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Quasi-freestanding epitaxial silicene on Ag(111) by oxygen intercalation

Abstract
Silicene is a monolayer allotrope of silicon atoms arranged in a honeycomb structure with massless Dirac
fermion characteristics similar to graphene. It merits development of silicon-based multifunctional
nanoelectronic and spintronic devices operated at room temperature because of strong spin-orbit coupling.
Nevertheless, until now, silicene could only be epitaxially grown on conductive substrates. The strong silicene-
substrate interaction may depress its superior electronic properties. We report a quasi-freestanding silicene
layer that has been successfully obtained through oxidization of bilayer silicene on the Ag(111) surface. The
oxygen atoms intercalate into the underlayer of silicene, resulting in isolation of the top layer of silicene from
the substrate. In consequence, the top layer of silicene exhibits the signature of a 1 x 1 honeycomb lattice and
hosts massless Dirac fermions because of much less interaction with the substrate. Furthermore, the oxidized
silicon buffer layer is expected to serve as an ideal dielectric layer for electric gating in electronic devices.
These findings are relevant for the future design and application of silicene-based nanoelectronic and
spintronic devices.
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Quasi-freestanding epitaxial silicene on Ag(111)
by oxygen intercalation
Yi Du,1* Jincheng Zhuang,1 Jiaou Wang,2 Zhi Li,1 Hongsheng Liu,3 Jijun Zhao,3* Xun Xu,1

Haifeng Feng,1 Lan Chen,4 Kehui Wu,4 Xiaolin Wang,1 Shi Xue Dou1

Silicene is a monolayer allotrope of silicon atoms arranged in a honeycomb structure with massless Dirac fermion
characteristics similar to graphene. It merits development of silicon-based multifunctional nanoelectronic and spin-
tronic devices operated at room temperature because of strong spin-orbit coupling. Nevertheless, until now, silicene
could only be epitaxially grown on conductive substrates. The strong silicene-substrate interaction may depress its
superior electronic properties. We report a quasi-freestanding silicene layer that has been successfully obtained
through oxidization of bilayer silicene on the Ag(111) surface. The oxygen atoms intercalate into the underlayer of
silicene, resulting in isolation of the top layer of silicene from the substrate. In consequence, the top layer of silicene
exhibits the signatureof a 1× 1honeycomb lattice andhostsmasslessDirac fermionsbecauseofmuch less interaction
with the substrate. Furthermore, the oxidized silicon buffer layer is expected to serve as an ideal dielectric layer for
electric gating in electronic devices. These findings are relevant for the future design and application of silicene-based
nanoelectronic and spintronic devices.

INTRODUCTION

Silicene, in a similar way to graphene, should exhibit exciting and rich
physics from theoretical calculations, including massless Dirac fermions,
the quantum spin Hall effect, and possible superconductivity (1–10). In
equilibrium low-buckled silicene, silicon atoms adopt sp2/sp3-mixed
hybridization states (11), which require an appropriate substrate to
saturate their out-of-plane dangling bonds. This seems to be the reason
that monolayer silicene sheets must be fabricated on several conductive
substrates by epitaxial growth (2–5). However, the strong silicene-
substrate interaction may markedly depress the superior electronic prop-
erties in this two-dimensional (2D) material (12, 13). For example, the
hybridization between Ag and Si orbitals results in a surface metallic
band and depresses the Dirac fermion characteristics in an epitaxial
silicene layer on an Ag(111) surface (13). Moreover, the conductive sub-
strates make it difficult to modulate the Fermi level of silicene by electric
gating, and this hinders integration of silicene into microelectronic de-
vices. Hence, how to eliminate or minimize substrate effects on the struc-
tural and electronic characteristics of epitaxial silicene has become a
critical issue for the development of silicene devices. Although some the-
oretical proposals have been put forward to achieve quasi-freestanding
silicene on inert substrates (14–16), so far, there has barely been any
experimental success.

In bilayer silicene on Ag(111), the top √3 × √3 layer (with respect to
1 × 1 silicene) is considered to be fabricated on the √13 × √13/4 × 4 layer
[with respect to 1 × 1 Ag(111)] (17). Therefore, the lower √13 × √13/4 × 4
layer can be regarded as a buffer layer. Convincing experimental evidence
suggests that the √3 × √3 layer has more sp2 hybridization states and
excellent chemical stability (18), whereas the √13 × √13/4 × 4 layer is high-
ly sensitive to ambient gases, especially O2 (19–21). Recently, elimination

of the graphene-substrate interaction has been achieved by exfoliating epi-
taxial graphene from an SiC(0001) surface by using hydrogen or fluorine
intercalation in the buffer layer (22, 23). Motivated by such a successful
strategy, the interaction between the top √3 × √3 silicene layer and the
metal substrate is expected to be effectively reduced by an appropriate
intercalation into the buffer √13 × √13/4 × 4 silicene layer, which, in turn,
may allow the top layer to recover the intrinsic properties of silicene.

Here, we conducted oxidization of bilayer silicene on Ag(111) and
found that the oxygen molecules intercalate into the √13 × √13/4 × 4
buffer layer of silicene. As a result, the top layer of silicene exhibits the
signature of the 1 × 1 lattice structure of “freestanding” silicene and shows
a robust Dirac fermion characteristic with less electron doping, which are
revealed by scanning tunneling microscopy (STM), x-ray photoemission
spectroscopy (XPS), and angle-resolved photoemission spectroscopy
(ARPES) measurements. By combining these results with first-principles
calculations, we demonstrate that the top layer of silicene can act as quasi-
freestanding silicene with weakened interaction with the substrate. Our
study establishes a novel and simple way to obtain quasi-freestanding
silicene on a substrate. In addition, the silicon oxide buffer layer may
be used as the dielectric layer for possible direct construction of field
effect transistors (FETs) on the metal substrate.

RESULTS

Figure 1A shows an STM image of pristine √3 × √3 silicene sup-
ported by the √13 × √13/4 × 4 buffer layer on Ag(111). In the pristine
sample, the exposed silicene buffer layer shows three distinct struc-
tures, that is, 4 × 4, √13 × √13R13.9o (−I), and √13 × √13R19.1o (−II)
(24). The top layer of silicene exhibits a √3 × √3 lattice with a lattice
constant a = 0.64 nm, which is approximately √3 times that of the
1 × 1 silicene structure (a = 0.38 nm) (25). Figure 1B is an STM image
of a single piece of silicene island with a top √3 × √3 layer, collected
after the sample was exposed to oxygen with a dose of 600 Langmuir
(L). The bright area of the island is higher than the dark area by about
0.9 Å, as shown in Fig. 1C. The high-resolution STM image (Fig. 1D)
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reveals that the structural features of the √3 × √3 reconstruction in the
higher area are weaker than those in the dark area (Fig. 1E). It is found
that the higher area forms from the edge of a √3 × √3 silicene flake. The
higher area exhibits the signature of a 1 × 1 lattice of freestanding silicene.
To the best of our knowledge, this is the first experimental observation
of a 1 × 1 lattice in silicene. We further increased the oxygen dose up to
1200 L, and the corresponding STM image (Fig. 1F) shows that the ex-
posed√13×√13/4 × 4 layer changes to an amorphous form,whereas the
√3 × √3 silicene clearly remains intact. The higher degree of buckling of
Si atoms in the√13×√13/4 × 4 silicene layer (19) enables surface dangling
bonds to easily react with oxygen. Consequently, crumpled amorphous
silicon oxide (SiOx) is formed, leading to exposure of the bare Ag(111)
surface, which was also observed in our previous study (19). Considering
the top √3 × √3 layer sitting on the √13 × √13/4 × 4 layer, we conjecture
that the oxygen atoms are intercalated between the two silicene layers
and react with the underlying √13 × √13/4 × 4 layer. That is why the
surface of the top √3 × √3 layer remains intact and the oxidized area of
the √3 × √3 layer is higher than the unoxidized area. The increased
height reflects the fact that the oxidizing process of the √13 × √13/4 ×
4 layer follows the conventional oxidation of silicon, in which the vol-
ume of SiOx is increased upon oxidation. It should be noted that all the
silicon atoms in√3 ×√3 silicene form a honeycombpattern in the high-
resolution STM image, that is, the 1 × 1 lattice of freestanding silicene,
as schematically illustrated in fig. S1, whereas the arrangement of top
silicon atoms still reflects the √3 × √3 superstructure, indicating that
the √3 × √3 superstructure is derived from 1 × 1 silicene. Thus, the ob-
servation of a 1 × 1 lattice of freestanding silicene in the oxidized area of
the √3 × √3 layer suggests that the interactions between the top layer of

silicene and the underlying silicene/silicon oxide or Ag(111) substrate are
weakened by oxidization.

To corroborate the oxidization model sketched in Fig. 1, a detailed
analysis of the chemical bonds was conducted by XPS and Raman
spectroscopy. Si 2p and Ag 3d core-level spectra were collected for the
pristine and oxygen-treated silicene samples, as shown in Fig. 2A and
fig. S2. Different components contributing to the spectra were decomposed
by a curve-fitting procedure (13). We determined the signature of XPS
peak positions corresponding to the √13 × √13/4 × 4 buffer layer in
our previous work (13). Therefore, we categorize the two kinds of
bonding components into groups, that is, group I (√3 × √3 silicene,
labeled as Si1 and Si2) and group II (√13 × √13/4 × 4 silicene buffer
layer, labeled as Si3 and Si4) from the fitting of the Si 2p lines. We
emphasize the decreased intensities and obvious shifts of the group II
components after oxygen treatment, whereas the group I components
do not show any variation. This indicates that the Si–Ag bonds be-
tween the √13 × √13/4 × 4 buffer layer and the Ag(111) surface are par-
tially broken by oxygen treatment, whereas the top √3 × √3 silicene
layer resists oxidization. The broad SiOx peak at 101.6 eV accompanies
the shift of group II component, verifying that the breaking of the Si–Ag
bonds is due to oxidization of the buffer layer (13).

Raman spectroscopy is particularly sensitive to changes in the band
gap, the in-plane bonds, and the strain effect associated with structural
change and, thus, plays an important role in the structural character-
ization of 2D materials (26–28). We have identified fingerprint Raman
peaks for each silicene phase (28). The phonon modes in the pristine
and oxygen-intercalated samples were characterized by in situ Raman
spectroscopy, as shown in Fig. 2B. Because the Ag(111) substrate is a

Fig. 1. Topographic images of pristine and oxygen-intercalated epitaxial silicene grown on Ag(111). (A) STM topographic image of pristine
√3 × √3 silicene that was formed on a √13 × √13/4 × 4 buffer layer. Inset is a high-resolution image of √3 × √3 silicene, which demonstrates a
honeycomb structure with a lattice constant of 0.64 nm (Vbias= −0.8 V, I = 0.2 nA). (B) Oxygen-intercalated √3 × √3 silicene after an oxygen dose of
600 L (Vbias = 0.6 V, I = 2 nA). (C) Line profile for the straight line in (B). (D and E) Enlarged STM images of intercalated region [red frame in (B)] and
nonintercalated √3 × √3 silicene [black frame in (B)], respectively. The red rhombus and black rhombus stand for the unit cells of 1 × 1 silicene and
√3 × √3 silicene, respectively (Vbias = 3 mV, I = 4 nA). (F) Oxygen-intercalated silicene layers after an oxygen dose of 1200 L, in which the buffer layer
is fully oxidized, whereas the √3 × √3 silicene shows robust structural stability against oxygen intercalation (Vbias = −1.2 V, I = 0.1 nA).
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metal, which does not contribute a Raman signal, the Raman spectra
are only attributed to the epitaxial silicene layers, although the thick-
nesses of the silicene layers are thinner than the penetration depth of
Raman incident light. The Raman peak at 526.3 ± 3 cm−1 is due to the
doubly degenerate E2g mode (27, 28) at the Brillouin zone (BZ) center
G point for all silicene structures. The E2g peak of silicene, regardless of
structure, is sensitive to the temperature variation. The in situ temperature-
dependent Raman spectra of a monolayer 4 × 4/√13 × √13 buffer layer
and a √3 × √3 silicene sample from liquid nitrogen temperature to 275 K
are shown in fig. S3. It is found that the E2g mode in both samples
shows an obvious blue shift when the temperature is decreased, which
is possibly attributable to the thermal expansion effect. In contrast
to the √13 × √13/4 × 4 structure, the √3 × √3 silicene exhibits a more
sensitive E2g mode under temperature variation from 80 to 275 K. The
D1-D5 peaks are attributed to electron inter- or intravalley scattering at
the zigzag and armchair edges in the √3 × √3 silicene, and the D peak is
induced by boundary defects in the √13 × √13/4 × 4 silicene (28). After
oxygen treatment, the D peak vanishes, and an additional Raman peak
at 494 cm−1 emerges, which indicates the formation of amorphous sil-
icon oxide (29). In contrast, all the Raman peaks assigned to the √3 × √3
silicene are almost invariable after oxygen treatment. By scrutinizing the
fingerprintE2gpeak, it is found that thepeakposition isblue-shiftedby4cm

−1

in the oxygen-intercalated sample. The shift of the Raman signal sug-
gests that the tensile strain in epitaxial √3 × √3 silicene is “released”
toward “unstrained” freestanding 1 × 1 silicene by oxygen intercalation
(27, 28, 30). Ex situ Raman spectra were used to examine the stability of
the oxygen-intercalated sample exposed to ambient air. The detailed results
are displayed in fig. S4, in whichwe demonstrate that the intercalated
√3 × √3 silicene survives in the ambient environment for at least 120hours.

DISCUSSION

The STM, XPS, and Raman spectroscopy results suggest that the ox-
ygen atoms are intercalated between the silicene layers and weaken the

interaction between the top layer and the Ag(111) surface. This picture
is confirmed by our density functional theory (DFT) calculations on the
oxidation of silicene layers on the Ag(111) surface. As shown in Fig. 3A,
when an O2 molecule is adsorbed on monolayer 4 × 4 silicene/Ag(111),
it would spontaneously decompose into two O atoms, with one O atom
sitting on the top of a silicon atom and the other located at the
neighboring bridge site. The chemical dissociation of a gaseous O2

molecule on monolayer 4 × 4 silicene is an exothermic process with
adsorption energy of 5.474 eV. In sharp contrast, when an O2 molecule
is adsorbed on the √3 × √3 silicene layer on top of 4 × 4 silicene/Ag(111),
it would not decompose after relaxation, as shown in Fig. 3B. The corre-
sponding adsorption energy of only 2.84 eV is much smaller than that for
the dissociative adsorption of O2 on themonolayer 4 × 4 silicene (5.474 eV),
indicating the higher resistance of √3 × √3 silicene to oxidation compared
with monolayer 4 × 4 silicene, as observed in our experimental results.

It is necessary to determine the status of the buffer layer beneath
√3 × √3 silicene before simulating the interaction strength after oxygen
intercalation.Wedirectly placed anO2molecule between the top√3×√3
layer and the bottom4× 4 layer in bilayer silicene (Fig. 3C).Upon relaxa-
tion, O2 would spontaneously dissociate into two oxygen atoms, and the
adsorption energy is as large as 6.36 eV, comparable to the adsorption
energy of the uncovered buffer layer. The even larger adsorption energy
for the covered buffer layer suggests the preference for oxidization of the
covered √13 × √13/4 × 4 silicene layer underneath the top √3 × √3 sili-
cene layer, as shown in the schematic diagrams in fig. S5B. The dy-
namic process of oxygen intercalation is further experimentally
revealed in fig. S6, where the intercalation depth, which is the distance
from the silicene edges to the centers of the top √3 × √3 silicene islands,
increases with increasing oxygen dose.

To model the oxidized bilayer silicene on Ag(111) substrate, we con-
structed a sandwich structure of √3 × √3 silicene/SiOx/Ag(111) (x = 1.909),
as depicted in Fig. 3D. After relaxation, the top silicene sheet retains its
hexagonal honeycomb lattice (Fig. 3E) and interacts weakly with the
SiOx buffer layer at an average separation of 3.09 Å. Compared to the
interfacial binding energy (123 meV/Å2) between the top and the bottom

Fig. 2. XPS and Raman spectra of pristine and oxygen-intercalated silicene. (A) Si 2p core-level XPS spectra of pristine (top) and oxygen-intercalated
(middle, lower dose; bottom, higher dose) silicene layers grown on Ag(111). The Si1 and Si2 peaks are attributed to Si–Si bonds in √3 × √3 silicene, whereas
Si3 and Si4 are attributed to the √13 × √13/4 × 4 silicene buffer layer. a.u., arbitrary units. (B) Raman spectra of √13 × √13/4 × 4 silicene buffer layer (black),
√3 × √3 silicene with 0.3 monolayer coverage on √13 × √13/4 × 4 buffer layer (pristine sample; red), and oxygen-intercalated sample (blue). The oxidized
buffer layer features a broad Raman peak at 494 cm−1 in the spectrum of the oxygen-intercalated sample.
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layer of the pristine bilayer silicene, the binding energy (12 meV/Å2)
between the silicene top layer and the SiOx buffer layer is significantly
reduced by one order of magnitude after oxygen intercalation. As a con-
sequenceof theweakened silicene-substrate interaction, the simulatedSTM
image (Fig. 3F), based on the structural model of silicene/SiOx/Ag(111)
in Fig. 3D, coincides with the experimental one, showing the clear pattern
of the 1 × 1 structure of the honeycomb lattice of silicene. Therefore, DFT
calculations convincingly support the existence of a quasi-freestanding sili-
cene top layer after oxygen intercalation, as conjectured fromour experiments.

Apart from the structural aspect, oxygen intercalation has a re-
markable impact on the electronic structure of silicene layers. Figure 4
shows the electronic band structures measured by ARPES on pristine
silicene and oxygen-intercalated silicene grown on Ag(111). As a reference,
the electronic band structure of the clean Ag(111) surface is also shown in
Fig. 4A, where the Shockley surface state (SSS) at the BZ center (G point)
and the bulk Ag sp band are indicated. When √3 × √3 silicene was grown,
we observed two faint bands with linear dispersion crossing at the G point,
as shown in Fig. 4B. Constant energy cuts of the spectral function at dif-
ferent binding energies confirm that both bands originate from a Dirac
cone structure, as shown in Fig. 4E, which can be assigned to the linear
p and p* states of √3 × √3 silicene (17, 31). The Dirac point (DP) is
located at about 0.33 eV below the Fermi level (EF) due to electron
doping from the Ag(111) substrate (32).

Figure 4 (C and D) presents the electronic band structures after
oxygen intercalation under different doses of oxygen (600 and 1200 L)
at 200°C, as measured by ARPES with higher energy and momentum
resolutions. One can clearly see that two single Dirac cones meet at the
DP, which is located at about −0.28 and −0.26 eV for the samples ex-
posed to oxygen doses of 600 and 1200 L, respectively. The character-

istic “D”-shaped bands at a deep energy level (below −0.7 eV), which
were attributed to the hybridization between interface Si pz orbitals
and Ag d orbitals in the pristine sample (12, 13), are smeared or vanish
after oxygen intercalation, although the typical bulk sp band of Ag across
the Fermi level at k = 1.15 Å−1 appeared in the ARPES results after ox-
ygen intercalation. The ARPES results in figs. S7 and S8 indicate that
this band remains stable under oxygen intercalation. A new state corre-
sponding to silicon oxide appears in the oxygen-intercalated silicene at a
deep energy level (below −0.6 eV), centered at k = −0.2 Å along the G-K
direction. This state ismore obvious in theARPES feature for the oxygen-
intercalated sample after an oxygen dose of 1200 L, as shown in Fig. 4D.

The ARPES results reveal that the electronic structures of epitaxial
silicene aremodulated by chemical adsorption. In the initial intercalation
stage, the chemical interaction between the buffer layer silicene and the
Ag substrate is broken by the oxygen atoms. The Si–Ag hybridized state
in the silicene/Ag(111) system is replaced by electronic states attributa-
ble to Si–O bonds. As the oxygen dose increases, the oxidized √13 ×
√13/4 × 4 buffer layer contributes more states in the deep level (below
−0.6 eV). Meanwhile, the DP is pushed up toward the Fermi level, be-
cause the oxidized buffer layer acts as a dielectric barrier and lowers the
electron doping in the top √3 × √3 silicene layer, as shown in Fig. 4F.
The thickness of the oxidized buffer layer is increased when the oxygen
dose is increased. That is, the dielectric barrier will become thicker with
increasing oxygen dose. Consequently, the doping level should be lower
in the intercalated silicene with a higher oxygen dose. This agrees with
our ARPES results, in which 1200-L oxygen–intercalated silicene has its
DP at 0.26 eVbelow the Fermi level, whereas 600-L oxygen–intercalated
silicene shows its DP at 0.28 eV below the Fermi level. The weakened
doping effect from the substrate on the silicene’s electronic structure

Fig. 3. Simulations for atomic structures of oxygen adsorbed on both buffer layer and top layer silicene. (A to C) Atomic structures of an O2

molecule adsorbed on 4 × 4 silicene buffer layer (A), top layer silicene (B), and 4 × 4 buffer layer underneath √3 × √3 silicene (C). (D and E) Atomic structure
of silicene/SiOx/Ag(111) from ab initiomolecular dynamics (AIMD) simulation: side view (D) and top view (E) of the top layer silicene only. (F) Simulated (top) and
experimental (bottom) high-resolution STM images of silicene/SiOx/Ag(111), showing the 1 × 1 silicene honeycomb lattice.
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is also observed in the scanning tunneling spectroscopy (STS) results
(fig. S9).

On the basis of the ARPES results, the Fermi velocity is estimated
to be about (4.4 ± 0.2) × 105 m/s for the pristine sample, although it de-
creases to about (3.9 ± 0.5) × 105 m/s and (3.4 ± 0.5) × 105 m/s for the
600-L and 1200-L oxygen–intercalated silicene, respectively. In the inter-
calated silicene, the tensile strain is released, which increases the degree of
buckling and weakens sp2 hybridization of Si atoms (33), thus decreas-
ing the hopping parameter t within a two-band tight-binding picture
(34). As a consequence, the Fermi velocity vF = 3ta/2 is expectedly lower
in freestanding silicene (with small a and t) than in epitaxial silicene.
The observed decreases in Fermi velocity are most likely attributed to
the oxygen intercalation process. The ARPES measurements indicate
that the√3×√3 silicene layer has a high resistance to oxidation and that its
Dirac cone structure is robust during oxygen intercalation. The DFT band
structure calculations based on the structural model of silicene/SiOx/Ag
(Fig. 3D) also show the existence of the characteristicDirac cone of quasi-
freestanding silicene around the Fermi level, with amini-gap of 20meV
opened at the Dirac cone because of weak interaction between the top
silicene layer and the SiOx buffer layer (fig. S10). Analysis of the partial
density of state further indicates that the top silicene layer exhibits semi-
metal characteristics like freestanding silicene, and the SiOx buffer layer is
insulatingwith about a 5-eVgap (fig. S11). Finally, our results suggest that
the insulating SiOx buffer layer provides a barrier for electric gating that
can be directly used in FETs. This is significant for the integration of
silicene in future microelectronic devices.

In summary, we have demonstrated an effective method to make
epitaxial silicene quasi-freestanding from its Ag(111) substrate by oxygen
intercalation. The highly reactive√13 ×√13 and 4 × 4 silicene interfacial
layers can be fully oxidized, resulting in decoupling of the top silicon
atoms from the Ag substrate. Meanwhile, the top √3 × √3 silicene layer
shows chemical resistance to oxygen, which ensures retention of the

honeycomb structure and the characteristicmassless Dirac fermions af-
ter oxygen intercalation. The intercalation opens up the possibility of
producing quasi-freestanding and transferrable epitaxial silicene.More-
over, the oxidized √13 × √13/4 × 4 silicene buffer layer (SiOx) holds
promise for peeling off and transferring epitaxial silicene to another di-
electric support to make electronic devices.

MATERIALS AND METHODS

Sample preparation
The silicene layers were fabricated by the deposition of silicon atoms on
Ag(111) substrate from a heated silicon wafer in a preparation chamber
attached to an in situ STM/Raman system under ultrahigh vacuum
(UHV; <1×10−10 torr). A cleanAg(111) substratewas prepared by argon
ion sputtering and subsequently annealed at 550°C for several cycles.
The deposition flux of Si was 0.08 monolayer per minute. The tem-
perature of the Ag(111) substrate was kept at 220°C during deposition
(19, 35). An in situ oxygen intercalation process was carried out by in-
troducing oxygen molecules into the preparation chamber at a sample
temperature of 200°C. Langmuir was used as the unit of exposure to
O2, that is, 1 L was an exposure of O2 (10

−6 torr) in 1 s.

Characterization of structural and electronic properties
The STM and Raman spectroscopymeasurements were carried out using
a low-temperature UHV STM/scanning near-field optical microscopy
system (SNOM1400, Unisoku Co.) in UHV (<8 × 10−11 torr) at 77 K.
The Raman spectra were acquired using a laser excitation of 532 nm
(2.33 eV) delivered through a single-mode optical fiber at 77 K inUHV.
The spot size of the incident laser in the in situ Raman spectroscopywas
about 3 mm in diameter. In situ ARPES and XPS characterizations were
performed at the Photoelectron Spectroscopy Station in the Beijing

Fig. 4. ARPES results of pristine and oxygen-intercalated silicene. (A to D) Energy versus k dispersionmeasured byARPES for clean Ag(111) surface (A),
as-grown √3 × √3 silicene formed on buffer layer (B), oxygen-intercalated silicene with an oxygen dose of 600 L (C), and intercalated silicene with an oxygen
dose of 1200 L (D). The SSS and the sp band in (A) are attributed to the Ag(111) substrate. The DP in (B) to (D) is lifted upwith increased oxygen dose from 0 to
1200 L, indicating less electron doping from the Ag(111) substrate due to oxygen intercalation. (E) ARPES energy cuts reveal a Dirac cone structure in
pristine silicene. (F) Schematic view of shifting of Dirac cone due to oxygen intercalation in ARPES measurement.
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Synchrotron Radiation Facility (BSRF) using a SCIENTA R4000 an-
alyzer. A monochromatized He I light source (21.2 eV) was used for
the band dispersion measurements. The total energy resolution was
set to 15 meV, and the angular resolution was set to ~0.3°, which gives
a momentum resolution of ~0.01 p/a. The XPS experiments were per-
formed at Beamline 4B9B, and variable photon energies were refer-
enced to a fresh Au polycrystalline film. The spot size of incident light
in XPS was about 1 mm in diameter.

DFT calculations
Ab initio calculations were performed using DFT and a plane-wave
basis with a cutoff energy of 400 eV, as implemented inViennaAb initio
Simulation Package (36). The electron-ion interactions were represented
by projector augmented wave potentials (37). The Perdew-Burke-
Ernzerhof functional was adopted to describe the exchange-correlation
interactions (38). To properly take into account the long-range van der
Waals interactions in layered structures, the DFT-D3 scheme (39)
was used. The Ag(111) surface wasmodeled by a three-layer slabmodel
with a vacuum space of more than 12 Å, which was cleaved from a face-
centered cubic solid silver bulk with an experimental lattice constant of
2.89 Å.Within the constrained supercell, the slab model was further re-
laxed, with the bottom layer fixed to mimic a semi-infinite solid. The
monolayer 4 × 4 silicene/Ag(111) superstructure was composed of 3 ×
3 silicene cells and 4 × 4 Ag(111) cells. Bilayer silicene was further con-
structed by putting a √3 × √3 silicene layer on top of the 4 × 4 silicene/
Ag(111). To simulate oxygen adsorptiononpristine bilayer silicene, a 2×2
supercell of the √3 × √3 silicene/4 × 4 silicene/Ag(111) structure with
lattice constant of 23.12 Å and a total of 192 silver atoms plus 150 silicon
atoms was adopted. Similarly, a 2 × 2 supercell of monolayer 4 × 4 sili-
cene on Ag(111) was also considered. To model oxygen intercala-
tion, a slab of 4 × 4 Ag(111) supercell with 48 silver atoms, a
buffer layer of SiOx with 22 silicon atoms and 42 oxygen atoms,
and a top 1 × 1 silicene layer with 18 silicon atoms were combined
to construct the silicene/SiOx/Ag(111) hybrid structure, which was re-
laxed by an AIMD simulation at 550 K for 10 ps followed by geometry
optimization. Note that the SiOx buffer layer was thicker than the pris-
tine 4 × 4 silicene layer, based on our experimental observation that the
height of an oxygen-intercalated silicene areawas higher than that of the
pristine silicene area (see the Supplementary Materials).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/7/e1600067/DC1
fig. S1. Observation of 1 × 1 lattice induced by oxygen intercalation.
fig. S2. XPS spectra of oxygen-intercalated silicene.
fig. S3. In situ temperature-dependent Raman spectra of silicene samples in different structures.
fig. S4. Ex situ Raman spectra of oxygen-intercalated samples exposed to ambient air.
fig. S5. STM results on intercalated silicene layers.
fig. S6. STM images of samples after oxygen intercalation under different doses and STS dI/dV
measurements.
fig. S7. Additional ARPES results on intercalated silicene under an oxygen dose of 600 L.
fig. S8. ARPES results on silicene buffer layer grown on Ag(111).
fig. S9. STS in intercalated and pristine areas of silicene.
fig. S10. DFT results on the electronic band structure of oxygen-intercalated bilayer silicene.
fig. S11. DFT results on the partial density of states of bilayer silicene before and after oxygen
intercalation.
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