger 

errors associated with the ESR ages. Regardless, the two independent chronologies show good 

consistency and it appears that the LU modelled ages are more consistent with the OSL than the EU 

ages (Fig. 12). 

 The two 14C ages on unburnt bone from the top of Layer 6 ranged at 2σ between ~ 44 and 41 

cal ka BP (thousands of calibrated years before present) and this is younger than both the ESR and 

OSL ages for this layer (Fig. 12); there is no statistical overlap between the 14C and OSL ages even at 

2σ. The 14C age from Layer 4 ranges at 2σ between 47 and 44 cal ka BP and is similarly younger than 

the corresponding OSL ages. The bone samples were not prepared using molecular ultrafiltration, so 

the underestimation may be due to small-scale contamination, now known to be a prevalent 

problem (e.g., Higham, 2011).  

 

Pech II ages The ages for 17 samples from Pech II are provided in Table 3. The ages range between 

~55 and 100 ka for the 10 sediment samples located above the thick cryoclastic complex (Fig. 3), and 

then again between ~140 and 180 ka for the seven sediment samples located below the cryoclastic 

complex. The ages are also displayed in Fig. 13 as a function of layer.  

 We did not attempt to date the fluvial sands at the base of the deposit in Layer 10 because 

we do not believe that these sands were exposed to sunlight prior to deposition. Texier (2009) 

indicated that deposition of these sands were subterranean in the endokarstic system. We obtained 

a single age of 165 ± 16 ka for Layer 9 which has been attributed to an Acheulean with handaxes 

(PdLII-15). We also obtained a single age of 159 ± 11 ka for Layer 8 (PdLII-7). We calculated a 
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weighted mean age of 170 ± 8 ka for four samples from Layer 7B and the sample from Layer 7A gave 

an age of 143 ± 9 ka (PdLII-2). Layers 8, 7B and 7A have all been called Clactonian with choppers and 

chopping tools but no handaxes. The De values for all these samples are close to saturation, so it may 

be that these ages represent minimum ages for these samples. The range of dose response curves, 

some not close to saturation, and the reproducibility of the De values, regardless of the shape of the 

curves, together with the consistency of these OSL ages with the ESR ages, however, may suggest 

that these ages are not significantly underestimated. It, therefore, appears that the sediment below 

the cryoclastic deposit in Layer 5 was deposited during, or before, the penultimate glacial period 

(marine isotope stage (MIS) 6).  Although we could not date Layer 5, the cryoclastic layer, it was 

likely a result of the severity of the end of MIS 6, after which temperatures increased rapidly by 

~14°C from a mean palaeotemperature of ~7°C to a mean palaeotemperature of ~21°C at the 

beginning of MIS 5 in southwestern France (Wainer et al., 2011).  

Immediately above the cryoclastic deposit, the first evidence for occupation occurred at the 

base of Layer 4 in Layer 4E and 4D. Bordes (1972) described these layers, and the associated 

archaeological assemblages, as being significantly damaged by cryoturbation. Our first samples were 

collected across Layers 4D and 4C2 for which micromorphological analysis of our sample (PdLII-19) 

shows only limited evidence for cryoturbation in the form of coatings and some banded fabrics. The 

deposits appear quite fresh and intact with perhaps some of the fine fraction removed by water. We 

obtained an OSL age of 105 ± 7 ka (PdLII-19) for initial re-occupation of the site, associated with a 

Typical Mousterian industry. Layer 4B is associated with a lithic assemblage that is quite different 

from the preceding Typical Mousterian and was assigned to the Denticulate Mousterian. We 

obtained ages of 80 ± 6 ka (PdLII-18) and 90 ± 6 ka (PdLII-17) for Layer 4B. There is a significant age 

gap separating the age for Layer 4B and that obtained for Layer 4A1. The samples were collected 

only cm apart in depth (Fig. 3d and e), thus suggesting that there was also a significant break in 

sedimentation, or an erosional event that removed sediment from the site. It is interesting to note 

that this break was not visible in the field. An age of 58 ± 4 ka (PdLII-16) was obtained for this layer, 

which albeit rather poor in lithics is associated with the Typical Mousterian,  and an age of 61 ± 5 ka 

(PdLII-14) was obtained for the Typical Mousterian in the overlying much lithically-richer Layer 3. 

Five ages from Layer 2G, associated with a scraper-rich Mousterian, gave a weighted mean age 

estimate of 60.1 ± 2.9 ka. The rest of Layer 2 was not sampled and was almost devoid of tools. 

Importantly, no MTA industry was identified in Pech II.  

Pech II comparisons with published chronologies A series of ESR ages and two U-series ages were 

previously reported by Grün et al. (1991) and Schwarcz and Blackwell (1983) for Pech II, respectively. 

Grün et al. (1991) reported ages for 27 individual teeth collected from all major stratigraphic units 

and for the majority of the teeth, sub-samples were also measured. The U-series ages were reported 

for one in situ flowstone at the top of Layer 3 and a broken off stalagmite found within the 

cryoclastic deposit in Layer 5. All the ages are shown together with the OSL ages of this study in Fig. 

14a and b where Fig. 14a shows the ages above the cryoclastic deposit and Fig. 14b those within and 

below this layer. The ESR ages represent averages of the different individual fragments of each tooth 

that was measured. 

The ESR ages above the cryoclastic deposit (Layer 5) range between ~40 and ~90 ka, and the 

majority of the samples show excellent agreement between the EU and LU modelled ages, but there 

appear to be some age reversals. The ages from within and below Layer 5 range between ~130 and 
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220 ka. These EU and LU modelled ages show less agreement, but Grün et al. (1991) made a case for 

the EU modelled ages to be the more accurate. This was later further investigated in Grün et al. 

(1999) where it was apparent that it is difficult to choose one or the other and that further studies 

are required to refine the chronology.  In a general sense, the ESR ages are in broad agreement with 

the OSL ages reported in this study. Both methods suggest two major phases of occupation above 

and below the cryoclastic deposit. The OSL ages in Layers 2, 3 and 4, however, show improved 

stratigraphic consistency and also indicate a major hiatus within Layer 4 that was not resolved with 

the ESR ages. 

Schwarcz and Blackwell (1983) also reported U-series ages for Pech II. They dated an in situ 

flowstone at the top of Layer 3 and reported an age of       
    ka. This age is much older than the 

corresponding ESR and OSL ages, but the errors are large and it is, thus, broadly consistent. They also 

obtained an age of 240 ka on a broken stalagmite in Layer 5, but this stalagmite is not in primary 

position and can only be used as a maximum age for the deposit.  

 

Pech IV ages We were able to obtain reliable ages for all 27 samples collected from Pech IV. We also 

obtained an additional six ages from three different block samples (denoted as PdAIV in Table 4) 

from Layers 4A, 5B and 8. The ages range from ~50 ka near the top of the sequence in Layer 3A to 

~100 ka at the base of the sequence in Layer 8. The ages and their associated uncertainties are listed 

in stratigraphic order in Table 4, together with the p-values and weighted mean ages for each layer.   

  The individual ages are plotted in Fig. 15 as a function of depth from where it can be seen 

that the ages are all in good stratigraphic order. Figure 15b shows the weighted mean ages for each 

layer to which a two period moving average regression line was fitted. This line clearly indicates that 

the sedimentation rate was not constant over time (as would be expected), and that during periods 

of most intense occupation (e.g., Layer 8, 6, 5A and 3) the sediment accumulated rapidly compared 

to the much slower accumulation rate associated with Layer 4 in which evidence of occupation was 

also sparse.  

 We have demonstrated in Fig. 10a that the beta dose rate results, when measured in two 

different ways, show significant divergence from each other in some parts on the sediment profile 

possibly because of the mobility of uranium (Fig. 10b). We postulated that the beta dose rates 

derived using GM-25-5 beta counting is superior and this is further supported in Fig. 16a where the 

ages for all the samples from Pech IV are plotted twice, once using the beta dose rate derived from 

GM-25-5 beta counting (closed circles) and the other using the beta dose rate derived from ICP-MS 

measurements (open triangles); for clarity the associated errors are not shown in this figure, but 

they are included in the age ratios shown in Fig. 16b. Figure 16a clearly shows an increase in age 

with an increase in depth using GM-25-5 beta counting, compared to the occasional significant age 

reversals obtained using ICP-MS measurements, especially for samples from Levels 6A, 4B and 3A.  

 We are, therefore, confident in our ages presented in Table 4 that use GM-25-5 beta 

counting for estimation of the beta dose rate and in the weighted mean age estimates determined 

for each of the layers. A weighted mean age of 93.9 ± 4.4 ka (Layer 8) was obtained for the 

lowermost archaeological deposit that can be characterized as Typical Mousterian. We did not 

collect a sample from Layer 7, so its age remains unknown. An age of 76.7 ± 3.7 ka was obtained for 

Layer 6 that contains the so-called Asinipodian industry with its emphasis on small flakes and is 
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significantly younger than the underlying Layer 8. This time gap may be represented by the undated 

and cryoturbated Layer 7, or the site may have been abandoned before or after the initial collapse of 

the cave roof that covers these two layers.  The age of 76.3 ± 4.0 ka for Layer 5 (Typical Mousterian) 

is almost identical to the age obtained for Layer 6 (Asinipodian) and does not support the 

macroscopic observation of a sharp and irregular contact between these two layers (Turq et al., 

2011). A significant break in sedimentation was suggested (Turq et al., 2011), but it may be that the 

duration of this break is shorter than the uncertainties on our age estimates. Based on the ages 

alone, it appears to have, instead, been a period of rapid sedimentation (Fig. 15b). Chronologies, 

however, should never be interpreted in isolation from other proxies and information. With OSL, we 

estimate the last time the sedimentary grains were exposed to sunlight. If the sediment in Layer 5 

was re-deposited from sediment inside the cave as a result of colluvial or solifluction re-working the 

sediment (as proposed in Turq et al., 2011), and was not re-exposed to sunlight, then this age may 

well be an overestimate of the age for this layer, but its minimum age can be constrained by the age 

of 68 ± 4 ka for the overlying Level 4C.  

Layer 4 shows a continuum of ages from ~70 ka through to ~58 ka, and the sedimentation 

was relatively slow compared to periods before and after. It is also the layer with the sparsest 

archaeological evidence. Three sub-levels were identified based on differences in sedimentology. 

The weighted mean ages of 68.3 ± 3.9 ka (Level 4C), 61.5 ± 3.4 ka (Level 4B) and 57.3 ± 2.8 ka (Level 

4A), best constrain the age of this layer. Levels 4C and 4B are representative of the Typical 

Mousterian, whereas Level 4A contains Quina Mousterian (Turq et al., 2011). So our best age 

estimate of the Quina Mousterian at Pech IV is 57.3 ± 2.8 ka. The final occupation in Pech IV – Layer 

3 – has been attributed to the MTA, for which we obtain weighted mean ages of 51.0 ± 2.6 ka (Level 

3B) and 51.1 ± 2.4 ka (Level 3A).  

Pech IV comparisons with published chronologies Three other independent dating techniques have 

been employed at Pech IV — 14C dating of bone, ESR dating of tooth enamel and TL dating of burnt 

flints. All three techniques were used to obtain ages for Layer 3, but only TL dating was used to date 

three of the other layers (Layers 4C, 5A and 8). All the OSL ages are plotted in Fig. 17 together with 

the 14C, ESR and TL ages. The ages are plotted for each layer and also shown, as stippled lines, are 

the weighted mean ages and 1σ standard errors calculated for the OSL ages for each layer. All OSL 

ages are shown as filled circles, EU- and LU-modelled ages are shown as closed and open triangles, 

respectively, TL ages as open diamonds and 14C ages as lines where the line denotes the mid-point 

value of the 2σ calibration range.  

It can be seen for Layer 3 that both the EU and LU modelled ESR ages and the TL ages are 

statistically consistent with the OSL ages. The 14C ages that can be calibrated are consistent with the 

other ages at 2σ (see red stippled lines in Fig. 17). Also, the weighted mean OSL age is only slightly 

older than the start age of 49.5 cal ka BP at the lower end of the 2σ range for Layer 3 calculated 

using a Bayesian model and presented in McPherron et al. (2013). There are also two 14C age 

estimates for Layer 3B that fall beyond the capability of the currently accepted 14C calibration curve 

(IntCal13; Reimer et al., 2013), and these are shown with an arrow pointing upwards to indicate that 

they are minimum ages. Both these ages must be >50 cal ka BP and are thus consistent with the 

other independent ages.   
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The TL and OSL ages for Layers 4C, 5A and 8 also show excellent agreement. Richter et al. 

(2013) reported two TL ages for Level 4C of 69 ± 7 ka and 72 ± 7 ka, and these agree with the 

weighted mean OSL age of 68 ± 4 ka. They also reported a weighted mean TL age (n = 4) for Level 5A 

of 74 ± 5 ka that is in agreement with the OSL weighted mean age of 76 ± 4 ka, and a weighted mean 

TL age for Layer 8 (n= 6) of 96 ± 5 ka that is consistent with the OSL weighted mean age of 94 ± 4 ka.  

 

Discussion 

 Bordes (1975, 1978) used the information he gathered based on the archaeological 

industries, fauna and, in particular, the geological work of Laville (1973) to correlate the three sites 

and to place the archaeological deposits within a climatic framework using the Würm and Riss 

climatic phases that were in vogue in Europe at the time. His proposed correlations are presented in 

Table 5. Bordes placed all of Pech I in Würm II (similar to OIS 3), together with the uppermost layers 

of Pech IV (Layers F1-4). These layers were attributed to the MTA Type A and B industries. The rest 

of Pech IV and the deposits above the large cryoclastic deposit in Pech II were all placed in Würm I 

(roughly equivalent to later MIS 5). The deposits below the cryoclastic layer in Pech II were all placed 

within the Riss (similar to MIS 6). Bordes drew direct parallels between only a few layers, including 

the MTA layers in both Pech I and Pech IV, in particular Layer 4 at Pech I and F4 at Pech IV (MTA-A) 

and Layers 6 and 7 at Pech I and F1 and F2 at Pech IV (MTA-B), as well as Layer 4C at Pech II and 

Layer X at Pech IV (Typical Mousterian). He recognized the lithics to be typologically similar and 

suggested they belong to the same climatic and chronological phases. He also recognized that some 

assemblages had no equivalents among the three different sites, and saw these as assemblages 

made by different groups of people occupying the sites during the same climatic phase, but perhaps 

centuries earlier or later. Bordes, thus, interpreted the deposits to span a relatively short, and 

almost continuous, period of time and suggested that the temporal control so far achieved is not 

fine enough, and that it probably will never be (Bordes, 1978). These correlations have since drawn 

substantial criticism (Mellars, 1988; Bertran and Texier, 1995; Texier, 2000).   

 The common chronology for all three Pech sites presented here now enables us to test the 

correlations proposed by Bordes (1975, 1978). In this study, we made measurements on individual 

sand-sized grains of quartz to maximize the benefits inherent in single-grain OSL dating. These 

include the identification of contaminant grains in a sample and their exclusion before final age 

determination, and the ability to directly check the stratigraphic integrity of archaeological 

sequences and take into account any post-depositional sediment mixing (Jacobs and Roberts, 2007; 

Roberts et al., 2015). We also measured all samples using the same GM-25-5 beta counter and OSL 

equipment and irradiated the grains using the same laboratory radiation source; all the data were 

analyzed by a single operator using a common set of procedures (a subset of the samples was cross-

checked for operator bias). By holding constant all of these experimental variables for all samples, it 

was possible to remove much of the unwanted ‘noise’ in OSL data that typically prevents high-

resolution ages from being obtained. In addition, the sources of error that apply to all samples (i.e., 

systematic errors) could be removed using this systematic approach, allowing all ages to be placed 

on the same calibrated timescale with improved precision (e.g., Jacobs et al., 2008). For purposes of 

comparison we have, therefore, used the random errors only and these are provided in brackets in 

Tables 2, 3 and 4. We have plotted the three stratigraphic profiles of the sites together with the OSL 

ages for all samples in Fig. 18 where we used different colors to indicate age equivalence or not. We 
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also summarized our proposed correlations based only on chronology in Table 6, together with the 

corresponding marine isotope stages. 

 The oldest dated deposits are found only at Pech II in Layers 6–9 (below the large cryoclastic 

deposit represented by Layer 5) and are indicated in purple in Fig. 18. These deposits date to 

between ~140 and 180 ka, falling within the penultimate glacial period, MIS 6; the associated lithic 

assemblages were assigned to the Clactonian and Acheulian by Bordes (1972). We have not plotted 

these ages in Fig. 18 for clarity, but they are provided in Table 3. We did not directly date Layer 5, 

but it likely relates to the penultimate glacial maximum at ~ 132 ka, and this is supported by a 

number of ESR ages on tooth enamel.  

 The first dated intact deposit in Fig. 18 is from Pech II in Layer 4D for which we obtained an 

age of 105 ± 7 ka (MIS 5d). This suggests either that the Pech sites were not occupied during the last 

interglacial (MIS 5e) or that no evidence for occupation at this time is preserved at any of the three 

sites (perhaps having been washed out of the sites). Significant flowstone deposits can be found in 

the tunnel between Pech I and Pech II and these have been dated to MIS 5e at ~125 ka (Schwarcz 

and Blackwell, 1983), and a post-depositional flowstone into the cryoclastic deposit in Layer 5 can 

also be seen. It is also evident from thin sections of Layer 4D that water might have washed out the 

fine fraction, providing further support that water action was at work in at least Pech II. The absence 

of evidence, therefore, does not necessarily demonstrate the presence of a sediment hiatus at Pech 

II.  

 The age for Layer 4D (105 ± 7 ka) is statistically consistent with the two ages for Layer 4B (80 

± 6 and 90 ± 6 ka; MIS 5b/c) and also the weighted mean age of 95 ± 4 ka (MIS 5c) for six samples 

from Layer 8 in Pech IV. This correlation is shown in green in Fig. 18. The ages for Layers 4B and 4D 

from Pech II bracket Layer 4C that Bordes thought was equivalent to Layer X (=Layers 7 and 8) in 

Pech IV based on typological similarities. Our correlations, thus, support his, even though it is older 

than he anticipated (e.g., he placed it in Würm I, roughly equivalent to later MIS 5). He also 

suggested that the archaeological assemblage in Layer 4B in Pech II, a Denticulate Mousterian, had 

no equivalent in Pech IV. Our ages for Layer 4B suggest that it might be a little later than Layer 4C/4D 

(Pech II) and Layer 8 (Pech IV), but we do not have the precision to resolve the difference 

statistically.  

 In Pech IV there is no evidence for occupation or sediment deposition during MIS 5b 

between ~90 and 80 ka (Figs. 13 and 14). Pech IV is then re-occupied again at the end of MIS 5a at 

~77 ka in Layer 6B and shows continuous sediment deposition with sparse archaeological evidence 

throughout MIS 4 in Levels 6A, 5A, 5B and 4C (shown in yellow in Fig. 18). There is no chronological 

parallel in Pech II where the age hiatus suggests no sediment deposition during MIS 4. Bordes (1978) 

explicitly mentioned that his Pech IV Layers J3a-J3c (corresponding to Layers 6A and 6B in the recent 

excavations) containing the Asinipodian are very different from anything seen in Pech I or Pech II, 

and this is supported by our finding of no age equivalent in these other two sites.  

It is only at the start of MIS 3 at ~60 ka that chronological parallels can again be drawn 

between Pech II and Pech IV (shown in blue in Fig. 18). Age estimates for Layers 4A, 3, 2G and 2F at 

Pech II are indistinguishable from each other at  58 ± 4 ka (Layer 4A), 61 ± 5 ka (Layer 3), and 60 ± 3 

ka (Layer 2G; see Table 3). We did not obtain any age estimates for Layers 2A-2F at Pech II; Layers 

2A-2C were not present in the profile we sampled and Layers 2D to 2F were very friable and full of 
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large limestone spalls (Fig. 3d and e). Electron spin resonance ages for Layer 2A and 2E (Fig. 14), 

however, are indistinguishable from each other and from ages for Layers 2F and 2G (Fig. 14; Grün et 

al., 1991). Bordes also noted that Layer 2 contained very little archaeological material. Layer 2G was 

archaeologically the densest part of Layer 2, but still contained very few lithics (n=91; Bordes 1972). 

We thus treat all of Layers 2, 3 and 4A as age equivalent deposits. These deposits are comparable to 

the ages obtained for Pech IV Levels 4A (57 ± 3 ka) and 4B (62 ± 3 ka; Table 4). Our correlations are 

shown in blue in Fig. 18, and, thus, differ from Bordes’ correlation of the entire Pech II Layer 2 (A-G’) 

to Pech IV Levels 4A through to 6B (see Table 5). As discussed above, Layers 4C, 5 and 6 at Pech IV 

have no age parallels at Pech II. Interestingly, though the assemblages are small, Bordes described 

Pech II Layer 2 as having Levallois flakes but also Quina type scrapers.  He called these layers 

Ferrassie type Mousterian (Bordes, 1972). Layer 4A (Pech II) also had very few artifacts but Bordes 

(1972) noted that scrapers were frequent enough that he classified it as Typical Mousterian.  The 

stratigraphically intermediate Layer 3 had more artifacts, no Quina type scrapers, and a moderate 

amount of Levallois production.  At Pech IV, Layer 4 has a high percentage of scrapers with 

transverse forms (i.e., scrapers more common in Quina type Mousterian assemblages) becoming 

more common through the layer and with Levallois production steadily decreasing. Additionally, 

Layers 4B and 4C (at the top of 4) at Pech IV have very low artefact densities, so much so that Bordes 

(1975) called 4A only Mousterian and 4B Typical Mousterian with a question mark.  Further, Level 4A 

at Pech IV had a number of archaeological horizons within it that appear to match the structure 

described for Layer 2 of Pech  II, which was divided into eight levels.  Thus, at both Pech II and IV the 

lithic assemblages seem to be similarly structured in this time window with frequent layers with low 

artefact densities, with scrapers being relatively common, with the presence of Levallois (decreasing 

at Pech IV) and the presence of scraper types typically associated with the Quina Mousterian. 

 Pech I and Pech IV show chronological overlap at the top of their respective archaeological 

sequences (shown as pink in Fig. 18) and the archaeological assemblages in both these sites belong 

to the MTA. We obtained identical ages at both sites and dated the MTA to ~51 ka in MIS 3. This 

supports the correlation drawn by Bordes (1972) (Table 5).  Also, Bordes (1972) did not identify any 

MTA at Pech II, and in our chronology we see no occupation at Pech II during the MTA time period of 

Pech I and IV.  We could not resolve the ages of the MTA-A and MTA-B, suggesting that in these sites 

the duration of these two assemblage types is probably shorter than the uncertainties associated 

with our ages.  If the MTA is a chronological phase in southwest France, then at Pech IV the start of 

the MTA is constrained by the underlying Quina Mousterian dated to ~58 ka.   

 

Conclusions 

 The archaeological sequences at Pech de l‘Azé provide insights into the timing and nature of 

the Mousterian in southwestern France during the Late Pleistocene. By dating individual grains of 

quartz, we have been able to construct a detailed and reliable chronology for all three sites (Pech I, II 

and IV) that are consistent with, and support, the previous TL, ESR and, to some extent, the 14C 

chronologies. The advantage of the new single-grain OSL chronology is that it provides a linked 

temporal framework for the vast majority of layers and levels in all three sites, and due to the 

systematic study design these new ages are directly comparable at a higher temporal resolution. 

None of the sites was  occupied continuously nor preserves a complete and continuous sedimentary 

record. There is no archaeological overlap linking all three sites. There is some chronological overlap 
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between Pech I and IV, and between Pech II and IV, but none between Pech I and II, even though the 

latter two sites are situated adjacent to each other and separated only by a karstic tunnel. Together, 

the three sites contain four of the five classically defined Mousterian variants, namely the MTA (Pech 

I and IV), Quina Mousterian (Pech II and IV), Typical Mousterian (Pech II and IV) and the Denticulate 

Mousterian (Pech II), as well as the more recently defined Asinipodian from Pech IV. The single-grain 

OSL chronologies constructed for these three sites suggest that, at least locally, these variants form a 

time sequence. To some extent this conclusion could be seen as contrasting the recent suggestions 

of Guibert et al. (2008) and Richter et al. (2013), whose results supported an emerging pattern of 

considerable temporal overlap among the different Mousterian variants. One possible explanation 

of the lack of patterning in their data could simply be an artifact of using dates obtained by a variety 

of techniques and at different laboratories, which was much more controlled in the present study. 

However, it is important to bear in mind that the sequence of occupations at the various Pech de 

l'Azé sites may also reflect a very localized history of the occupation or use of these three locales 

more or less simultaneously, even though each site was individually affected by different site 

formation processes. Thus, while the temporal patterning seen here is interesting – especially in 

terms of what it says about scale of human occupations during the Middle Paleolithic – the history of 

occupation at this specific spot cannot be extended automatically to the wider region. In this sense, 

these results neither confirm nor deny the hypothesis of temporal ordering of the Mousterian 

industrial variants. 
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Figure captions 

Figure 1: a) Map of France indicating the location of the Department of the Dordogne in southwest 

France. b) A map of the Dordogne area showing the location of several important sites relative to 

known cities. 1 Pech de l’Azé, 2 Combe Grenal, 3 Combe Capelle Bas, 4 Abri Peyrony, 5 Roc de 

Marsal, 6 La Ferrassie, 7 Le Moustier. c) Schematic of the limestone cliff and the position of the three 

Pech sites (after Soressi et al., 2008). 

 

Figure 2: a) Planform map of the different excavations conducted at Pech I. The two areas of interest 

in this study is the witness section outlined in yellow and the Capitan and Peyrony excavation. The 

yellow star indicates the relative position from where the juvenile Neandertal baby skull and jaw 

were found. b) Photograph of the witness section. c) Schematic of the witness section showing the 

locations of the OSL samples (black filled circles) and gamma spectrometry holes (open red circles) of 

Rink, reported in Soressi et al. (2007). d) Close-up photograph showing the location of the OSL 

samples removed from the collapsed cave wall left-over from, and directly related to the Capitan 

and Peyrony excavation.    

 

Figure 3: a) Planform map of Pech II, showing the location of the three profiles from which OSL 

samples were collected. b) Photograph of Profile B and the location of the OSL samples. C) 

Photograph of Profile C and the location of the OSL samples. d) Stratigraphic drawing of part of 

Profile A with the OSL sample locations indicated, together with the layer numbers following Bordes 

(1972) in the left-hand column and Texier (2009) in the right-hand column. e) Photograph of the 

profile in d) with the locations of the OSL samples. The red boxes denote the position of the OSL 

samples. The black filled circles show the position of the gamma spectrometry measurements. 

 

Figure 4: a) Planform map of Pech IV. The red rectangles indicate the two squares from which all OSL 

samples were collected. b) Stratigraphic drawing of the west profile showing the layer numbers and 

relative depth of the deposit. c) Photograph of the north profile from which the majority of the OSL 

samples were collected together with the layer number and sample numbers. d) Photograph of the 

west profile from which all OSL samples from Layer 8 were collected. The red filled circles indicate 

the OSL samples, whereas the red rectangle indicates the block samples that were later sub-sampled 

for OSL dating in the lab. The white lines denote the areas sub-sampled and their corresponding 

sample names. 

 

Figure 5: Radial plots of single-grain De distributions for a representative samples measured from a) 

Pech 1, b) Pech II and c) Pech IV. If the De estimates in each distribution were statistically consistent 

(at 2σ) with a common value, then 95% of the points should fall within any grey band projecting ± 2 

units from the standardised estimate axis and the overdispersion (OD) should be consistent with 0%. 

The grey band is centered on the CAM weighted mean De value. 
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Figure 6: Comparison of the in situ gamma dose rate results obtained from two different 

laboratories a decade apart. The gamma dose rate measurements were made in the same holes. 

 

Figure 7: Pech I - The ratio of beta dose rates obtained for the same samples using three different 

methods. The filled circles show the ratio of the results obtained from ICP-MS(OES) and GM-25-5 

beta counting. The filled squares show the results obtained from TSAC and XRF against GM-25-5 

beta counting and the filled triangles show the results obtained from ICP-MS(OES) against TSAC and 

XRF. The samples are plotted in stratigraphic order and per layer for the witness section (Fig. 2c) and 

separately for the samples collected from the cave wall (Fig. 2d). 

 

Figure 8: Pech II - The ratio of beta dose rates obtained for the same samples using three different 

methods. The filled circles show the ratio of the results obtained from ICP-MS(OES) and GM-25-5 

beta counting. The filled squares show the results obtained from TSAC and XRF against GM-25-5 

beta counting and the filled triangles show the results obtained from ICP-MS(OES) against TSAC and 

XRF. The samples are plotted in stratigraphic order and the corresponding layer name is noted. 

 

Figure 9: Gamma dose rate results for sediment from Pech IV using an in situ gamma spectrometer 

(this study) or α- Al2O3:C dosimeters (Richter et al., 2013). The results are not for exactly the same 

position and measurements were made for different profiles in the site. The average for each layer 

and for each method is provided in the boxes and shown on top of each box is the ratio of the two 

averages. 

 

Figure 10: a) Pech IV - The ratio of beta dose rates obtained from ICP-MS (U and Th) and ICP-OES (K) 

and GM-25-5 beta counting plotted in stratigraphic order and the layers are demarcated. The broken 

vertical line indicated unity. b) Uranium concentrations (ppm) obtained from ICP-MS measurements 

plotted for all samples and in stratigraphic order. 

 

Figure 11: a) All ages for Pech I plotted in stratigraphic order with the layers demarcated with 

stippled lines. The filled symbols represent ages for samples collected from the witness section (Fig. 

2c) and the open symbol those samples collected from the cave wall (Fig. 2d). The broken vertical 

line shows the weighted mean age calculated for all 19 samples and the gray shaded bar the 1σ 

standard error on the weighted mean. b) The weighted mean ages for each layer. The weighted 

mean ages include all samples from the witness section and the cave wall. Weighted mean ages 

were calculated using three different beta dose rates (open circles—GM-25-5 beta counting, open 

triangles—TSAC+XRF and open squares—ICP-MS and ICP-OES).  The same weighted mean and 1σ 

standard error as in a). 

 



33 
 

Figure 12: All OSL ages for Pech I together with all independent ages published previously for Pech I, 

shown per layer. Ages are plotted with 1σ uncertainties. The EU and LU ages are plotted as a range 

and the 14C ages are plotted where the line is the midpoint value of the calibrated range and the 

error bars represent the entire range. The broken line is the weighted mean age calculated for all the 

OSL ages and the stippled lines are the 1σ standard error on the weighted mean age. 

 

Figure 13: All ages for Pech II plotted in stratigraphic order with the layers demarcated with stippled 

lines. All samples from Layers 2G to 4D were collected from Profile A in Fig. 3a, d and e, and samples 

from Layers 7A to 9 are for samples collected from Profiles B and C (Fig. 3b and c) below the large 

cryoclastic deposit in Layer 5. 

 

Figure 14: All OSL ages for Pech II together with the previously published ESR (EU and LU) and U-

series ages. Ages are plotted with 1σ uncertainties. The EU and LU ages are plotted as a range. Each 

ESR age is the average of 2 to 4 different fragments of the same tooth (see Grün et al., 1991) for 

each individual age estimate. a) All ages for deposits above Layer 5 and b) all ages for deposits in 

Layer 5 and below.  

 

Figure 15: a) All OSL age estimates with their 1σ errors for samples collected from Pech IV shown as 

a function of their depth below datum and in stratigraphic order with the layer boundaries 

demarcated. b) Weighted mean ages for each layer plotted as a function of their depth below 

datum. The stippled line is a two period moving average line fitted to the data.  The two horizontal 

black marks indicate a break between layers 6 and 8 because the samples were not collected from 

the same stratigraphic profile. 

 

Figure 16: a) Two sets of OSL ages plotted for the same samples from Pech IV. One set (filled circles) 

were calculated using GM-25-5 beta counting for estimation of the beta dose rate, whereas the 

other set (open triangles) used ICP-MS measurements for beta dose rates instead. Uncertainties are 

not shown for clarity. Uncertainties for ages shown as filled circles are provided in Table 4 and for 

ages shown as open triangles, the errors range between 6.5 and 11.5% at 1σ. b) Ratio of the two age 

estimates plotted in a). The broken line indicates unity. 

 

Figure 17: All OSL ages for Pech IV together with all independent ages published previously for Pech 

IV, shown per layer. Ages are plotted with 1σ uncertainties. The EU and LU ages are plotted as a 

range and the 14C ages are plotted where the line is the midpoint value of the calibrated range and 

the error bars represent the entire range. The 14C ages were calibrated using IntCal13 (Reimer et al., 

2013).The broken line is the weighted mean age calculated for all the OSL ages in a layer and the 

stippled lines are the 1σ standard error on the weighted mean age. The red stippled line indicates 

the 2σ standard error on the weighted mean age for layer 3A and B. 
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Figure 18: Composite figure of all three sites indicating where there is overlap with regards to age 

(shown as the same color; pink, blue and green), where deposits are represented in only one site 

(yellow and purple) and those parts of the sequences that remains undated (shown in gray). We 

omitted the ages for the deposits below cryoclastic layer in Pech II (shown in purple) for clarity, but 

these ages are provided in Table 3. Also shown are the Marine Isotope Stages (MIS) for comparison 

with Table 6. 

 



Stratigraphy 
   

Archaeological 
Industry 

Sedimentology 

7 MTA-B Sandy-clayey matrix; large limestone fragments; voids due to biological activity; carbonate features including calcite 
impregnation of sediment 6 MTA-B 

5 MTA-A/B 
Sandy, slightly clayey sediment matrix; limestone fragments, flint and bone; bone and charcoal less abundant than in 
layer 4; biological activity in the form of root channels, earthworm casts and mite pellets; some biological voids filled 
post-depositionally with fine sands. 

4 MTA-A 
Poorly sorted silty-clayey sand; some limestone fragments, flint, burnt and unburnt bone and traces of charcoal. Clear 
combustion features towards the south. Sediments are bedded, suggesting no significant post-depositional vertical 
movement of objects 

3 MTA-A Yellow sand; ash lenses 

2 Sterile Pavement of flat limestone slabs 

1 Sterile Light yellow fluvial sand; some small rock fragment near the top of the layer 

Table 1a: Summary of the stratigraphic layers and archaeological industries found at Pech I. Also given is a short synopsis of the most important 

sedimentological information for each layer. MTA – Mousterian of the Acheulian Tradition. 

  

Table



Stratigraphy 
(Bordes, 1972;  
Laville, 1973) 

Stratigraphy 
(Texier, 2009) 

Archaeological 
Industry 

(Bordes, ?) 
Sedimentology 

S   Modern soil, disturbed by rodents 

1  Indeter. Reddish sandy layer with small archaeological traces 

2A 

4 

Ferrassie-type 
Mousterian 

(Levallois flakes 
and Quina-type 

scrapers) 

Yellow sands with limestone fragments 2B 

2C 

2D Sandy clay with rare limestone fragments 

2E Brown, clayey, silty sand; numerous limestone fragments with sharp edges; smaller rock fragments 

2F Clayey, silty sand; with smaller flat limestone fragments 

2G1 Slightly clayey sand with fine rock fragments; scattered limestone fragments in sands 

2G2 Slightly clayey sand; discontinuous large and relatively rounded rock fragments 

2G3 
Clayey sand with small limestone fragments; very friable. 

3 TM Light brown, sandy-clay matrix; some limestone fragments 

4A TM Reddish-brown, sandy clay, with rare limestone fragments. Some traces of fire 

4B 
Denticulate 
Mousterian 

Red -brown, sandy-clay; very hard when dry; numerous traces of fire 

4C TM Alternation of clay-like sands and brown clay; numerous traces of fire 

4D TM Clayey-sand matrix; small rounded rock fragments 

5 3 Sterile 
Cryoclastic complex; thick layer of large rock fragments, fining upwards; archaeologically almost sterile; stalagmite 
fragments throughout. 

6 

2 

Clactonian Brown- red sandy, silty clay; altered rock fragments and clay coatings 

7A Clactonian Brown sand with some clay; limestone fragments are rare 

7B Clactonian Yellow- brown sand; more clay than in 7A; some rounded rock fragments. 

8 Clactonian Thin reddish silt (palaeosol (?)); brown, clayey sand; well rounded rock fragments. 

9 Acheulean Brown sand, clayey in some areas where not cemented; rounded limestone fragments 

10 1 Sterile Sterile cross-bedded and horizontal fluvial sand; some rounded gravel and iron rich pebbles. 

Table 1b: Summary of the stratigraphic layers and archaeological industries found at Pech II. Also given is a short synopsis of the most important 

sedimentological information for each layer. Information on the archaeological industries was taken from Bordes (1972) and for the sedimentology from 

Bordes (1972), Laville (1972) and Goldberg (1979). TM – Typical Mousterian. 

  



 

Stratigraphy 
Archaeological 

Industry 
Sedimentology 

1 None Part of modern soil profile. Dark brown, organic rich silty to sandy layers with rounded and dissolving limestone fragments. 

2 None Spatially restricted unit of rounded pebbles, and limestone fragments in a sandy, silty matrix. 

3A MTA-B Red/yellow silty-sand with limestone fragments more compacted and less cemented than underlying layer 4. Limestone 
fragments are rounded and appear to be dissolved.  MTA-A/B 

3B MTA-A 
Red/yellow silty-sand with limestone fragments more compacted and less cemented than underlying layer 4. Limestone 
fragments are rounded and appear to be dissolved. 

4A Quina Red/yellow silty-sand with limestone fragments. Strongly cemented with calcite in some regions produced a breccia. 

4B TM Red/yellow silty-sand with greater concentration of limestone fragments than the overlying 4A layer. 

Vault collapse Limestone slabs and blocks 

4C TM Silty-sand with higher concentrations of small eroded limestone fragments and bone fragments. 

5A 
TM 

Red/yellow silty-sand with angular limestone blocks 

5B Red/yellow silty-sand with limestone fragments, some of which are well-rounded. 

6A 
Asinipodian 

Dark brown to red/yellow silty-sand with large block of limestone occurring in the upper portion 

6B Silty-sand with varying sizes of limestone blocks 

Roof collapse Limestone slabs and blocks 

7 ?Mousterian Thin layer of coarse sand with edge damaged stone tools. 

8 
Typical 

Mousterian 
Black, bedded clayey-sand with major organic anthropogenic component. Charcoal and ash lenses with burnt and unburnt 
bone fragments. 

Table 1c: Summary of the stratigraphic layers and archaeological industries found at Pech IV. Also given is a short synopsis of the most important 

sedimentological information for each layer. All information was taken from Turq et al. (2011). MTA – Mousterian of the Acheulian Tradition; TM – Typical 

Mousterian. 

  



Sample Moisture Dose rates (Gy/ka)  Total Number Over- OSL  
code  content   dose rate 

   
 De of dispersion age  p-value 

  (%) Beta  Gamma  Cosmic  (Gy/ka) (Gy) grains (%) (ka) 

Level 7 
PdLI-7 7.4 0.53 ± 0.04 0.43 ± 0.02 0.10 1.09 ± 0.06 51.0 ± 1.9 62 / 1000 20 ± 3 46.8 ± 3.4 (2.8) 
PdLI-8 4.9 0.53 ± 0.04 0.36 ± 0.02 0.10 1.03 ± 0.06 52.6 ± 2.3 73 / 1000 31 ± 4 51.3 ± 3.8 (3.0) 
PdLI-9 1.3 0.46 ± 0.03 0.23 ± 0.01 0.10 0.82 ± 0.04 38.8 ± 2.0 47 / 1000 26 ± 5 47.2 ± 3.5 (3.0) 
PdLI-10 1.9 0.53 ± 0.03 0.26 ± 0.01 0.10 0.93 ± 0.05 46.1 ± 4.5 36 / 1000 53 ± 7 49.7 ± 5.5 (3.4) 
PdLI-11 3.3 0.58 ± 0.04 0.26 ± 0.01 0.10 0.97 ± 0.06 50.2 ± 2.4 55 / 1000 26 ± 4 51.8 ± 4.0 (3.2) 
        Weighted mean =   49.2 ± 2.9 (1.4)   p = 0.78 
PdLI-3 0.5 0.56 ± 0.03 0.39 ± 0.06 0.08 1.06 ± 0.09 54.6 ± 2.8 64 / 1000 36 ± 4 51.7 ± 5.3 (4.6) 
PdLI-2 2.3 0.72 ± 0.04 0.34 ± 0.05 0.08 1.17 ± 0.09 55.4 ± 2.5 63 / 1000 30 ± 4 47.2 ± 4.3 (3.6) 
PdLI-5 3.6 0.75 ± 0.04 0.37 ± 0.06 0.08 1.22 ± 0.10 56.5 ± 3.0 61 / 1000 34 ± 4 46.3 ± 4.5 (3.9) 
        Weighted mean =   48.0 ± 3.5 (2.5)   p = 0.74 
        Grand weighted mean =  48.9 ± 2.8 (1.2)   p = 0.83  
Level 6 
PdLI-12 3.4 0.56 ± 0.04 0.31 ± 0.02 0.12 1.03 ± 0.05 54.7 ± 3.2 43 / 1000 25 ± 6 53.3 ± 4.3 (3.8) 
PdLI-13 2.4 0.54 ± 0.03 0.31 ± 0.02 0.13 1.01 ± 0.05 50.8 ± 3.2 46 / 1000 48 ± 7 50.4 ± 4.3 (3.6) 
PdLI-14 2.8 0.55 ± 0.04 0.34 ± 0.02 0.13 1.04 ± 0.05 56.9 ± 3.2 41 / 1000 38 ± 6 54.6 ± 4.3 (3.6) 
        Weighted mean =   52.6 ± 3.0 (2.2)   p = 0.71 
PdLI-4 1.6 0.57 ± 0.03 0.30 ± 0.05 0.08 0.98 ± 0.08 51.8 ± 2.3 63 / 1000 40 ± 5 52.8 ± 4.9 (4.1) 
        Grand weighted mean =   52.7 ± 3.0 (2.0)   p = 0.88 
Level 5 
PdLI-15 1.1 0.52 ± 0.03 0.36 ± 0.02 0.13 1.04 ± 0.05 54.7 ± 2.6 53 / 1000 33 ± 5 52.3 ± 3.8 (3.2) 
PdLI-16 1.0 0.55 ± 0.04 0.36 ± 0.02 0.13 1.07 ± 0.06 57.8 ± 3.1 57 / 1000 34 ± 4 53.8 ± 4.2 (3.5) 
PdLI-17 2.0 0.58 ± 0.04 0.54 ± 0.03 0.11 1.26 ± 0.06 68.0 ± 3.3 63 / 1000 31 ± 4 54.2 ± 3.9 (3.4) 
        Weighted mean =   53.4 ± 2.9 (2.1)   p = 0.94 
PdLI-1 4.2 0.66 ± 0.04 0.35 ± 0.05 0.08 1.12 ± 0.09 58.2 ± 2.2 87 / 1000 30 ± 3 52.2 ± 4.9 (4.1) 
        Grand weighted mean =   53.2 ± 2.9 (1.9)   p = 0.96 
Level 4 
PdLI-18 4.0 0.55 ± 0.03 0.63 ± 0.03 0.08 1.29 ± 0.07 67.6 ± 2.1 90 / 2000 17 ± 3 52.5 ± 3.4 (2.7) 
PdLI-19 3.6 0.48 ± 0.03 0.52 ± 0.03 0.08 1.11 ± 0.06 55.4 ± 1.4 126 / 1900 18 ± 3 50.0 ± 3.1 (2.5) 
PdLI-20 4.0 0.40 ± 0.03 0.36 ± 0.02 0.16 0.94 ± 0.05 48.4 ± 1.0 140 / 2000 16 ± 2 51.3 ± 3.1 (2.4) 
        Grand weighted mean =   51.2 ± 2.4 (1.5)   p = 0.80 

Table 2: Dose rate data, equivalent doses and OSL ages for sediment samples from Pech-de-l’Azé I. Also provided are the weighted mean ages for each 
layer. The calculated p-values indicate the probability that a random value from a chi-squared distribution with n-1 degrees of freedom is greater than the 
homogeneity test statistic, G of Galbraith (2003). A small p-value (by convention <0.05) indicates that the ages are not all compatible with a common value. 
  



 

Sample Layer Moisture Dose rates (Gy/ka)  Total Number Over-  OSL 
code   content   dose rate 

   
 De of dispersion age  

   (%) Beta  Gamma  Cosmic  (Gy/ka) (Gy) grains (%)  (ka) 

PdLII-5 2G1 1.9 0.63 ± 0.03 0.42 ± 0.02 0.07 1.15 ± 0.06 72.9 ± 2.9 113 / 2000 29 ± 3  63.3 ± 4.1 (3.2) 
PdLII-6 2G1 8.3 0.67 ± 0.04 0.42 ± 0.02 0.07 1.19 ± 0.07 70.9 ± 3.1 118 / 2000 38 ± 4  59.4 ± 4.3 (3.5) 
PdLII-8 2G1 3.1 0.71 ± 0.03 0.43 ± 0.02 0.07 1.24 ± 0.06 80.7 ± 2.8 123 / 2000 28 ± 3  65.3 ± 4.2 (3.2) 
PdLII-11 2G2 3.1 0.91 ± 0.05 0.44 ± 0.02 0.07 1.45 ± 0.07 88.9 ± 3.3 118 / 2000 31 ± 3  61.5 ± 4.0 (2.9) 
PdLII-13 2G2 2.1 0.63 ± 0.03 0.44 ± 0.02 0.07 1.16 ± 0.06 64.6 ± 1.3 410 / 2000 33 ± 2  55.7 ± 3.2 (2.2) 
PdLII-14 3 2.0 0.88 ± 0.05 0.44 ± 0.02 0.07 1.42 ±0.07 86.1 ± 4.4 101 / 2000 45 ± 4  60.5 ± 4.5 (3.9) 
PdLII-16 4A1 1.4 0.86 ± 0.04 0.52 ± 0.03 0.06 1.47 ± 0.07 84.8 ± 3.9 68 / 2000 25 ± 4  57.7 ± 4.0 (3.2) 
PdLII-17 4B 1.4 0.81 ± 0.05 0.59 ± 0.03 0.06 1.49 ± 0.08 133.7 ± 4.9 110 / 2000 34 ± 3  89.9 ± 5.9 (4.7) 
PdLII-18 4B 1.5 0.61 ± 0.03 0.50 ± 0.03 0.06 1.20 ±0.06 96.4 ± 4.3 100 / 2000 36 ± 4  80.3 ± 5.5 (4.6) 
PdLII-19 4D 0.7 0.71 ± 0.04 0.41 ± 0.02 0.05 1.21 ± 0.06 135.4 ± 4.8 118 / 2000 24 ± 3  105.3 ± 6.8 (5.2) 
PdLII-2 7A 2.8 0.73 ± 0.04 0.48 ± 0.02 0.02 1.26 ± 0.06 180.8 ± 6.5 70 / 2000 16 ± 4  143.3 ± 9.3 (7.1) 
PdLII-4 7B 1.7 0.66 ± 0.04 0.48 ± 0.02 0.02 1.22 ± 0.06 192.6± 9.4 71 / 2000 30 ± 5  161.3 ± 11.9 (9.9) 
PdLII-10 7B 7.0 0.50 ± 0.03 0.48 ± 0.02 0.02 1.03 ± 0.06 185.1 ± 7.6 78 / 2000 25 ± 4  179.0 ± 12.9 (11.8) 
PdLII-12 7B 3.3 0.51 ± 0.03 0.41 ± 0.02 0.01 0.97 ± 0.05 169.8 ± 8.6  80 / 1900 35 ± 5  176.0 ± 13.7 (11.8)  
PdLII-9 7B 3.1 0.75 ± 0.04 0.41 ± 0.02 0.01 1.21 ± 0.06 204.5 ± 5.6 117 / 2000 13 ± 4  169.5 ± 10.5 (7.5) 
PdLII-7 8 3.1 0.52 ± 0.03 0.59 ± 0.03 0.01 1.16 ± 0.06 183.2 ± 6.4 87 / 2000 20 ± 4  158.6 ± 10.5 (7.3) 
PdLII-15 9 2.8 0.52 ± 0.04 0.53 ± 0.03 0.01 1.09 ± 0.07 179.9 ± 13.0 34 / 1000 33 ± 6  165.2 ± 16.1 (13.7)  

Table 3: Dose rate data, equivalent doses and OSL ages for sediment samples from Pech-de-l’Azé II.  
 

  



Sample Layer Moisture Dose rates (Gy/ka)  Total Number Over-  OSL 
code   content   dose rate 

   
 De of dispersion age              p-value 

   (%) Beta  Gamma  Cosmic  (Gy/ka) (Gy) grains (%)  (ka) 

PdLIV-27 3A 3.8 0.57 ± 0.03 0.45 ± 0.02 0.12 1.17 ± 0.06 61.1 ± 1.7 112 / 2000 18 ± 3  52.4 ± 3.2 (2.5) 
PdLIV-26 3A 3.2 0.64 ± 0.04 0.44 ± 0.02 0.12 1.23 ± 0.07 60.3 ± 1.9 109 / 2000 24 ± 3  49.2 ± 3.2 (2.6) 
PdLIV-25 3A 4.7 0.53 ± 0.05 0.43 ± 0.02 0.12 1.10 ± 0.06 55.1 ± 1.8 108 / 2000 31 ± 3  49.9 ± 3.4 (2.9) 
PdLIV-24 3A 3.6 0.50 ± 0.03 0.42 ± 0.02 0.12 1.06 ± 0.06 57.3 ± 2.8 91 / 2000 38 ± 4  53.8 ± 4.0 (3.4) 
         Weighted mean =    51.1 ± 2.4 (1.4) p = 0.65 

PdLIV-23 3B 2.5 0.67 ± 0.04 0.40 ± 0.02 0.11 1.21 ± 0.06 59.7 ± 2.1 104 / 2000 26 ± 3  49.5 ± 3.2 (2.5) 
PdLIV-22 3B 3.5 0.62 ± 0.04 0.39 ± 0.02 0.11 1.15 ± 0.06 60.4 ± 2.1 101 / 2000 25 ± 3  52.5 ± 3.4 (2.7) 
PdLIV-21 3B 5.6 0.72 ± 0.05 0.39 ± 0.02 0.10 1.24 ± 0.08 64.0 ± 2.2 78 / 2000 29 ± 4  51.5 ± 3.8 (3.2) 
         Weighted mean =    51.0 ± 2.6 (1.6) p = 0.71 
PdLIV-20 4A 3.9 0.78 ± 0.04 0.46 ± 0.02 0.10 1.37 ± 0.07 72.6 ± 3.2 99 / 2000 34 ± 5  52.9 ± 3.7 (3.0) 
PdLIV-19 4A 3.4 0.89 ± 0.06 0.53 ± 0.03 0.10 1.54 ± 0.09 88.1 ± 3.5 92 / 1900 34 ± 4  57.1 ± 4.1 (3.5) 
PdLIV-18 4A 4.0 0.88 ± 0.05 0.58 ± 0.03 0.10 1.59 ± 0.08 90.3 ± 4.1 66 / 2000 26 ± 4  56.9 ± 4.0 (3.3) 
PdAIV-3 4A 4.0 0.84 ± 0.03 0.58 ± 0.03 0.10 1.56 ± 0.08 96.5 ± 4.8 70 / 2600 34 ± 4  61.8 ± 4.7 (3.9) 
PdLIV-17 4A 4.2 0.90 ± 0.05 0.51 ± 0.03 0.10 1.54 ± 0.08 92.8 ± 4.6 62 / 3000 28 ± 5  60.4 ± 4.4 (3.6) 
         Weighted mean =    57.3 ± 2.8 (1.5) p = 0.40  
PdLIV-16 4B 4.7 0.85 ± 0.05 0.45 ± 0.02 0.10 1.42 ± 0.07 87.5 ± 4.1 52 / 3000 19 ± 5  61.6 ± 4.4 (3.5) 
PdLIV-15 4B 6.8 0.83 ± 0.05 0.42 ± 0.02 0.09 1.38 ± 0.07 83.1 ± 3.3 87 / 2000 31 ± 4  60.4 ± 4.2 (3.3) 
PdLIV-14 4B 5.8 0.84 ± 0.05 0.40 ± 0.02 0.09 1.37 ± 0.07 86.5 ± 4.4 74 / 2000 34 ± 4  63.1 ± 4.8 (3.9) 
         Weighted mean =    61.5 ± 3.4 (2.1) p = 0.87 
PdLIV-13 4C 7.5 0.73 ± 0.05 0.38 ± 0.02 0.09 1.23 ± 0.08 81.1 ± 3.6 46 / 3000 17 ± 5  65.9 ± 5.2 (4.4) 
PdLIV-12 4C 5.4 0.53 ± 0.03 0.38 ± 0.02 0.09 1.03 ± 0.06 74.7± 4.0 47 / 2000 33 ± 6  72.4 ± 5.6 (4.8) 
PdLIV-11 4C 8.6 0.64 ± 0.04 0.37 ± 0.02 0.09 1.13 ± 0.07 75.8 ± 4.0 72 / 2000 36 ± 4  67.1 ± 5.4 (4.6) 
         Weighted mean =    68.3 ± 3.9 (2.7) p = 0.57 
PdLIV-10 5A 8.9 0.50 ± 0.03 0.37 ± 0.02 0.08 0.99 ± 0.06 76.5 ± 3.5 48 / 3000 19 ± 5  77.5 ± 6.0 (5.2) 
PdLIV-9 5A 9.1 0.53 ± 0.03 0.36 ± 0.02 0.08 1.01 ± 0.06 70.6 ± 2.7 108 / 2000 31 ± 3  74.3 ± 5.3 (4.2) 
PdLIV-8 5B/A 6.6 0.49 ± 0.04 0.39 ± 0.03 0.08 0.99 ± 0.06 77.1 ± 3.1 94 / 3000 38 ± 4  77.7 ± 5.7 (4.9) 
PdAIV-2 5B 6.6 0.46 ± 0.03 0.39 ± 0.03 0.08 0.97 ± 0.05  74.5 ± 7.3 39 / 2000 49 ± 8  77.2 ± 8.9 (8.4) 
         Weighted mean =    76.3 ± 4.0 (2.6) p = 0.94 
PdLIV-7 6A 7.8 0.61 ± 0.05 0.42 ± 0.02 0.08 1.14 ± 0.07 88.2 ± 2.6 106 / 2000 27 ± 3  77.2 ± 5.6 (4.6) 
PdLIV-6 6A 8.1 0.60 ± 0.04 0.41 ± 0.02 0.08 1.13 ± 0.07 83.5 ± 3.6 81 / 2000 31 ± 4  74.1 ± 5.6 (4.7) 
PdLIV-5 6B/A 7.1 0.56 ± 0.03 0.41 ± 0.02 0.07 1.07 ± 0.06 82.4 ± 2.9 114 / 2000 28 ± 3  77.0 ± 5.3 (4.2) 
PdLIV-4 6B 8.9 0.57 ± 0.04 0.35 ± 0.02 0.07 1.02 ± 0.06 77.8 ± 3.4 83 / 2000 30 ± 4  76.3 ± 5.7 (4.8) 
PdLIV-3 6B 9.3 0.41 ± 0.03 0.35 ± 0.02 0.07 0.86 ± 0.06 68.3 ± 2.5 115 / 2000 31 ± 3  79.8 ± 6.1 (5.3) 
         Weighted mean =    76.7 ± 3.7 (2.1) p = 0.99 
PdAIV-1-A 8 5.6 0.27 ± 0.03  0.24 ± 0.01 0.05 0.60 ± 0.04  55.1 ± 2.7 90 / 1000 39 ± 4  91.5 ± 7.6 (7.1) 
PdLIV-2 8 5.6 0.23 ± 0.03 0.33 ± 0.02 0.05 0.65 ± 0.05 62.7 ± 1.6 142 / 1000 22 ± 3  97.4 ± 7.6 (6.9) 
PdAIV-1-B 8 5.6 0.23 ± 0.03 0.33 ± 0.02 0.05 0.64 ± 0.05 63.5 ± 4.5 80 / 1500 72 ± 6  98.6 ± 11.1 (10.7) 
PdAIV-1-C 8 6.9 0.29 ± 0.03 0.31 ± 0.02 0.05 0.69 ± 0.05 62.9 ± 3.6 89 / 1000 48 ± 4  91.6 ± 8.8 (8.2) 
PdAIV-1-D 8 8.1 0.31 ± 0.02 0.29 ± 0.02 0.05 0.68 ± 0.04 66.6 ± 2.3 171 / 2000 38 ± 3  97.4 ± 7.4 (6.3) 
PdLIV-1 8 8.1 0.41 ± 0.03 0.29 ± 0.02 0.05 0.79 ± 0.05 73.9 ± 2.2 112 / 1000 23 ± 2  93.8 ± 6.7 (5.6) 
         Weighted mean =    94.8 ± 4.3 (2.9) p = 0.95 

Table 4: Dose rate data, equivalent doses and OSL ages for sediment samples from Pech-de-l’Aze IV.  See Table 2 for explanation of p-value. 



Climatic Phase Pech I Pech II Pech IV 

Würm / Périgord Layer Industry Layer Industry 
Layer 

(Bordes, 
1975) 

Layer (Turq 
et al., 
2011) 

Industry 

II / V (less cold, 
damp) 

Rock fall — — — E 1 — 

II/ IV (very cold, 
dry) 

7 MTA-B — — F1 2  

II / III (less cold, 
damper) 

6 MTA-B — — F2 3A MTA-B 

II / II (cold, dry) 5 MTA-A/B — — F3 3A MTA-A/B 

II / I (very cold, 
damp) 

4 MTA-A — — F4 3B MTA-A 

I / IX (cold, very 
dry) 

— — 2A–2C Mousterian G 4A Mousterian 

I / VIII (milder) — — 2D Mousterian H1–H2 4A TM? 

I / VII (cold, dry) — — 
2E–2F TM I1–I2 

4B (I1) 
TM 

4C (I2) 

I / VI (mild) — — 2G Mousterian J1 5A TM? 

I / V (short, cold) — — 2G’ top Mousterian J2 5B TM? 

I / IV (mild, 
damp) 

— — 
2G’ base Mousterian J3a–c 

6A (J3a-b) 
Asinipodian 

6B (J3c) 

I / III (cold, dry) — — 3 TM Rock fall  — 

I / II (mild, damp) 

— — 4A TM X 7 (X top) TM 

— — 4B DM X  TM 

— — 4C TM X  TM 

I / I (short, cold) — — 4D–E TM Y–Z 8 (X base, 
Y-Z) 

TM 

Table 5: Correlations between the three sites proposed by Bordes (1975, 1978) based on the climate, fauna, geology and archaeological industries. Also 

shown for Pech IV is the current stratigraphic units proposed in Turq et al. (2011) and used in the rest of this study. MTA – Mousterian of the Acheulian 

Tradition; TM – Typical Mousterian; DM – Denticulate Mousterian. 

  



Climatic Phase Pech I Pech II Pech IV 

Marine Isotope 
Stage (MIS) / 

Approximate age 
Layer Industry Layer Industry Layer  Industry 

 Rock fall —  1 — 

MIS 3  
(~51 ka) 

7 
6 
5 
4 

MTA-B 
MTA-B 

MTA-A/B 
MTA-A 

2 
3A 
3A 
3B 

MTA with 
trends 

consistent 
with Type A 
to B change 

 

End of MIS 4, 
beginning of MIS 3 

(~63 to ~55 ka) 

2A–2G 
 
 
 
 

3 
4A 

FM with 
Levallois 

flakes and 
Quina 

scrapers 
TM 
TM 

4A 
 
 
 
 

4B (I1) 

High scraper 
percentages, 

high but 
decreasing 

Levallois  
TM with 

likely Quina 
at the top 

 

End of MIS 5a, all 
of MIS 4 

(~77 to ~65 ka) 

 4C TM - High 
Scrapers and 

Levallois 
5A 

5B 

6A  Low 
Scrapers, 
increasing 
Levallois, 

Asinipodian 

6B 

MIS 5d to MIS 5b 
(~105 to ~80 ka) 

4B DM  

4C 

TM 

7  ? 

4D–E 8  TM - High 
scrapers 

with some 
Levallois 

MIS6 
(~180-~140 ka) 

 
6-9 

Clactonian 
and 

Acheulian 

 

Table 6: Correlations between the three Pech sites based on the chronologies constructed in this study, together with the broad age range and 

corresponding marine isotope stages. MTA – Mousterian of the Acheulian Tradition; TM – Typical Mousterian; DM – Denticulate Mousterian. 
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